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Abstract. In numerical simulation where
the underlying function is strongly directional,
it is desirable to use a mesh that is adaptive
both in size and in shape. In such simulation,
a metric tensor is used to quantify the ideal
size and direction locally at each point in the
domain, which in turn defines the local stretch-
ing and size of the triangles or quadrilater-
als of the mesh. Given a metric tensor, the
anisotropic meshing problem is to construct a
good quality mesh satisfying the metric tensor.
We present a new antsotropic meshing method
which is called the ellipse biting method. Our
algorithm uses the framework of advancing
front to generate a close to optimal packing of
ellipses. We then use the p-Delaunay trian-
gulation of the vertex set to generate the final
mesh. Because it generates an ellipse packing
that respects the underlying control spacing,
this new method produce a high quality mesh
whose element size and directionality conform
well locally to the given input. As part of this
work, we introduces a set of operations includ-
ing scaling, intersection, and union on ten-
sor metrics. Then operations are used to for-
mally define distance among metrics and to
extend Lipschitz condition and the notion of
well-shaped meshes from isotropic metrics to
anisotropic metrics.
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1 Introduction

An essential step in numerical simulation of physi-
cal and engineering problems is to find a proper dis-
cretization of a continuous domain. This is the prob-
lem of mesh generation. For problems with com-
plex geometry boundaries and with solutions that
change rapidly in both magnitude and direction, we
need to use an unstructured anisotropic mesh with
a varying local topology, spacing, and directionality
in order to reduce the problem size and improve the
accuracy. A good unstructured anisotropic mesh-
ing algorithm uses elements of properly chosen size,
shape, and direction that is adaptive to the com-
plex geometry and solution accuracy. In doing so,
it generates meshes that are numerically sound and
that are also as small as possible.

Several anisotropic meshing methods and heuristics
have been developed, implemented, and applied to
various applications such as the fluid flow and shock
simulation. These methods can be classified into
two main families.

The first [1, 3, 4, 9, 13, 17, 18] generates the mesh
directly from the control spacing function defined in
the domain. Most of these algorithms assume that
the control spacing is already “good” enough so that
any ”well-shaped” mesh conforming to the control
spacing are numerically sound.

There are three different approaches to generate the
anisotropic mesh directly from the control spacing.
The first approach uses advancing front. It selects
the new points and connects the new elements layer
by layer so that the newly selected elements are
well-shaped and respect the control spacing. The
second approach uses the particle simulation: ini-
tially, it samples a set of particles: ellipse or cells,
then moves these particles and adds or deletes some
particles until they are stabilized on some prede-
fined energy function. The last approach divides
the input domain into some subdomains such that
points in each subdomain have similar directionality



and/or size control. By rescaling, each subdomain
can be mapped a new subdomain so that the di-
rectionality control of the new subdomain is very
close to be isotropic. The standard isotropic mesh-
ing methods are used for each new subdomain and
resulting mesh is mapped back to form a mesh for
the original subdomain.

The second family [2, 11] of the anisotropic meshing
methods allows modification to mesh connectivity.
These methods comprise various discrete operators
such as refinement, coarsening, and vertex move-
ment to convert an initial mesh into a final well-
shaped mesh. These methods defines a quality mea-
sure of the triangle or quadrilateral element based
on the control spacing. If a element of the mesh is
not good based on the quality measure, then they
either add new points, or remove original points, or
relocate the points, or change the connectivity of
the current mesh to improve the quality locally.
Over the years, several anisotropic meshing meth-
ods such as those based on advancing front and
Delaunay like triangulations have become popular
due to their effectiveness in practical applications.
However, these methods do not come with equal
strengths. For example, advancing front [14] uses
simple data structures and is efficient and relatively
easy to implement. It offers a high quality of point
placement strategy for the early fronts and the in-
tegrity of the boundary. Unfortunately, when fronts
meet each other or itself, it is difficulty and time
consuming to decide the size and the directionality
of the elements in that region. Our objective is to
develop a new meshing algorithm that utilizes the
strengths of advancing front while prevents the dif-
ficulty when two fronts meet.

