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ABSTRACT
In this work, we study spectrum auction problem where each spec-
trum usage request has spatial, temporal, and spectral features. Af-
ter receiving bid requests from secondary users, and possibly re-
serve price from primary users, our goal is to design truthful mech-
anisms that will either optimize the social efficiency or optimize the
revenue of the primary user. As computing an optimal conflict-free
spectrum allocation is an NP-hard problem, in this work, we de-
sign near optimal spectrum allocation mechanisms separately based
on the techniques: derandomized allocation from integer program-
ming formulation, and its linear programming (LP) relaxation. We
theoretically prove that 1) our derandomized allocation methods are
monotone, thus, implying truthful auction mechanisms; 2) our de-
randomized allocation methods can achieve a social efficiency or a
revenue that is at least 1− 1

e
times of the optimal respectively; Our

extensive simulation results corroborate our theoretical analysis.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer Communi-
cation Networks; D.2.8 [Management of Computing and Infor-
mation Systems]: Installation Management—Pricing and resource
allocation

Keywords
Spectrum auction; Truthful; Approximation mechanism; Social ef-
ficiency; revenue

1. INTRODUCTION
The growing demand for limited spectrum resource poses a great

challenge in spectrum allocation and usage. One of the most promis-
ing methods is spectrum auction, which provides sufficient incen-
tive for primary user (a.k.a seller) to sublease spectrum to sec-
ondary users (a.k.a buyers). The design of spectrum auction mech-
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anisms are facing two major challenges. First, spectrum channels
can be reused in spatial, temporal, and spectral domain if the buy-
ers are conflict-free with each other, and thus, allocating the re-
quests of buyers in channels optimally is often an NP-hard problem.
Second, truthfulness is regarded as one of the most critical proper-
ties, however, it’s difficult to ensure truthfulness in a spectrum auc-
tion mechanism with performance guarantee. Recent years, many
mechanisms were proposed to address some of the auction chal-
lenges [1–3,7–11]. However, to the best of our knowledge, there is
no truthful spectrum auction mechanism with performance guaran-
tee, in which spectrums can be reused both in spatial and temporal
domains.

Maximization of the social efficiency, i.e. allocating a channel
to buyers who value it most, and maximization of the expected rev-
enue, i.e. allocating a channel to buyers who pay it most, both are
the natural goals for spectrum auctions. Thus, we design a frame-
work for spectrum auction which can maximize the social efficien-
cy or the expected revenue. Since channels can be reused in both
spatial and temporal domain, the problem of allocating requests of
buyers in channels optimally to maximize the social efficiency or
the expected revenue is NP-hard. To tackle this challenge, we first
relax the integer programming formulation of the channel alloca-
tion problem into a linear program (LP) problem, which is solvable
in polynomial time. A fractional solution for channel allocation
can be obtained by solving this LP optimally. Then, we transfor-
m this fractional solution into a feasible integer solution of the o-
riginal channel allocation problem by using a carefully designed
randomized rounding procedure that ensures the feasibility of the
solution and good approximation to the objective functions. We
prove that the expected weight of the feasible integer solution is
at least 1 − 1/e times of the weight of the optimal solution. To
complete our allocation mechanism, we also propose a derandom-
ization algorithm to get a feasible solution whose weight is always
guaranteed to be at least 1 − 1/e times of the weight of the opti-
mal solution. Then, we propose a revised derandomization algo-
rithm and prove that this new allocation method does satisfy the
bid-monotone property, thus, implying a truthful mechanism. We
point out that our allocation mechanisms can either approximate
the social efficiency or the expected revenue, but not both simulta-
neously.

2. PRELIMINARIES
Auctions in our model are executed periodically. In each round,

the primary user subleases the access right of m channels in the
fixed areas during time interval [0, T ], and n buyers request the us-
age of channels in fixed time intervals and geographical location-



s/areas. Our goal is to allocate these requests of buyers in channels,
such that we maximize either the social efficiency or the expected
revenue. We consider two models of the requests of buyers. The
first one is the Point model, in which each buyer requests the usage
of channels in a particular geographical location and during a fixed
time interval. The second one is Area model, in which each buyer
requests the usage of channels in a particular geographical area and
also during a fixed time interval.

