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Abstract—For cognitive wireless networks, one challenge is
that the status of the channels’ availability and quality is
difficult to predict and quantify. Numerous learning based online
channel sensing and accessing strategies have been proposed to
address such challenge. In this work, we propose a novel channel
sensing and accessing strategy that carefully balances the channel
statistics exploration and multichannel diversity exploitation.
Unlike traditional MAB-based approaches, in our scheme, a
secondary cognitive radio user will sequentially sense the status of
multiple channels in a carefully designed ordering. We formulate
the online sequential channel sensing and accessing problem as
a sequencing multi-armed bandit problem, and propose a novel
policy whose regret is in optimal logarithmic rate in time and
polynomial in the number of channels. We conducted extensive
simulations to compare the performance of our method with
traditional MAB-based approach. Our simulation results show
that our scheme improves the throughput by more than 30%

and speed up the learning process by more than 100%.

I. INTRODUCTION

In cognitive radio networks, user is regulated to perform
spectrum sensing before it transmits over a channel, so as to
protect primary user’s communication [1]. Due to hardware
limitations, cognitive user can only sense a small portion
of the spectrum band at a time1. Thus, properly arranging
sensing and accessing policy is critical for improving system
throughput as well as reducing access delay. A major challenge
in achieving optimal opportunistic channel accessing is the dif-
ficulty of predicting the channel status and quality accurately.
Online learning schemes, due to the adaptivity and efficiency
inherently for dynamic wireless network, have received much
attention [2].
Assuming cognitive user could only sense/access one chan-

nel at each time slot, existing online channel sensing and
accessing solutions often model the learning process as a
multi-armed bandit (MAB) problem [3]. Although the one
channel per slot scheme is somehow reasonable in periodical
and synchronized spectrum sensing system, it fails to exploit
instantaneous opportunities among channels, i.e. multichannel
diversity. Such diversity is widespread in dynamic spectrum
access system, since the available channels are commonly
more than users could use, e.g., with half of the US population
having more than 20 TV channels available for white-space
communication at a time [4]. Meanwhile, compared with the

1Without loss of generosity, in this work, we consider that user can only
sense (or transmit over) one channel at a time

duration of an access time slot, the channel sensing time is
typically very short, e.g., the sensing time is about 10ms, and
the access duration is typically about 2s in TV band [5].
Motivated by these facts, we investigate the online channel

sensing and accessing schemes, where cognitive user is al-
lowed to sense multiple channels sequentially during each time
slot. Our objective is to optimize the total throughput achieved
during system lifetime by carefully selecting the sequence of
channels to be sensed in each time slot. In this way, both
long-term statistics and short-term diversity among different
licensed channels can be jointly explored and exploited. Note
that in our model, the number of channels being sensed in
each time slot is a random variable, while for all the previous
work applying MAB in dynamic spectrum access [6]–[8], the
number of channels sensed in each time slot is a fixed constant,
typically one. This distinguishing feature makes the traditional
MAB models cannot be used to solve our problem directly.
In this work, we formulate the problem on learning the

optimal channel sensing order in a stochastic setting as a
new bandit problem, which we referred as a sequencing multi-
armed bandit problem (SMAB). In this formulation, we map
each sensing order (i.e. a sequence of channels) to an arm.
The throughput reward of choosing an arm in a slot is linearly
proportional to the remaining transmission time. Observe that
the number of arms using this simple mapping is exponential,
i.e., it is O(NK) where N is the total number of channels
and K is the maximum number of channels user could sense
in one time slot. This complexity brings the first challenge in
devising an efficient online learning policy, as traditional MAB
solutions [9], [10] would result in exponential throughput loss
with the increasing number of channels. Moreover, the rewards
from different arms are no longer independent in our model,
because multiple channels (up to K channels) could be sensed
in one time slot. Consequently, previous results under the
assumption of independent arms are no longer applicable to
our model, which is the second challenge in analyzing the
performance of our scheme.
The main contributions of our paper are as follows. Firstly,

we apply the classic UCB1 algorithm [10] to handle the
online sequential sensing/accessing problem and analyze the
regret value, where the regret is the difference between the
expected reward gained by a genie-based optimal choice (i.e.,
always using the optimal sequential sensing order derived
with full channel statistics), and the reward obtained by a