We show that the advancing front method can be
used to efficiently construct a hight quality ellipse-
packing. At a high level, this new advancing front
based packing algorithm first finds an ellipse pack-
ing of the boundary of the domain and then grows
the packing towards the interior of the domain.
FEach time when a new ellipse is added to the in-
terior, a larger protection ellipse is removed (bitten
away) from the domain. By doing this, it builds the
ellipse packing by adding ellipses one at a time, or
a layer at a time, in the same spirit as the standard
advancing method; our new method uses advanc-
ing front to construct an ellipse packing instead of
the mesh elements themselves. We show that this
advancing front based method does generate a high
quality anisotropic mesh. We will refer this new

method as the ellipse biting method and show that
it can be made as practical as the standard advanc-
ing front meshing methods.

The rest of paper is organized as follows. Section 2
reviews some existing anisotropic mesh generation
methods. Section 3 discusses the control spacing
which specifies the element sizes and directionality,
and point densities of a mesh. Section 4 defines
some basic notations and operations on tensor met-
rics. These operations include summation, inter-
section, and union, and are used to define distance
among metrics, the interpolation of the metrics, and
the p-Delaunay criterion for the construction of the
final mesh. Our ellipse biting method is presented
in Section 5. We conclude our paper in section 6
with the discussion of future work.

2 Previous Results

In this section, we review some related anisotropic
mesh generation methods. One motivation of our
new method is to retain the advantages of these pre-
vious meshing algorithms.

2.1 Advancing Front Method

Advancing front methods construct a mesh of a do-
main by moving a front from its boundary towards
its interior. It first generates an initial front typi-
cally by constructing a surface mesh for the bound-
ary of the domain. It then creates new elements
one at a time or a layer at a time and updates the
front with these created faces [7, 8, 14]: In the one
element-at-a-time model, it chooses a face of the
current front and introduces a new mesh element
with it as the base face. It can use another vertex
on the front or insert a new Steiner point in the in-
terior as the additional vertex of the new element.
The base face and potentially some other faces on
the front (if the additional vertex is an existing one)
are removed from the front, and some faces of the
new element are added to the front. This process
is repeated until the front is empty, i.e., all fronts
have merged upon each other and the domain is fully
meshed.

The method involves the simultaneous generation of
field points and their connectivity. The selection of
the base face and the placement of the new mesh
vertex are the two key steps of any advancing front
method. These two steps must ensure that the new
mesh element is valid, “well-shaped”, and respects



to the anisotropic spacing control. In addition, they
should keep the front in good condition to allow the
creation of graceful future elements. Hence, once
the base face is chosen, we need to decide where to
place the new vertex. Recall that for each base face,
we can only place the Steiner point in a particular
region near the base face so that the new element
conforms to the anisotropic spacing control. Call
this region the feasible region. For most advancing
front based anisotropic meshing algorithms, the size
of the elements in the mesh is determined by the
spacing of the points on the advancing boundary as
it propagates.

In Section 5, we show how to use advancing front
methods to help Delaunay like anisotropic mesh
generation. In particular, we present a method to
construct a high quality ellipse-packing using the
advancing front methods.

2.2 Particle Simulation

A particle system [18] is a collection of particles that
moves over time according to either a determinis-
tic or a stochastic set of rules or equation of mo-
tion. Bossen and Heckbert [4], Shimada et. al. [18]
applied interacting particle to 2D anisotropic and
parametric surface meshing respectively. They use
the metric tensor to specify an anisotropy in the
domain, and generate the anisotropic point distri-
bution using a proximity-based force.

The particle system used to generate the mesh is
similar to that used in computer graphics in the
sense that discrete bodies interact in 2D or 3D space
as a result of the application of pairwise, repul-
sive/attractive forces [18]. There are several charac-
teristics that make this method particularly suitable
for the mesh generation. Particles are packed in the
order of the dimension, i.e., vertices first and then
edges, faces, and volumes. A quick initial guess at
the final particle configuration is obtained by us-
ing hierarchical spatial subdivision [18]. The parti-
cle size and direction are adjusted individually by
the control spacing function. A population control
mechanism is used during the relaxation to remove
any superfluous particle that is largely overlapped
by its neighbors, and to subdivide any lone particle
missing some neighbors, so that a given domain is
filled with an appropriate number of particles. Shi-
mada et. al. [18] define the force for two particles
centered at x; and x; based on the current distance
I = ||x; — =;||, the target stable distance lp, and

the corresponding linear spring constant ko at the
target distance. The target distance [ is calculated
as the sum of the two lengths /;; and [;;, measured
along the line segment that connects the centers x;
and z;, from the center to the boundary of each
particles.