We use S to denote the set of channels, and define each channel
sj ∈ S as sj = (Rj , Aj), where Aj is its license area, and Rj is
the interference radius of a transmission when a user transmits in
channel sj . Let B be the set of buyers, in which each buyer i ∈ B
is assumed to have a request ri. Let R be the set of requests of buy-
ers. Each request ri ∈ R is defined as ri = (Li, bi, vi, ai, ti, di),
where Li is i’s geographical location in Point model or the area
where i wants to access the channel in the Area model, bi denotes
its bidding price, vi stands for its true valuation, and ai, di, and
ti denote the arrival time, deadline, and duration time (or time
length), respectively. In this paper, we only consider the case of
di−ai = ti, which means that the time request from the buyer is a
fixed time interval. We leave the case of di − ai > ti as the future
work.

We say that two requests ri and rk conflict with each other, if
they satisfy the following constrains: (1) The distance between Li

and Lk is smaller than twice of the interference radius in the Point
model, or Li

∩
Lk ̸= ∅ in the Area model; and (2) The required

time intervals from ri and rk overlap with each other. We de-
note the conflict relationships among requests by a conflict graph
G = (V, E), where V is the set of requests of buyers, and edge
(ri, rk) ∈ E if requests ri and rk conflict with each other. Note
that, for the same requests ri and rk, different interference radii
of channels will lead to a different conflict relationship. We use a
matrix Y = (yi,k,j)n×n×m to represent the conflict relationships
in graph G, in which if requests ri and rk conflict with each other
in channel sj , yi,k,j = 1; otherwise, yi,k,j = 0. Since the spec-
trum is a local resource, we also need to define a location matrix
C = (ci,j)n×m to represent whether Li is in the license regions of
channel sj . ci,j = 1 if Li is in the license regions of channel cj ;
otherwise, ci,j = 0. Therefore, two requests ri and rk can share
channel sj only if yi,k,j = 0, and ci,j = 1, ck,j = 1.

The objective of our work is to design a mechanism satisfying
truthfulness constraint, while maximizing the social efficiency or
revenue. In our problem definition, an auction is said to be truthful
if revealing true valuation is the dominant strategy for each bidder,
regardless of other bidders’ bids. An auction mechanism is truthful
if its allocation algorithm is monotonic and it always charges criti-
cal values from its buyers [5]. The critical value for a buyer is the
minimum bid value, with which the buyer will win the auction.

Social Efficiency Maximization: Social efficiency for an auction
mechanism is defined as max

∑
ri∈R vixi, where xi = 1 if buyer

i wins in the auction; otherwise, xi = 0.
Revenue Maximization: The revenue of an auction is the total

payment of buyers. An auction maximizing the revenue for the
auctioneer is known as an optimal auction in economic theory [4].
In the optimal auction, Myerson introduces the notion of virtual
valuation ϕi(bi) as

ϕi(bi) = bi −
1− Fi(bi)

fi(bi)
(1)

where Fi(bi) is the probability distribution function of true valua-
tions of buyer i, and fi(bi) =

dFi(bi)
dbi

. According to the theory of
optimal auction [4], maximizing the expected revenue is equivalent
to finding the optimal solution of max

∑
ri∈R ϕi(bi)xi.

3. A STRATEGYPROOF SPECTRUM AUC-
TION FRAMEWORK

In this section, we propose a general truthful spectrum auction
framework with the goal of maximizing social efficiency or rev-
enue, as shown in Algorithm 1. In our framework, we can flexibly
choose different optimization targets according to the practical re-
quirements of auction problems. To ensure the worst case profit,
the primary user will set a virtual reservation price ηθ , which is
the minimum virtual price for spectrums per unit time. Let {ξ}Ψ
denote a set whose elements satisfy property Ψ. The details are
depicted as follows.

