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Abstract—In order to improve scalability and reduce mainte-
nance overhead for structured Peer-to-Peer systems, researchers
design optimal architectures with constant degree and logarith-
mical diameter. The expected topologies, however, require the
number of peers to be some given values determined by the
average degree and the diameter. Hence, existing designs fail to
address the issue due to the fact that 1) we cannot guarantee
how many peers to join a P2P system at a given time, and 2)
a P2P system is typically dynamic with peers frequently coming
and leaving. In this work, we propose BAKE scheme based on
balanced Kautz tree structure with logdn diameter and constant
degree even the number of peers is an arbitrary value. Resources
that are similar in single or multi-dimensional attributes space
are stored on a same peer or neighboring peers. Through
formal analysis and comprehensive simulations, we show that
BAKE achieves optimal diameter and good connectivity as the
Kautz digraph does. Indeed, the concepts of balanced Kautz tree
introduced in this work can also be extended and applied to
other interconnection networks after minimal modifications, for
example, de Bruijn digraph.

I. INTRODUCTION

Structured Peer-to-Peer (P2P) models have been proposed
as a good candidate infrastructure for building large-scale and
robust network applications [1], [2], [3], [4], [5]. They impose
a certain structure on the overlay network and control the
placement of data, thus exhibit several unique properties that
unstructured systems lack. In the design of such networks,
the most common concerns are the limitation on peer out-
degree and network diameter. The peer out-degree influences
the size of routing table to be maintained on each peer. The
network diameter indicates the number of hops a lookup needs
to travel in the worst case. Traditionally, the peer out-degree
and network diameter increase logarithmically with respect
to the size N of a network, such as Chord [2] and Pastry
[6]. Those schemes can publish and lookup resources within
O(logN) hops. They, however, introduce huge maintenance
overhead and suffer from poor scalability.

To address this issue, researchers propose architectures
based on interconnection networks [1], [3], [7], [8], [9]. In
those designs, the network diameter increases logarithmically
with respect to the size of the P2P system, while the out-
degree of each peer can be a constant, setting a better tradeoff
between routing table size and routing delay. The critical
requirement of those designs is that the number of peers must
be some given values determined by the peer degree and the
network diameter. Hence, the approaches are often impractical

in real implementations, especially when considering peers are
frequently coming and leaving [10], [11].

In this study, we aim at designing a novel P2P architecture
with smaller diameter and constant peer degree even the
number of peers is an arbitrary value. Thus, the scheme is
practically easy to implement without being restricted by peer
dynamics. After looking into literatures, we observe that Kautz
digraph is the best choice among existing no-trivial digraphs
since it almost achieves Moore Bound [12].

We propose a robust and efficient P2P network, BAKE,
based on balanced Kautz tree introduced in this paper. BAKE
attains the optimal network diameter and constant peer out-
degree in a dynamic environments. The main contributions of
this paper are as follows:

1) We propose a balanced Kautz tree structure, and then
design BAKE: an effective and robust P2P architecture
which retains desirable properties of static Kautz di-
graph, such as optimal diameter and constant out-degree.

2) We design some algorithms to deal with peer
join/departure, and topology changes.

3) We evaluate the topology properties of BAKE, the
robustness of routing scheme, and the delay and message
cost of basic operations through formal analysis and
comprehensive simulations.

The rest of this paper is organized as follows. Section II
presents balanced Kautz tree. Section III discusses the design
of BAKE based on balanced Kautz tree. Section IV presents
the dynamic operations to maintain the topology. We evaluate
BAKE in Section V, and conclude the work in Section VI.

II. KAUTZ TREE STRUCTURE

Definition 1: A d-ary Kautz tree with depth k is a rooted
tree. The root node has d+1 child nodes, and each inner node
has at most d children. Each edge at same level is assigned a
unique label. Each node except the root node is given a unique
label. The label of a node is the concatenation of the labels
along the edges on its root path. The label of each edge is
assigned based on the following rules.

1) The edge from the root node to its ith child is labeled
as xi

1=i − 1 for 1 ≤ i ≤ d + 1. The ith child of root
node is labeled as xi

1, and is arranged from left to right.
2) The edge from a node x1 to its ith child is labeled as

xi
2=(x1 − i) mod (d + 1) for 1 ≤ i ≤ d. The ith child is

labeled as xi
2x1, and is arranged from left to right.
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(a) A unbalanced d-ary Kautz tree.
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(b) An incomplete Kautz tree IKTree(2, 3, 8).
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(c) A complete Kautz tree KTree(2, 3).