Then the force for particles [18] is defined as

Fw) = { ko (1.25w° — 2.375w? + 1.125)

0<w<1l5
0 1.5

<w

Note that here the particles can be the spheres or
cells, if an isotropic mesh is preferred, and it can
be ellipses or rectangles if an anisotropic mesh is
preferred.

Although these rules of forces and interactions are
heuristically defined, the particle simulation meth-
ods produce quite good quality meshes in practice.

2.3 Refine or Smooth the Mesh

Another approach to generate a conforming
anisotropic mesh is to refine or smooth a previously
generated mesh according to some quality measures
of its elements. There are various quality measures
for a triangle element.

Let Vi, Pk be the area and perimeter of triangle
K. Let h* be the desired mesh size at the location
of triangle K, and hx = Pk /3. Buscagli and Dari
[5] define the quality @y of K as

20.78VK/P}(F(I;L—I:),

where F(z) = m(z)?(2 — m(z)?), and m(z) =
min(z,1/z), B is a parametric constant. Note that
here 20.78 ~ 121/3 makes sure that the equilateral
triangle will have quality measure 1. For anisotropic
mesh, the distance and the area are computed ac-
cording to a metric stored at the vertices of a fixed
background mesh [5]. If the quality of an element is
not good, the following operations may be applied
in the local neighborhood to improve it: adding new
Steiner points at the center of edges, swapping di-
agonal edges; collapsing internal edges, or moving
vertices around.

Castro Diaz et al [6] use another approach by just
considering the length of the edges in mesh. Let d;
be the length of edge a; computed with the metric
tensor M. Let l,;,4; and [,,,;, be the acceptable max-
imal and minimal edge length, respectively. They
choose [6] ez ~ 1.4 and lyin ~ 0.6. If d; > o,



then edge a; is split into two edges; if d; < lnin,
then a; is contracted by merging two end points of
a;. The above process is repeated until no action
taken for any edges in the mesh. The Laplacian like
smoothing is then applied to improve the mesh.
Zhang and Trépanier [21] apply different approach
by just smoothing the mesh vertices to improve the
quality of the mesh. A triangle K is first trans-
formed to K' by using the local objective ellipse.
The quality of K is that of K’ computed under the
isotropic case. The objective is to move the mesh
vertex to minimize the total potential energy defined
by a spring system.

3 Control Spacing

Each domain 2 and a differential equation u defines
a desired local spacing within a domain to specify,
for example, the expected element size in a given
neighborhood (or point densities near a point) and
the element directionality near a point. In this sec-
tion, we discuss how to determine the local spacing
from the geometry of (2 and the numerical condition
of u for generating the anisotropic mesh.

3.1 Geometry Condition

The geometry of the boundary of €2 contributes to
the local spacing of a high quality anisotropic mesh.
In two dimensions, we assume that (2 is given as a
planar-straight-line graph (PSLG), which is a col-
lection of line segments and points in the plane,
closed under intersection. Suppose € is described
by a PSLG S. Ruppert [16] introduced the concept
called local feature size lfs(x) to capture the ge-
ometry condition. Ruppert has observed that I fs
changes slowly within the domain. Formally, a func-
tion f() is a-Lipschitz if for any two points x, y in
the domain, |f(z) — f(y)| < af|z — y||- The Lips-
chitz coefficiency of I fs is bounded from above by
1[16].

There are several ways to describe the spacing func-
tion from previous mesh M over a domain :
Edge-length function, eljs; Nearest-neighbor
function, nnjys. See Li et. al. [12].