Algorithm 1 Our truthful spectrum auction framework
Input: conflict graph G, location matrix C, set of channels S, set

of requests R, monotone allocation and payment mechanism
A;

Output: channel assignment X , payment P ;
1: R′ = R;
2: for each ri ∈ R do
3: if the target is maximization of social efficiency then
4: ϕi(bi) = bi;
5: else
6: ϕi(bi) = bi − 1−Fi(bi)

fi(bi)
;

7: if ϕi(bi) < ηϕti then
8: R′ = R′\{ri}; // Delete ri from set R′

9: Run A using the set of virtual bids {ϕi(bi)}ri∈R′ ;
10: Let X = {xi}ri∈R′ be the channel allocation and P̃ =

{p̃i}ri∈R′ be the corresponding payment returned by A;
11: for each xi = 1 do
12: if the target is maximization of social efficiency then
13: pi = p̃i;
14: else
15: pi = ϕ−1

i (p̃i);
16: return (X,P );

4. ALLOCATION MECHANISM WITH AP-
PROXIMATION RATIO (1-1/e)

4.1 The Optimal Channel Allocation
In the channel allocation problem, we need to match the requests

and channels optimally under their constraints. In order to simplify
the matching model between requests and channels, we would like
to segment the available time of each channel into many time s-
lices. Recall that the available time of each channel is [0,T] in each
auction period. Then, we use the arrival time ai and deadline di
of each request ri to partition the time interval [0,T]. Each arrival
time/deadline of requests divides the time axis of one channel into
two parts. Suppose there are n requests, the time interval [0,T] is
divided into no more than 2n+ 1 time slices.

After the introduction of segmentation process, we give the de-
tailed description of the channel allocation problem. First, for each
partitioned time slice derived from channel sj , it can only be allo-
cated to the requests within the license area of channel sj . Let xl

j,i

represent whether the l-th time slice of channel sj is allocated to
the request ri, then we get a constraint xl

j,i ≤ ci,j . Second, each
time slice can only be allocated to requests conflict-free with each
other. Thus, we get another constraint

∑
k ̸=i x

l
j,kyi,k,j +xl

j,i ≤ 1.
Let tlj be the length of l-th time slice in channel sj . Modify ai to
be the first time slice ri wants to use, and di to be the last time slice
ri wants to use. Moreover, if we allocate request ri in channel sj ,



the time assigned to request ri from channel sj should be equal to
the required time of request ri, so we get

∑di
l=ai

xl
j,it

l
j = tixi,j .

From the analysis above, the allocation problem can be formulated
as follows.

max
∑

sj∈S

∑
ri∈R′

ϕi(bi)xi,j , subject to, (IP (1))



∑
sj∈S xi,j ≤ 1,∀ri ∈ R′

xl
j,i ≤ ci,j , ∀sj ∈ S, ∀ri ∈ R′, ∀l∑
k ̸=i x

l
j,kyi,k,j + xl

j,i ≤ 1,∀sj ∈ S,∀ri ∈ R′,∀l
di∑

l=ai

xl
j,it

l
j = tixi,j , ∀sj ∈ S, ∀ri ∈ R′

xi,j ∈ {0, 1},∀sj ∈ S,∀ri ∈ R′

xl
j,i ∈ {0, 1},∀sj ∈ S, ∀ri ∈ R′,∀l

where xi,j stands for whether channel sj is allocated to request ri
or not, yi,k,j represents whether request ri conflicts with request
rk or not in channel sj .

4.2 (1-1/e)-Approximation methods
LP relaxation technique can be introduced to solve NP-hard prob-

lems, and it often leads to a good approximation algorithm. We re-
lease IP(1) to linear programming LP(2) by replacing xi,j ∈ {0, 1}
with 0 ≤ xi,j ≤ 1, and replacing xl

j,i ∈ {0, 1} with 0 ≤ xl
j,i ≤ 1.

Recall that the number of time slices is no more than 2n+ 1 for
each channel, so LP(2) has a polynomial number of variables and
constraints, and can be solved optimally in polynomial time.

4.2.1 Randomized Rounding
Suppose OLP2 is the optimal solution of LP(2), we apply a s-

tandard randomized rounding on it to obtain an integral feasible
solution fIP1 to IP (1). The rounding procedure is presented as
follows.

1. Randomly choose a channel sj , randomly choose a request
ri with xi,j > 0, and set xi,j = 1;

2. If xi,j = 1, set xk,j = 0 for all requests rk with yi,k,j = 1;
3. If xi,j = 1, set xi,k = 0 for all channels with k ̸= j.
4. Repeat steps 1 to 3 until all requests have been processed.

Through the randomized rounding procedure above, the optimal
solution of LP(2) is converted into a feasible solution of IP(1). Let
wOLP2 be the weight of OLP2, and let E(wfIP1) be the expected
weight of fIP1. We show in Theorem 1 that E(wfIP1) ≥ (1 −
1/e)wOLP2 .