given policy. We show that both regret and storage overhead
are exponentially increasing with the number of channels
N . We then propose an improved policy that we refer to
as UCB1 with virtual sampling (UCB-VS) by considering
the dependencies between arms, which significantly improves
the convergence of the learning process. Finally, we develop
a novel algorithm for such sequencing multi-armed bandit
problem, called sequencing confidence bound (SCB). We show
that the regret is not only logarithmic in time (i.e., order-
optimal rate) but also polynomial in the number of channels.
Meanwhile, the storage overhead is reduced from O(NK) to
O(N).
The rest of the paper is organized as follows. We present

our system model and problem formulation in Section II. Our
novel online sequential channel sensing and accessing policy
is presented in Section III. Extensive simulation results are
reported in Section IV. We conclude our work in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a cognitive radio network with potential channel

set Ω = {1, 2, . . . , N}. Each cognitive user is operated in
constant access time (CAT) mode, i.e., user would have a
constant duration T once it obtains a communication chance.
We denote the duration of each communication chance as a
time slot. Denote ai(j) ∈ {0, 1} as the availability of channel
i in the jth slot, where ai(j) = 0 indicates the primary user
is transmitting over channel i in the jth slot, and ai(j) = 1,
vice versa. We assume channel state is stable during slot time,
and independently changes across slots, since the interval time
between adjacent communication chances is relatively long in
multi-user networks (as discussed in [11]). We consider that
the channel idle probability θi ∈ [0, 1] (i ∈ Ω) is not known to
user at the beginning, but can be available through learning.
For denotation convenience, we sort the channel according to
idle probability, where θ[1] ≥ θ[2] ≥ . . . ≥ θ[N ].
At each slot, user senses the channels sequentially according

to a given sensing order, until it arrives at an idle channel,
and transmits over this channel during the remainder of the
time slot with data rate R. Each channel sensing is denoted
as a step in a slot, which costs a constant time τs. We denote
Ψ as the set of all possible sensing orders. Each element in
Ψ, that is �ψm := (sm1 , sm2 , . . . , smK), is a permutation of the
K channels, where K is the maximum number of steps in
each decision slot, and smk denotes the ID of kth channel
in �ψm. Correspondingly, K = min

(
N, � T

τs
�
)
(�·� is round-

down function), and |Ψ| = M =

(
N

K

)
K!. When the user

stops at step k (i.e, ask = 1 in current slot), it could obtain
an immediate data transmission reward R (T − kτs).
We define the deterministic policy π(j) at each time,

mapping from the observation history Fj−1 to a sequence of
channels �ψ(j) for the jth time slot. The problem is how to
make sequential decision on sensing order selection among
multiple choices, offering stochastic rewards with unknown
distribution. Our main goal is to devise a learning policy

maximizing the accumulated throughput, i.e.,

max lim
L→∞

L∑
j=1

μπ(j)

where μ is the expected reward in one slot time according to
an order �ψ. Let α = τs

T
. The expected per-slot reward when

choosing order �ψm is given by

μm = E
[
r�ψm

]
=

K∑
k=1

{
(1− kα)θsm

k

k−1∏
κ=1

(
1− θsmκ

)}
(1)

Here, r�ψm
is the normalized immediate reward obtained using

order �ψm. Without special emphasis, the rewards we talked
about are normalized. To obtain the actual throughput, the
reward should be scaled by constant factor RT .
Since maximizing accumulated throughput is equivalent to

minimizing the regret, we can get

min lim
L→∞

ρπ (L) = Lμ∗ −
L∑

j=1

μπ(j) (2)

where ρπ (L) is the regret after L slots, which is the difference
between the reward with optimal sensing order (obtained by
a genie) and the reward achieved by the given policy. μ∗ =
maxm {μm} is the expected per slot reward in optimal sensing
order.

III. ALMOST OPTIMAL ONLINE SEQUENTIAL SENSING
AND ACCESSING

In this section, we first propose two intuitive methods to
construct sensing order selection strategy. The first one directly
applies UCB1 [10], and the second one is UCB1 with virtual
sampling (UCB1-VS), which is an improved version of UCB1
by exploring the dependency among arms. We analyze the
performance of such intuitive methods. Both storage overhead
and regret are exponentially increasing with the number of
channels N . We then develop a novel algorithm for such
SMAB problem, i.e. sequencing confidence bound (SCB),
which needs only O(N) in storage overhead. Moreover, we
prove that the regret of SCB is O(NK logL), which is in
polynomial order of N and strictly in logarithmic order of
time slots.