Fig. 1. Three major categories of Kautz tree.

3) The edge from a node xk−1...x2x1 to its first child is
labeled as x1

k where x1
k=x1 if x1 6= xk−1, otherwise

x1
k=(x1 − 1) mod (d + 1). The first child is labeled as

x1
kxk−1...x2x1, and is arranged at the leftmost position.

4) We arrange the values 0, 1, ..., d along a ring in ascend
order. If a path from point x1

k to point xi
k=(x1

k − i +
1) mod (d + 1) along the anti-clockwise direction does
not meet xk−1, the edge from xk−1...x2x1 to its ith child
is labeled as xi

k=(x1
k− i+1) mod (d+1), otherwise it is

labeled as xi
k=(x1

k−i) mod (d+1). The ith child of node
xk−1...x2x1 is labeled as xi

kxk−1...x2x1 for 2 ≤ i ≤ d,
and is arranged from left to right.

The identifier xkxk−1...x2x1 of each node in a Kautz tree
satisfies that xi+1 6= xi for 1 ≤ i ≤ k − 1. We associate each
node in the tree with an unique level. The level of the root
node is 0, its immediate child nodes locate at level 1, and so
on. In general, the length of the label of each node represents
its level in the tree. Definition 1 provides the mechanism of
assigning labels to edges and nodes, however, does not require
which child nodes of each inner node appear in the tree. As
a result, there are many different shapes of Kautz tree which
satisfy definition 1 and have same number of nodes. In this
paper, we focus on balanced Kautz tree as shown in Fig.1.

Definition 2: A d-ary Kautz tree with depth k is balanced
if all leaf nodes are at the level k. A balanced kuatz tree is
a complete Kautz tree KTree(d, k) only if the parent node
of any leaf node has full child nodes, otherwise it is an
incomplete Kautz tree IKTree(d, k, n) with n leaf nodes.

In a d-ary balanced Kautz tree with depth k, the root node
has d + 1 children, each inner node at level k-1 has at least
one child and at most d child nodes, each inner node at other
level has d child nodes, and the number of inner nodes at level
i is di + di−1 for 1 ≤ i ≤ k-1. The number of leaf nodes in
an incomplete Kautz tree is at least dk−1 +dk−2 which equals
to that of a complete Kautz tree KTree(d, k-1), and at most
dk + dk−1 if it becomes a complete Kautz tree KTree(d, k).
Figure.1(a) plots an unbalanced Kautz tree, and Fig.1(b) and
1(c) plot an incomplete Kautz tree and a complete Kautz tree,
respectively.

Definition 3: Given a node x=xk...x2x1, σi
1(x) produces a

label for its ith child node such that σi
1(x)=xi

k+1xk...x2x1 for

1 ≤ i ≤ d. If holds one of the following conditions, xi
k+1 =

(x1−i+1) mod(d+1), otherwise xi
k+1 = (x1−i) mod(d+1).

1) xk < x1 − i + 1 ≤ x1

2) x1 < xk and xk − d− 1 < x1 − i + 1

σ1
m(x) = σ1

1(σ1
m−1(x)) (1)

σd
m(x) = σd

1(σd
m−1(x)) (2)

The operations σ1
m(x) and σd

m(x) denote the leftmost and
rightmost nodes when traversing down m steps from node x.
The operation σi

0(x) denotes the peer x itself for any i. The
traversal process always selects the first child in each step to
arrive at the leftmost node, and chooses the last child in each
step to reach the rightmost node. This operation can allocate
an unique label for each child node, as well as ranking all the
child nodes in an ascend order.

Definition 4: For any node x, its predecessor is the last
existing node anti-clockwise from it in a Kautz ring of existing
nodes at same level, and its successor is the first existing node
clockwise from it in the same Kautz ring. The left adjacent
node Ladjacent(x) is similar to the predecessor, but the Kautz
ring is consisted of all possible nodes not just existing nodes.
So do the right adjacent Radjacent(x) and successor node.

III. BAKE: A BALANCED KATUZ TREE BASED OVERLAY

First, each peer maps to one leaf node in a balanced Kautz
tree, and uses label of its related leaf node and IP address as
its logical and physical identifiers, respectively. Second, each
peer maintains d + 2 neighbor peers according to a topology
rule mentioned below. Third, any resource gets an identifier
from an identifier space. Resources are distributed at given
peers based on the longest suffix matching rule. Based on the
above three strategies, we propose a robust routing scheme to
support different operations effectively.