3.2 Numerical Condition

The numerical condition is usually obtained from an
a priori error analysis, or an a posteriori error anal-
ysis based on an initial numerical simulation. It de-

fines numerical spacing functions for each point x in
the domain Q by a metric tensor M (x). The tensor
quantifies the desired element size and the stretch-
ing of the triangle or quadrilateral in the mesh near
a point . The matrix M (z) is symmetric, and all
of its eigenvalues are positive. If the numerical spac-
ing is considered locally as a constant, then the unit
ball is the ellipse (y — )T M(y — ) = 1. In other
words, the numerical spacing function specified an
ellipse for every point x in the domain. It specifies
the edge length requirement along every direction.
Locally at point x, function u can be approximated
by a quadratic function

w(z + dz) = u(@) + dz A u(z) + %(deda:T),

where H is the Hessian matriz of u, the matrix of
the second partial derivatives. Suppose that con-
tinuous piecewise linear approximation is applied
to u, then the maximal interpolation error depends
on H. The matrix M(x), from the interpolation
viewpoint, is determined by the eigenvalues and the
corresponding eigenvectors of the Hessian matrix
of u [20]. In other words, in two dimensions, let
¢ = cos(¢), s = sin(¢), the metric M has formula

(5 )% )05 2)

s ¢ 0 7 -5 ¢

where ;1 and -2 are the magnitude values of the
eigenvalue of the Hessian matrix; ¢ is the rotation
angle of the ellipse. The major radius and the minor
radius of the corresponding ellipse defined by M is
ri =1/\/7,, and r2 = 1/,/7,. See Figure 1 (a).
Note that if all of the eigenvalues are equal, then
the ellipse becomes a circle. Hence the anisotropic
numerical spacing becomes isotropic. Then we can
use the circle biting method recently developed by
Li et. al. [12] to generate a well shaped and well
conformed mesh efficiently.

For later convenience, we use the following nota-
tions: M (rq,72,6) denotes the metric M at a point;

0 in(6 .
R(0) = ( —C(s)fr(l(g) (S:E)I;EG% ) denotes the rotation
7 0

matrix with angle 8; A = ( 0 ) denotes the

diagonal matrix formed by the eigenvalues of M.
We also use its elements (m;;) to denote M. Let
M = M2, If M = R()TAR(6), then M =
R(9)TA-/2R(#). Note that the diagonal of A~1/2
is the major and minor radius of the ellipse defined
by M. Hereafter, let M denote the tensor ellipse
defined by a matrix M.



(a) (b)

Figure 1: (a):The ellipse defined by matrix M. (b):
The maximal ellipse intersected by two ellipses.

4 Operations on Metrics

In this section, we discuss some basic operations on
the metrics. Some definitions had been proposed
and discussed by previous researchers [4, 10, 19],
but for completeness and their importance in our
methods and notations, we still include them here.
These operations are important in formally defining
the size and shape of well-shaped anisotropic meshes
and make it possible to extend many standard con-
cepts such as Lipschitz condition of spacing function
from isotropic case to anisotropic cases. Here a met-
ric at a point is symmetric positive definite matrix
M. We call an ellipse defined by M the tensor el-
lipse of M, or just ellipse for simplicity.

4.1 Basic Notations and Operations

Let x, y be two vectors incident on point ¢. The dot
product becomes 7 M (c)y, and the cross product
becomes +/det(M(c))(x % y), where & x y is the
Euclidean product; det(M (c)) is the determinant of
matrix M(¢). The area of the ellipse M(r1,r2, @)
is wryro, i.e., w|det(M)|~'/2. The perimeter of the
ellipse M is 4aFE(0,e), where e is the eccentricity,
E(¢,k) is the elliptic integral. See [19] for more
formulas.

For an edge xox; in the domain, let I'(t) = (1 —
t)xo + ta1 be a parametric description for the seg-
ment zox;. Then its length [19] is defined as
[+ /(@1 — 2)TM(T(#))(z1 — zo)dt. By linearly in-
terpolating the metric M(T'(t)) = (1 — t)M(x0) +
tM(x1), we approximate the segment length as the
following.

Definition 4.1 [Edge Length] [6] The length of
segment xox1, denoted by ||xo — x1||p, is approzi-
mated by

gl% + loly + l%

1
12+t(12 -12)dt = 1
| V- = ZRSEEL )

where l; = \/(x1 — x0)T M (2;) (21 — 0),i = 0, 1.