A. Solutions Based on UCB1
1) Intuitive UCB1 Algorithm: An intuitive approach to

solve the sequencing multi-armed bandit problem is to use
the UCB1 policy proposed by Auer et al. [10]. In supporting
sensing order selection, two variables are used for each candi-
date order �ψm (1 ≤ m ≤ M ): μ̂m(j) is the averaged value of
all the obtained rewards of sensing/accessing with order �ψm

up to slot j, and nm(j) is the number of times that �ψm has
been chosen up to slot j. They are both initialized to zero and
updated according to the following rules:

μ̂m(j) =

{
μ̂m(j−1)nm(j−1)+rm(j)

nm(j−1)+1 , �ψm is selected
μ̂m(j − 1), else

(3)



UCB1 algorithm
1: Initialize: j = 0; for all 1 ≤ m ≤ M : μ̂m = 0, nm = 0
2: for j = 1 to M do
3: Sequentially sensing/accessing with order �ψj in jth slot
4: Update μ̂j , nj using Equ. (3)-(4) respectively
5: end for
6: for j = M + 1 to L do
7: Sequentially sensing/accessing with order �ψm that max-

imizes μ̂m +
√

2 log j
nm

in jth slot
8: Update μ̂m, nm using Equ. (3)-(4) respectively
9: end for

Fig. 1. UCB1 algorithm description

nm(j) =

{
nm(j − 1) + 1, �ψm is selected
nm(j − 1), else

(4)

Then, the intuitive policy can be described as: at the very
beginning, choose each sensing order only once. After that,
select the order �ψm that maximizes μ̂m +

√
2 log j
nm

. The
description of such policy is presented in Fig.1.
The regret of the UCB1 policy is bounded according to the

following theorem.
Theorem 1: The expected regret of sequential sens-

ing/accessing under policy UCB1 is at most[
8

∑
m:μm<μ∗

(
logL

Λm

)]
+

(
1 +

π2

3

)( ∑
m:μm<μ∗

Λm

)
(5)

where Λm = μ∗ − μm.
Proof: See ( [10], Theorem 1).

According to Equ. (5), we conclude that the regret under
UCB1 policy is upper bounded in the order O(M logL).

As M =

(
N

K

)
K!, it can be rewritten as O(NK logL).

Intuitively, although the UCB1 policy achieves zero-regret
(i.e., limL→∞

ρπ(L)
L

= 0), it performs poorly in the sequencing
multi-armed bandit problem, especially when the number of
channels is large.
2) Improved UCB1-VS Algorithm: As the reward in our

sequencing multi-armed bandit problem is order-related, the
orders with identical sub-sequence would result in similar
rewards. This basic finding provides us an important hint that
we could improve learning efficiency by exploring dependency
among arms, e.g., obtaining information about multiple arms
by playing a single arm.
The UCB1-VS is developed from UCB1, where only the

update process is revised with Virtual Sampling. Specifically,
suppose that a user selects an order �ψm = (sm1 , sm2 , . . . , smK)
in a slot and finds that channel smk is idle, then:

• Update statistics of all the sensing order starting with
sm1 , sm2 , . . . , smk , using reward 1− kα;

• Update statistics of all the sensing order starting with smk ,
using reward 1− α.

Moreover, in the special case that K = N (i.e., user is capable
of sensing all channels in a slot time) and all channels are
sensed to be busy, we can conclude that all sensing orders
would lead to zero reward in this slot.
Clearly, with virtual sampling, the learning process could be

greatly accelerated while the zero-regret property still holds.
As analytical result of the precise regret by this UCB1-VS
scheme is hard to achieve, we evaluate its performance via
extensive simulations in Sec. IV.

B. A Novel Algorithm for Sequencing Bandit Problem
Although the UCB1 based solutions achieve optimal log-

arithmic regret over time, they are exponentially increasing
with the number of channels. Moreover, as the choices are
made according to order-specific statistics, the required storage
overhead for supporting decision-making is also exponentially
growing with the number of channels. Consequently, when the
number of channels for dynamic accessing is large, e.g., more
than 50 in the TV band [5], the order-specific methods result in
poor performance in regret and unacceptable storage overhead.
In this subsection, we propose a novel learning policy for
sequencing channel sensing and accessing, in which decisions
are made according to channel-related statistics. As a result,
the storage overhead is linear with the number of channels.
We also proved that the regret of our proposed algorithm is in
polynomial order of channels.
1) Algorithm Description: In decision-making process, the

channel statistics are learnt by recording and updating the
following two variables: θ̂i(j) and ns

i (j), where θ̂i(j) and
ns
i (j) is the statistic value of idle probability and the times
having been sensed for channel i till slot j respectively. They
are initialized to zero and updated as follows:

θ̂i(j) =

⎧⎨
⎩

θ̂i(j−1)ni(j−1)+a
j

i

ni(j−1)+1 , if channel i is sensed
θ̂i(j − 1), else

(6)

ns
i (j) =

{
ns
i (j − 1) + 1, if channel i is sensed

ns
i (j − 1), else (7)

Then, the SCB learning policy can be described as follows.
Firstly, user will sequentially sense channels until all channels
are visited at least once. After that, in time slot j, the user will
choose the sensing order �ψm with the maximum SCBm(j),
where SCBm(j) is defined by

SCBm(j) =
K∑

k=1

{
(1− kα)θusm

k
(j)

k−1∏
κ=1

θusmκ (j)

}
(8)

Here θui (j) = θ̂i(j) +
√

2 log j
ns
i
(j) is the upper confidence bound

of the idle probability on channel i up to slot j. The detailed
SCB algorithm is presented in Fig.2.
Note that �ψ = argmax�ψm∈Ψ SCBm(j) is really simple

to achieve in practice. In fact, the channel sequence with
descending order of current channel upper confidence bound
θui (j) will achieve maximum SCB.



SCB algorithm
1: Initialize: for all 1 ≤ i ≤ N : θ̂i = 0, ns

i = 0; S0 =
{1, 2, . . . , N}; l = 1, k = 1;

2: while S �= ∅ do
3: Sense random channel i ∈ S0

4: Update θ̂i, ns
i accordingly

5: k = k + 1, S0 = S0 \ {i}
6: if ali = 1 then
7: l = l + 1, k = 1; access the idle channel
8: else if k = K + 1 then
9: l = l + 1, k = 1; wait for next slot
10: end if
11: end while
12: for j = l to L do
13: Sequentially sensing/accessing with �ψ where

�ψ = arg max
�ψm∈Ψ

SCBm(j)

14: Update θ̂i, ns
i accordingly

15: end for

Fig. 2. SCB algorithm description

2) Analysis of Regret: Traditionally, the regret of a policy is
upper-bounded by the number of times each sub-optimal arm
being played. Summing over all sub-optimal arms can get the
upper bound. However, our proposed approach requires more
finely analysis, since it focuses on the basic elements of each
arm (i.e. the sub-sequences in each sensing order). Actually,
we analyze the number of times each sub-optimal channel
being sensed in each step, and sum up this expectation over
all channels and then over all steps. Our analysis provides an
upper bound polynomial to N and logarithmic to time. We
present our analytical result in the following theorem.
Theorem 2: The expected regret of sequential sens-

ing/accessing under the SCB policy is at most

Φ(L)K

[
N −

K + 1

2
−

α(K + 1)(3N − 2K − 1)

6

]

where Φ(L) = 8 logL
Δmin

+
(
1 + π2

3

)
Δmax, and Δmin =

mini,j |θi − θj| (i �= j), Δmax = maxi,j |θi − θj |.
The detailed proof of this theorem is omitted here due

to page limitation. As N ≥ K and K ≥ 1, we conclude
that 3N − 2K − 1 ≥ 0. Thus, the right part of regret
expression N − K+1

2 − α(K+1)(3N−2K−1)
6 < N . As a result,

our policy achieves with a regret upper bounded in the order
of O(NK logL), which is in polynomial order to number of
channels and strictly in logarithmic order to time.