A. Topology construction rule

For a balanced Kautz tree KTree(d, k), number of dk +
dk−1 peers form a topology by the following rule. For each
peer x=xk..x2x1, its successor and predecessor are peers
Radjacent(x) and Ladjacent(x), and its ith out-neighbor and
in-neighbor are ςi

1(x) and τ i
1(x) for 1 ≤ i ≤ d, respectively.

The ςi
1(x) and σi

1(x) are defined as follows.



Definition 5: ςi
1(x) denotes an operation such that ςi

1(x) =
xk−1...x1x

i
0 for 1 ≤ i ≤ d. If one of the following conditions

is satisfied, then xi
0=(xk + i − 1) mod (d + 1). Otherwise,

xi
0=(xk + i) mod (d + 1).
1) xk < xk + i− 1 ≤ x1;
2) xk + i− 1 < x1 + d + 1 and x1 < xk.
Definition 6: Given σi

1(x) = xi
k+1...x2x1, τ i

1(x) denotes
an operation such that τ i

1(x) = xi
k+1...x3x2 for 1 ≤ i ≤ d.

For a balanced Kautz tree IKTree(d, k, n), n peers form
an overlay network based on the following rules. Each peer
x=xk...x2x1 maintains links to its predecessor, successor and
d out-neighbors. The predecessor and successor are identified
during runtime. The d out-neighbors are the peers satisfying
one of the following conditions in order. For 1 ≤ i ≤ d:

1) If a peer ςi
1(x) has appeared in the overlay network, it

is the ith out-neighbor of peer x;
2) Otherwise, if ςi

1(x) and its predecessor y have a common
suffix with length k − 1, peer y is the ith out-neighbor.

3) Otherwise, if ςi
1(x) and its successor z have a common

suffix with length k − 1, peer z is the ith out-neighbor.
Theorem 1: The above construction rules can guarantee that

any peer x = xk...x2x1 in BAKE based on IKTree(d, k, n)
has d out-neighbors besides its successor and predecessor.

Later in Section IV, we show that the topology management
operations make sure that ith neighbor of each peer x is
available in a static environment. In reality, it might be difficult
because of peer failures in highly dynamic scenarios. To deal
with the negative impacts of failed peers, a flexible peer joining
strategy is introduced to make the unavailable out-neighbor of
peer x becomes available as soon as possible.

B. Resource placement based on longest suffix matching

For any resource to be distributed in BAKE, it gets a long
identifier x=xl...xk...x2x1 based on its value of single or
multiple attributes. If a peer xk...x2x1 exists, it is the preferred
host of resource x, otherwise a selected peer with a suffix
xk−1...x2x1 acts as the second host. In a static environment,
the preferred or second host peer must exist. In a dynamic
environment, the peers with xk−1...x2x1 as suffix may fail
concurrently such that we can not select any node. To address
this issue, we define the predecessor peer of xk...x2x1 as the
third host of resource x.

C. Robust and effective routing

Fiol et al. propose a shortest path routing scheme for
a similar routing problem [13], and we also introduce an
improved and practical routing scheme in previous works [14].
Generally, a peer x finds its largest suffix u that appears as a
prefix of y, then forwards message to a neighbor z such that
its largest suffix v coincides with a prefix of y and the length
of v is larger than that of u. Such schemes work well in a
static environment, but suffer from poor robustness in dynamic
environment. For example, peer 202 routes a message to peer
101 along the expected path 202 → 121 → 210 → 101 in
Fig.1(b), and fails if one peer in the path becomes unavailable.

In BAKE, we allow peers to send a message towards another
neighbor when fails to route it along the expected path.

When a peer x=xkxk−1...x2x1 publishes or lookups a
resource with identifier yl...yk...y2y1, the preferred destination
is peer y=yk...y2y1. If such a peer y does not exist, the mes-
sage will be forwarded to its second/third host. For example,
in Fig.1, peer 010 routes a resource with identifier 012021
towards peer 021 along a path 010 → 202 → 021, and peer
202 will find that the preferred host peer 021 does not exist.
It then forwards the message to second host 121. If peer 202
finds the peer 121 also fails, it routes the message towards
peer 201 along a path 202 → 020 → 201. The resource is
finally stored by peer 101 identified by peer 020. The resource
placement strategy guarantees any resource is stored by an
existing third host if the first and second preferred hosts are
absent. Note that the decision on new destination of a message
can be made based only on local knowledge at each peer.