Let rp, rq be two segments incident on point 7.
Assume that M(r) = R(¢)T AR(¢). Then by trans-
forming the ellipse M(r) to unit circle through
A'2R(¢), the angle between rp and rq is computed
as the following.

Definition 4.2 [Angle] Let 6 be the angle between
segment rp and rq. Then

(p—7)"M(r)(q—r)
[[AY2R(¢)(p — )| - [[AY2R($)(q — 7)||

The area of a domain Q is defined as A(Q) =
[ Jq Vdet(M(z))dz1das, where © = (z1,22)7, see
[19]. Given the metric at each vertex of a triangle
element Apgr, we use the linearly interpolation of
metric for every point in it. Then the area of Apgr
is approximated by the following.

cos(d) =

Definition 4.3 [Triangle
Apqr is approrimated by

A(Dpar) = 5\ Jdet(Myg)p—7) x (= 7), ()

where My, = (M (p) + M(q) + M(r))/3.

Area) The area of

We then introduce the following definitions.

Definition 4.4 [Scaling] Let §® M (x) denote the
metric by scaling the tensor ellipse centered at point
x by a factor B.

Hence ﬂ ® M(T15T2a¢) = M(/BTlaﬁr27¢)a if ﬁ > 0.
Notice 8 ® M(x) = (m;;//B); if B1 > 0, B2 > 0,
(B1B2) ® M(x) = 1 ® (B2 ® M(x)).

Definition 4.5 [Expanding] Let M (x) ®c denote
the metric of the ellipse centered at point x by ez-
tending (or shrinking if ¢ < 0 ) the major and minor
radii of the tensor ellipse by value c.

Thus M(r1,72,9) ®c= M(r1 +¢,r2 + ¢, ).

Definition 4.6 [Rotation] Let M?(z) denote the
metric of the ellipse centered at point x by counter-
clockwise rotating M (x) by 6 degree.

Notice that M(ry,r2,0)? = M(ri,re,¢ + 6), ie.,
M%=x) = RO)TM(x)R(#). All above definitions
respect to definitions for circles when ellipses de-
generate to circles.



4.2 Summation, Subtraction, Inter-
section and Union

The metric summation is often necessary for inter-
polating the metric based on some discretized val-
ues. One rigorous approach to define the summa-
tion of My, M, is to use the idea of simultaneous
reduction of M; and M, [10]. Let (e1,es) be the
eigenvectors of the matrix M 'M,. Note that the
eigenvectors are same as matrix My ' M;.

Lemma 4.1 [10] Let (eq, e2) be the eigenvectors of
the matriz MflMg. Then efMleg = e{Mgeg =0.

Proof: Assume §1,02 are two eigenvalues of
M Ms, ie., M{*Mye; = 6;e;, i = 1,2. Then we
have M2€1 = (51M161, and M2€2 = (52M162, which
implies that egMgel = 5165M161, and e’{'MQGQ =
(526¥’M1€2.

From ef Myes = d&sef Mies, we have el Mye; =
(eszez)T = ((52€TM1€2)T = (526%1M161. Noting
that el Mye; = d1e2Mie;, we have 61el Mie; =

(526ng61. Hence we have ((51 — 52)(6%1M161) = 0.
If (ed Myie1) # 0, then 6; = &2, which implies that
we can select e, ex such that el Mie; = 0. And
eI Mies = 0 comes from the fact that el Moe; =
6162TM161. O
Let \; = el Mye;, u; = el Mae;, i = 1,2. Then we
write the two matrices at the following format [10]:

Moo= e (2 )P
M= PYT(H 0 )P

where P is the matrix formed by the column vectors
(e1,€2).

Notice that the above approach can be extended to
any dimension. Also note that if let X = zieq +
z9es = P(x1,22)T be an arbitrary vector in R?
represented under the oblique coordinates (eq,e2).
Then

XTM X = Ma? 4+ hoa2;
XTM,X = a? + ppxl.

Definition 4.7 [Summation] The metric of the
summation of metrics is

My M= (P )T ( i

where')/izl/(\/l)‘—'+ L) i=1,2.

Note that expanding M @ c is actually M & (¢ ® I).
Also note that M; & My = My + M.

Definition 4.8 [Subtraction] The metric of the
subtraction of metrics is

MeM=P N (P 0 )PTL 6)

where v; = 1/(% - \/%)2, i=1,2.