THEOREM 1. The expected weight of the rounded solution is at
least 1− 1/e times of the weight of the optimal solution to LP (2).

PROOF. Due to the page limit, all the detailed proofs can be
referred to [6].

We have shown that the expected weight of feasible solution
fIP1 of IP (1) obtained by our randomized rounding is larger than
1−1/e times of the weight of the optimal solution of LP (2). Obvi-
ously, the weight of the optimal solution of LP (2), which is denot-
ed by wOLP2 , is larger than the optimal solution of IP (1), which is
denoted by wOIP1 . Therefore, we can get that

THEOREM 2. The expected weight of the rounded solution is at
least 1− 1/e times of the weight of the optimal solution to IP (1).

4.2.2 Deterministic Methods
The rounding procedure only makes sure that the expected weight

of fIP1 is larger than 1− 1/e times of the weight of OLP2. What

we need is to find a feasible solution of IP(1) whose weight is ex-
actly larger than 1− 1/e times of the wOLP2 . In the following, we
show that the rounding procedure can be derandomized and how
the method of conditional probabilities can be used in our setting.

Algorithm 2 DCA: Derandomized Channel Allocation Based on
Linear Programming
Input: Conflict graph G, location matrix C, set of channels S, set

R′ sorted in increasing order according to ai;
Output: channel assignment X∗ ;
1: Solve LP(2) optimally;
2: E(wfIP1) =

∑
sj∈S

ϕi(bi)(1−
∏

sj∈S (1− xi,j));

3: for i = 1 to n do
4: if xi > 0 then
5: for j = 1 to m do
6: if E(wfIP1) ≤ E(wfIP1 |i, j) then
7: set xi,j = 1, xi = 1;
8: set all xi,k = 0 and xl

i,k = 0 if k ̸= j;
9: set all xk,j = 0 and xl

k,j = 0 if k ̸= i and yi,k,j =
1;

10: Break
11: if xi ̸= 1 then
12: xi = 0;
13: return X∗;

Let E(wfIP1 |ri → sj) be the expected weight when request
ri is allocated in channel sj , and let E(wfIP1 |̃i) be the expected
weight when request ri will not be allocated in any channel. Next,
we will show how our derandomization algorithm works. We first
sort all the requests by their arrival time ai in the ascending order.
Let xi =

∑
j∈S xi,j , and then scan all the requests one by one to

decide which request can be allocated in channels. When request
ri is considered, we scan all of the channels that are available for
ri to check if ri can be allocated in one of them. If E(wfIP1 |ri →
sj) < E(wfIP1), set xi,j = 0; otherwise, allocate ri in channel
sj , and set xi,j = 1, xi = 1, xi,k = 0 if k ̸= j. Meanwhile, if ri
is allocated in channel sj , we set xl

k,j = 0 if yi,k,j = 1.
Suppose ri is the first request that satisfies xi > 0 in the ordered

requests. Let qi,j denote the probability that request ri is allocated
in channel sj and let qĩ denote the probability that ri is not allocat-
ed in any channel. By the formula for conditional probabilities, we
have

E(wfIP1) =
∑
rj∈S

E(wfIP1 |ri → sj)qi,j + E(wfIP1 |̃i)qĩ (2)

In particular, there exists at least one conditional expectation
in E(wfIP1 |ri → s1), · · · , E(wfIP1 |ri → sm), E(wfIP1 |̃i),
which is larger than E(wfIP1). If it is E(wfIP1 |ri → sj) ≥
E(wfIP1), we allocate request ri in channel sj ; otherwise, E(wfIP1

|̃i) ≥ E(wfIP1) holds, reject request ri, and set xi,j = 0 for each
sj ∈ S . This can be done since E(wfIP1) =

∑
ri∈R′ ϕi(bi)qi,

and qi can be computed precisely by

qi = 1−
∏
sj∈S

(1− xi,j) (3)

Let qri→sj ,k stand for the probability that request rk is allocated
in a channel when request ri is allocated in sj . Then qri→sj ,k can
be calculated by

qri→sj ,k =

{
1−

∏
o̸=j (1− xk,o), yi,k,j = 1

qk, otherwise
(4)



For each request ri, we can compute E(wfIP1 |ri → sj) pre-
cisely as the follows

E(wfIP1 |ri → sj) = ϕi(bi) +
∑

k ̸=i
ϕk(bk)qri→sj ,k (5)

Given the selections in the prior requests, we can continue deter-
ministically to allocate other requests and do the same thing while
maintaining the invariant that the conditional expectation E(wfIP1),
never deceases. After allocating all of the requests, we can get a
feasible solution of IP(1) whose weight is as good as E(wfIP1),
i.e. at least (1− 1/e)wOLP2 .