IV. TOPOLOGY MANAGEMENT

A. Topology adjustment

A native BAKE based on an initial KTree(d, k) can be
constructed in advance. When more peers want to join, we ex-
pand KTree(d, k) to achieve a IKTree(d, k+1, dk +dk−1).
If number of peers in BAKE reaches (d + 1)× (dk + dk−1),
the incomplete Kautz tree becomes a complete Kautz tree and
is ready to be expand further.

To expand the topology of BAKE, we introduce an efficient
solution that needs only local operations. For an existing peer
with identifier x=xkxk−1...x2x1 in BAKE, we

1) Update its logical identifier with σ1
1(x).

2) Update the logical identifier of its successor peer x′ =
x′kxk−1...x2x1 with σ1

1(x′). The logical identifier of its
predecessor peer is updated similarly.

3) Update the logical identifier of its out-neighbor peer
ςi
1(x) with σ1

1(ςi
1(x)) for 1 ≤ i ≤ d.

Theorem 2: The topology expanding process of the overlay
network does not cause additional network overhead except
dk + dk−1 messages to start the process.

In contrast to expand the overlay, BAKE shrinks the topol-
ogy by the following local operations when the number of
existing peers decreases to the number of leaf nodes in a d-
ary complete Kautz tree. For a existing peer x=xk+1...x2x1,
we replace its logical identifier with xk...x2x1, and update
the logical identifiers of its predecessor, successor, and d out-
neighbors in a same way.

B. Peer joins

The peer related to the leftmost leaf node σ1
k−1(0) in a d-ary

incomplete Kautz tree with depth k acts as the first entry point
of BAKE, and its predecessor acts as a synchronous second
entry point. The entry points first serve as general peers, and
also manage all the labels of leaf nodes in the incomplete
Kautz tree. The entry point allocates a leaf node to a peer as
follows. First, if a peer fails and recovers in time, the entry
point allocates the previous leaf node to the peer if that leaf
is not assigned yet. Second, it allocates the leaf node x which



is the first child node of its parent node, then the leaf node
which is the second child node of its parent node, and so on.
Third, for the leaf nodes with same position value, it allocates
them in the clockwise order at the Kautz ring of their parent
nodes. If all leaf nodes are allocated, the first entry point starts
the topology expanding process. It may also start the topology
shrink process when required.

A new peer should consult the first entry point for its logical
identifier x = xk...x2x1, predecessor y and successor z, and
construct its topology by the following process. The peers
having xk−1...x2x1 as a common suffix possess the same out-
neighbors. If there exists at least one of such peers, peer x can
get a copy of the out-neighbors from one of them. Otherwise,
peer x discovers its out-neighbors based on the topology rules
in the worst case. Indeed, all in-neighbors of each peer ςi

1(x)
for 1 ≤ i ≤ d are not available, and there is no routing path
along in-neighbor links to these peers. Thus peer x routes a
query message towards the left or right adjacent peer of ςi

1(x)
for 1 ≤ i ≤ d along predecessor or successor links. Peer x
also informs peer τ i

1(x) for 1 ≤ i ≤ d to update an out-of-
date neighbor with it. The message is routed towards a peer
u = τ1

1 (x), and forwarded to other related peers along the
successor links.

C. Peer departures

For a peer x=xk...x2x1 that is about to leave, if its predeces-
sor y or successor z has a suffix xk−1...x2x1, it notifies peer
y, peer z and the first entry point of BAKE. Peer y will update
its successor with z. Peer z will replace its predecessor with
peer y. If peer y has a suffix xk−1...x2x1, peer x transfers
its resources to peer y before it departs, and notifies its in-
neighbor peer τ i

1(x) to replace the link to it with another link
to peer y for 1 ≤ i ≤ d. If peer y does not have a suffix
xk−1...x2x1 while peer z has, peer x transfers its resources to
peer z, and notifies its in-neighbor peer τ i

1(x) to replace the
link to it with another link to peer z for 1 ≤ i ≤ d.

If none of peer y and peer z has a suffix xk−1...x2x1, peer
x should find a substituted peer w before it leaves. It detects
other peers with a suffix xk−1...x2x1, and selects the peer
whose position value is the largest one if there are at least
one such peers, otherwise it consults the first entry point of
BAKE for peer w. Peer w must satisfy two constraints: 1)
There are other peers that have a common suffix, length k-1,
with peer w in BAKE; 2) Its rank among all peers having the
common suffix should be the largest. Peer w will perform a
voluntary departure operation, and takes over the resources,
logical identifier, and routing table of peer x. It then informs
neighbors of peer x to update physical identifier of peer x.