Note that the summation and subtraction of two
ellipses always define a new ellipse. In [10], they
give a way to approximate the intersection of two
metrics as following.

Definition 4.9 [Intersection]/10] The intersec-
tion M1 N My of metrics is defined as

(P_I)T ( max%hul) max(gz,pz) )P_l' (6)

Definition 4.10 [Union]
My U My of metrics as

We define the wunion

—IN\NT min(x\l,ul) 0 -1
(P ( 0 min(Ag, p12) P ()
Lemma 4.2 The ellipse defined by M1 N M, is
contained by both My and M>; The ellipse defined
by My U M> contains both My and M-.

Proof: Note that a point X is inside an ellipse M,
if and only if XTMX < 1. Let X = z1e; + x2e2 be
an arbitrary point inside ellipse defined by M1 N Ms.
Then

max(Ar, p1)z3 + max(Aa, po)za < 1.

It implies that A1 22 + X222 < 1 and py 2 +poz3 < 1.
Hence X is inside ellipse M, and J\7[2, which implies
the first part of the lemma. The second part follows
from the similar proof. O
Note that the above definitions for the intersection
and the union do not satisfy the associate rule, i.e.,
generally, M1 N (M2 N Mg) 75 (M1 N Mz) N Mg; M1 U
(M2 U Mg) 75 (M1 U Mz) U Ms.

Suppose now, there are several variables are given,
then we first have to find a metric such that the
maximum interpolation error is minimized for all
given variables. In other words, the problem is to
find the “biggest” ellipse contained in all ellipses
corresponding to the metrics defined by all given
variables. See Figure 1 (b). One approach [10] is
to use the simultaneous reduction of M; and M,
M1 n MQ, i.e.,

(P~HT ( maX(E\]hul) max(gz,uz) >P_1'



4.3 Transformation, Interpolation

Given a metric M; = R(¢)T AR(¢), the correspond-
ing tensor ellipse becomes a unit circle under the
transformation A'/2R(¢) of coordinates. We de-
fine the following transformation ®ys, () that trans-
forms the M; at a specified point to unit circle and
transforms M}, at any other point to another ellipse.
As before, we compute the simultaneous reduction
eigenvectors eg, ez for matrix My My, and let Py
be the matrix formed by the column vector (eg, e2).
Let \; = el Mie;, pi = el Mye; be their eigenvalue,
i=1,2.

Definition 4.11 [Transformation] Then we de-
fine the transformation as

oan () = (P (ML 00 )PE ®

Note that ® s, (M},) is symmetric and positive defi-
nite. Also note that if we apply ® s, () to M itself,
then M LM, becomes the unit matrix. Then the
eigenvectors ej, ea of M7 are chosen as the eigenvec-
tors of MflMl =1.

For mesh generation, we do not need to compute
the spacing functions exactly. A common approach
to approximate them is to store discrete values
on the vertices of a background mesh such as a
quadtree/octree decomposition of the domain, or
the previous mesh. When we need to evaluate the
spacing function at an arbitrary point @ in the do-
main, we simply interpolate these discrete values.
Assume x is contained in a simplex element K of
the mesh.

Definition 4.12 [Interpolation]| Let p;, py, Ps3
be the vertices of K. Assume that x = Ele ;P;,
where Zle a; = 1 and a; > 0, then the linearly
interpolated spacing for x is

3

3
M(z) = M(Z aip;) = Plas © M(p)).  (9)

i=1

Note that the linear interpolation of the metric does
not keep the a-Lipschitz. In other words, if the
metric on all background mesh vertices satisfies the
a-Lipschitz condition, then the interpolated metric
on all points does not always have the a-Lipschitz
condition.