Recall that to ensure the truthfulness of our auction mechanis-
m, the allocation algorithm must be bid-monotone. However, we
cannot prove or disprove the bid-monotone property of the alloca-
tion method DCA (presented in Algorithm 2). Thus, it is unknown
whether we can design a truthful mechanism based on this method.
In the rest of the section, we revise this method and show that the
revised method does satisfy the bid-monotone property.

Since that there exists at least one of the conditional expectations
between maxsj∈SE(wfIP1 |ri → sj) and E(wfIP1 |̃i), which is
larger than E(wfIP1). Thus, if we allocate ri in the channel with
the maximal conditional expectation as long as maxsj∈SE(wfIP1 |
ri → sj) ≥ E(wfIP1 |̃i), and do not allocate ri in any channel oth-
erwise, we can also get a feasible solution of IP(1), whose weight
is as good as E(wfIP1).

This can be done since we can compute E(wfIP1 |i, j) and
E(wfIP1 |̃i) precisely as follows:

E(wfIP1 |ri → sj) = ϕi(bi) + Ek ̸=i(wf ′
IP1

|ri → sj) (6)

where Ek ̸=i(wf ′
IP1

|ri → sj) is the expected weight of all other
requests when request ri has been allocated in channel sj . We
can get it by allocating ri in channel sj first, and then solve LP(2)
optimally with other requests.

E(wfIP1 |̃i) = ER′/ri(wf ′
IP1

) (7)

where ER/ri(wf ′
IP1

) is the expected weight of all other requests
when request ri is not allocated in any channel. We can get it by
solving LP(2) optimally with requests except ri.

Based on the observation above, we give a revised version (called
MDCA) of Algorithm DCA as follows.

Algorithm 3 MDCA: Monotone Derandomized Channel Alloca-
tion Based on Linear Programming
Input: Conflict graph G, location matrix C, set of channels S, set

of R′ sorted in increasing order according to ai;
Output: channel assignment X∗ ;
1: Solve LP(2) optimally;
2: for i = 1 to n do
3: for j = 1 to m do
4: if xi,j > 0 then
5: E(wfIP1 |ri → sk) = maxsj∈SE(wfIP1 |ri → sj)

6: if E(wfIP1 |ri → sk) ≥ E(wfIP1 |̃i) then
7: set xi,j = 1, xi = 1;
8: set all xi,k = 0 and xl

i,k = 0 if k ̸= j;
9: set all xk,j = 0 and xl

k,j = 0 if k ̸= i and yi,k,j =
1;

10: Break
11: if xi ̸= 1 then
12: xi = 0;
13: return X∗;

In MDCA, we first sort all of the requests by their arrival times
in the ascending order, and then we scan all requests one by one to
decide which request can be allocated in channels. When request
ri is considered, we compute E(wfIP1 |ri → sj) for all chan-
nels sj ∈ S that no request conflicting with it has been allocated
in. We allocate ri in channel sk when E(wfIP1 |ri → sk) =

maxsj∈SE(wfIP1 |ri → sj) ≥ E(wfIP1 |̃i), and reject it other-
wise. After the last request was considered in MDCA, we get a
feasible solution of IP (1), whose weight is as good as E(wfIP1).

THEOREM 3. MDCA (see Algorithm 3) is bid monotone.

Since the revised Algorithm MDCA is bid-monotone, there ex-
ists a critical value for each winner. Thus, we can design a truthful
auction mechanism through charging each winner its critical value.

5. CONCLUSION
In this paper, we have studied the case that spectrum can be

reused spatial domain, temporal domain. We have designed a gen-
eral truthful spectrum auction framework which can maximize the
social efficiency or revenue. As allocating channels optimally is
NP-hard in our model, we have also proposed a set of near-optimal
channel allocation mechanisms with an approximation factor of
(1− 1/e).
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