IV. SIMULATIONS AND PERFORMANCE ANALYSIS

In this section, we evaluate and analyze the performance of
the proposed online sequential channel sensing and accessing
algorithms via simulations.
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Fig. 3. Learning progress analysis

Eight policies are running under the same environment
for performance comparison, where UCB1, UCB1-VS, and
SCB are our proposed sequential online learning policies,
Single Index is an order-optimal one channel per slot online
learning policy which is first presented by Lai et al in [6].
Randomized Single Channel chooses one random channel for
sensing/accessing at each slot, and Optimal Single Channel
is a genie-based policy that user always senses/accesses the
channel with highest idle probability in each slot. Correspond-
ingly, user would sequentially sense/access with a randomly
chosen sensing order at each slot under Randomized Sequence,
and would always use the optimal sensing order for sequential
sensing/accessing under Optimal Sequence.
We derive the normalized throughput as a function of slot

index in Fig.3. The results we are averaged from 1500 rounds
of independent experiments, where each lasts 6000 time slots.
Our experiment setting is as follows. The idle probabilities
of independent channels are randomly generated in range
[0, 1] for each round. Then, the states of channels (i.e. idle
or busy) in each slot are generated independently according
to the idle probability vector of current experiment round.
Here, N = 3 and the normalized sensing cost α = 0.2. It
clearly shows that: 1) all the policies that exploit diversity
(i.e., sequential sensing/accessing) outperform the policy in
the scheme of “one channel per slot”, e.g., even Randomized
Sequence outperforms Optimal Single Channel that always
using the optimal channel; 2) all the learning policies converge
to the optimal solution under either sequential sensing scheme
or one channel per slot scheme; and 3) our proposed SCB
policy outperforms all other three online policies in both
expected throughput and learning speed.
In Fig.4, we further compare the performance of the learning

policies with different N . Comparing the results in the case
that N = 3 (i.e., the left part) with that in the case N = 5
(i.e., the right part), we obtain following observations. Firstly,
as the number of channels increases, user could obtain more
throughput gain through learning. This is because the potential
opportunity increases with the number of channels. Moreover,
the curves clearly show that, the learning speed of order-
specific algorithms (UCB1 and UCB1-VS) would sharply
decreased as N increases, meanwhile, the UCB1-VS greatly
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accelerate the learning progress over traditional UCB1. These
conform to the analysis we stated in Section.III.
Finally, in Fig. 5, we study the impact of channel idle

probability on the efficiency of learning policies. In this part,
N = 5 and α = 0.1. Two parameters, i.e., θ̄ and δ, are
used to control the generation of channel idle probability,
where channel idle probabilities are randomly generated in
the range

[
θ̄ − δ, θ̄ + δ,

]
at the beginning of each round. We

compare our proposed SCB policy with existing MAB-based
online policy Single Index [6] in both normalized throughput
and learning speed. It clearly shows in upper part of Fig.
5 that SCB outperforms Single Index in all cases by ex-
ploiting instantaneous diversity among channels. Meanwhile,
the throughput gain decreases as θ̄ and δ increases. This
indicates that our scheme would benefit more in the spectrum
scarcity scenario, e.g., it shows nearly two times throughput
over Single Index) when θ̄ = 0.3. The averaged throughput
gain over all the considered scenarios is more than 30%.
Further, we study the learning speed of these two policies
in the lower part of this figure. We denote the number of
slots user experienced before achieving “σ-learning-progress”
(0 < σ < 1) as tσ , and use it to quantify the learning speed of
the online learning policies. Specifically, tscbσ and tsin.indexσ are
defined as tscbσ

.
= minj

{
E[rscb(j)−rseq.rand.(j)]

E[rseq.opt.(j)−rseq.rand.(j)]
= σ

}
and

tsin.indexσ

.
= minj

{
E[rsin.index(j)−rsin.rand.(j)]
E[rsin.opt.(j)−rsin.rand.(j)]

= σ
}
respec-

tively. We choose a typical value of σ, i.e. σ = 0.9, to evaluate
the learning speed. It is clearly shown that SCB scheme greatly
reduced the time cost for achieving 90% learning progress,
e.g., less than half even when θ̄ = 0.7, which means that
SCB accelerates the learning process by more than 100%.
The results also show that the learning speeds of the two
policies are strictly increasing with δ, where δ characterizes the
deviation of channel statistics. Meanwhile, the learning speed
of SCB is increasing with θ, perhaps due to the fact that less
channels would be observed in a slot when θ increases.

V. CONCLUSION
In this work, we investigated online learning of optimal se-

quential channel sensing and accessing. We first introduced the
classic UCB1 algorithm in solving our problem. We concluded
that using this classic algorithm, both the storage and regret are

exponentially increasing with the number of channels. Then,
an improved algorithm, i.e. UCB1-VS, was presented, which
accelerated learning process by exploring dependency between
orders. Finally, we proposed the SCB algorithm with storage
overhead linear to the number of channels, and the regret in
O(NK logL).
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