4.4 Norm, Distance and a-Lipschitz

The local feature size I fs and the numerical condi-
tion M (x) together define the global control spac-
ing function. Recall that for generating well shaped
isotropic mesh that conforms to the control spacing
f0, we need the smooth condition of the spacing
function f(), i.e., f() satisfies the a-Lipschitz con-
dition. We expect that for generating a mesh that
conforms well to the control tensor metric spacing
M(), we also need the “smoothness” condition of
M (). Intuitively, for any two points  and y, if the
Euclidean distance ||z — y|| is small compared to
the local objective ellipse, then the ellipses M (x)
and M (y) can not have dramatical change either in
the size or in the direction. Otherwise, it is impossi-
ble to generate mesh elements in that region which
both satisfy the size requirement and the shape re-
quirement well. For continuous metrics M, we can
define the derivate of M along any direction. No-
tice however, we did not have any analog definition
about the smoothness of the tensor metrics M (x)
compared with the Lipschitz condition for isotropic
case.

First of all, we need to define the distance of two
ellipses, then we can define the Lipschitz condition
of the tensor metric M (x). Noting that, if the met-
ric is isotropic, i.e., the ellipse becomes circles, the
distance of two circles is the radius difference. The
definition of the distance of two ellipses should cap-
ture both the shape difference and the direction dif-
ference.

Let a, b be the major and minor radii of the ellipse
M (x), and let ¢ be the angle between the major ra-
dius and the z axes. Let fys(8) be the polar equation
for the ellipse in the usual polar coordinate system
with origin at point . Then we have

F31(8) = ab/\Ja? sin?(6 — ¢) + b2 cos?(6 — ). (10)

Then we define the norm of a metric M as the av-
erage segment size.

Definition 4.13 [Norm | Given an ellipse My, we
define its norm ||My|| as

1

27
1001 = 5= [ s @100 )

Notice that if the ellipse degenerated to a circle, its
norm is the radius of the circle.



Definition 4.14 [Ellipses Distance] Given any
two ellipses My, and Mz, we define their distance
||[M1 — Ma||a as the following. 1

1 27
10— Mslla = 5 [ 1 0) = @8 (12

Note that the above definition satisfies the three
conditions of the distance definition: (1) ||M; —
M,|| > 0, for all ellipses M;, and Mo; (2) ||M; —
M| = 0; (3) [|My — Mp|| < [[My — Ms|| +
||Ms — Ms||, for all ellipses My, My and Ms. The
third property comes from the following observa-
tion: |fM1(0) - fM2(0)| < |fM1(0) - fM3(0)| +
| s (8) — far,(0)|, for any 6. Also note that the
above definition respects to the distance definition
for circles, when the ellipse degenerates to a circle.
However, it is difficult to compute the norm and
distance according to above definitions in practice.
We can use the Frobenius norm of the matrix to de-
fine the norm and the distance of metrics. Let m; ;,

n;; be the elements of matrix M, N respectively.

Definition 4.15 [F-Norm | Given an ellipse M,
we define its F-norm ||M|| as

1M = QY mag” /)2
i

Definition 4.16 [F-Distance] Given any two el-
lipses M, and N, we define their F-distance ||M —
N|| as following.

1M = N = (D (mij —1i;)%/2)">.
i,J
Notice that the definition of distance using the

Frobenius norm satisfies the triangle-inequality
property.

Figure 2: The segment along the line by two centers.

We also can use the idea of Shimada [18] defining
the force between particles to define the distance

1From now on, we use ||M; — Mz|| to denote the distance
of two ellipses defined by two matrices M1 and Ms. It does
not mean the determinant of the matrix M; — M>.

of ellipses. See section 2.2. Let f(x), f(y) be the
lengths measured along the line segment that con-
nects the centers  and y, from the center to the
boundary of each ellipses M(z), M(y). See Figure
2. We approximate the distance of M (z), M(y) as
following.

Definition 4.17 [S-Distance] Given any two
metrics M (x), and M (y), we approzimate their dis-

tance ||M(x) — M(y)|| as |f(x) — f(y)|-

Notice that the definition respects to the definition
for circles when ellipses degenerate to circles, but it
does not satisfy the triangle property.

We define the a-Lipschitz condition for the metric
M () as the following.

Definition 4.18 [a-Lipschitz Metric] A metric
M() is Lipschitz with a coefficiency a, if for any two
points © and y in the domain, ||M(x) — M(y)|| <
al|lz — yl|, where ||z —y|| is the Euclidean distance
of points x,y.