V. ANALYSIS AND EVALUATION

We first emulate the evolution process of BAKE from an
initial overlay network based on KTree(d, 1) through those
dynamic operations of peers and other topology management
operations in PeerSim [15]. We then analyze and evaluate the
topology properties, the robustness of routing scheme, and the
delay and message cost of major operations.
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Fig. 2. The routing and in-degree distributions of IKTree(4,7,12800).

A. Topology properties

Theorem 3: The out-degree of each peer is d+2 in BAKE
with n peers, and the diameter is kl=dlogd(n)−logd(1+1/d)e.

The diameter does not reflect the entire view of routing
scheme, hence, we study the expected value and distribution
of the length of routing paths among many pairs of nodes. In
simulations, each peer first issues a message towards others. As
shown in the left sub-figure of Fig.2, the length of about 60%
routing paths equals to the diameter. If we compare BAKE
with MOORE [14] under the same configurations, the length
of less routing paths equals to the diameter, and that of more
routing paths is less than the diameter. The right sub-figure of
Fig.2 indicates that the in-degree of most peers is adjacent to
d + 2, and that of other peers is less than d + 2.

The expected value of routing path is denoted as ard. We
evaluate the ard of BAKE where n ranges from 320 to 23040
and d equals to 4. We compare BAKE with MOORE and other
constant degree topologies in which the out-degree of each
peer is four, such as CAN, 4-dimensional butterfly, de Bruijn,
and Kautz digraph. Fig.3 plots the experiment results. The
curves of butterfly, de Bruijn and Kautz digraphs are dashed
lines and discrete points since their orders are special discrete
sequences. The curves of BAKE and MOORE are solid lines
since their orders can be arbitrary values. The ard of BAKE
and MOORE are shorter than that of butterfly, CAN, log4n
and de Bruijn, and the simulation results also confirm this.
The ard of BAKE is less than that of MOORE, and is more
close to that of Kautz digraph. The ard of Kautz digraph with
shortest path routing scheme has been proved in [16]. The
ard of BAKE is a little less than that of Kautz digraph when
n equals di + di−1 for 1 ≤ i, because partial routing paths
in Kautz digraph are shortened with help of the successor
and predecessor links of each peer. Hence, BAKE achieves an
optimal topology which inherits all good properties of Kautz
digraph even its order is out of dk + dk−1 for a given d and
any k > 1.

B. Robustness of routing

The routing schemes mentioned in [14], [13] suffer from
poor robustness in dynamic environments. BAKE addresses
this issue by sending a message to another out-neighbor, if
it fails to forward the message along a shortest path. The
connectivity of each peer in BAKE is d + 2, implying that,
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as long as d + 2 neighbors and/or links do not fail simulta-
neously, a message can be delivered to another available peer
successfully. In words, when d is a modest value, any message
can reach its destination with high probability even if peers
fail randomly, as shown in Fig.4. BAKE makes sure that a
large majority of messages can be routed successfully when
number of d even 2d peers fail randomly, and outperforms
existing schemes.

C. Delay and message costs of basic operations

We define α = dn/(dkl−1 + dkl−2e for later analysis. For
a message to lookup or publish a resource with identifier
x=xk...x2x1, the routing delay is at most t (kl − 1) + kl

hops before it reaches an available host y=yk...y2y1, where t
denotes the anti-clockwise distance from node xk−1...x2x1 to
yk−1...y2y1 in the given Kautz ring. In a static system, delay
of all queries is kl because peer y is always the preferred
host. In a moderately dynamic system, delay of a majority of
queries is kl because peer y usually is the preferred or second
host. In a highly dynamic system, delay of lots of queries is
t (kl−1)+kl because peer y is often a third host peer, where
0 ≤ t but t is not a large value.

Theorem 4: In a static or moderately dynamic environment,
the delay and message cost of a new peer x joining is at most
2kl + α + 1.

Corollary 1: In a highly dynamic environment, the delay of
a new peer x joining is at most 3kl + α + 2 hops. The whole
process causes at most 3× (kl + α) messages.

Theorem 5: The delay and message cost to handle a leaving
peer is at most 2kl + α + 2.

VI. CONCLUSION

We propose a balanced Kautz tree structure, based on which
we design BAKE, a practical P2P architecture. The topology
management and routing schemes guarantee flexible and effi-
cient resource distribution. BAKE achieves optimal diameter,
high performance, and good connectivity for dynamic P2P
networks.
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