4.5 Smoothing the Metric

Recall that, for possibly generating a mesh that con-
forms the control spacing, we expect the control
spacing to have some smoothness condition. Let us
consider discrete control spacing (T'(), Mr(q)()),
where T'(Q) is a background mesh defined on do-
main Q; Mrq)() is a discrete field of metrics asso-
ciated with the vertices of T(Q2). We are interested
in a reasonable correction on Mr(q)() to reduce the
size and direction variation, i.e., to smooth the met-
ric such that it satisfies the a-Lipschitz condition.
Note that, for isotropic case, we apply the follow-
ing operation to get the a-Lipschitz smooth spacing
function f,() from old spacing function f():

fs(@) = min(f(x), minyero)(f(y) + oz —yl)))-

For anisotropic spacing M(), the above approach
can not be applied directly. One approach is to de-
fine the min operation using the intersection opera-
tion. See definition 4.9. in Section 4.2. Let D(M, c)
be a set of ellipses that have distance ¢ to M. Then
the analog definition M, (x) for anisotropic smooth-
ing will be as the following;:

Definition 4.19 [Smoothing] The new spacing
metric of point x is defined as

(| (M(z)n (M(y) ®allz - yl))). (13)
Yer()

My(z) =



For saving the time of smoothing, we do not have to
compute the intersection for all vertices y € T(Q).
We can just compute it for vertices y connected to
x in the background mesh. Then we can iteratively
apply above step to get much more smoothing.

4.6 Delaunay Criterion

To build a Delaunay like anisotropic triangulation
for a set of points, we need perform the circumcircle
test. The current most often used anisotropic De-
launay criteria [3, 18] use the following approach.
Assume x,y,z,w are the four vertices of the quadri-
lateral being checked, and they are on the counter-
clockwise relation.

Definition 4.20 [Delaunay Criterion]/3] The
current diagonal edge xz is swapped if

[(z =) x (& = y)|(& — w)" Mavy(z — w) +
(2 = )" Mag(z — y)[(x — w) x (z —w)] <0,

where Mgyy = (M () + M(y) + M(z) + M(w))/4
or Mowg =M((z+y+2z+w)/4).

First note that the above two computations for
Mgy are not same usually. Also notice that the
above definition for the Delaunay criterion is not
consistent in the following sense. There exist four
points, none of the diagonal edge is locally Delau-
nay. To address this problem. we propose the fol-
lowing concept to construct the Delaunay like tri-
angulation.

First for isotropic case, let pg be the current checked
edge, and Apgr, Apgs be two incident triangles.
Let B(er,rr), and B(cs,rs) be the circumcircles
of elements Apgr, Apgs respectively. Let p be a
positive constant less than 1. For convenience, let
ag(x) = || — c||/r, [10], where ¢, r are the cen-
ter and radius of the circumcircle of K. Then the
following definition is introduced.

Definition 4.21 [p-Locally-Delaunay] Edge pq
is called p-locally-Delaunay if r is not in the inte-
rior of circle B(cg,prs), and s is not in the inte-
rior of circle B(cy, prr), i.e., aapgs(r) > p, and,
anpgr(s) > p.

Definition 4.22 [p-Delaunay]| A mesh is called p-
Delaunay, if all edges are p-Locally-Delaunay.

Hence the traditional Delaunay triangulation is 1-
Delaunay under our definition.

For anisotropic mesh generation, the distance is
measured under the metric tensor. The circumcen-
ter ¢ of the triangle element Apgr is the point satis-
fies the following equations: ||e—p||ym = ||lc—q||m =
|le—7||apr- The segment length is computed accord-
ing to equation 4.1.

5 Ellipse Biting

Miller et al. [15] have designed a sphere-packing
based meshing method which generates quality
mesh. Li et al. [12] recently designed a scheme
called biting to generate high quality isotropic mesh
combining the spirit of advancing front and sphere-
packing method. In this section, we present a new
anisotropic mesh generation method which uses bit-
ing as the framework.

5.1 [-Ellipse Packing

Suppose M () is the desired edge-length or nearest-
neighbor function with direction control of a high
quality anisotropic mesh for a domain 2. In other
words, M (x) defines an ellipse at point . We now
introduce some definitions to capture the quality of
ellipse packing.

Definition 5.1 [3-Ellipse-Packing] Let 3 be a
positive real constant. A set S of ellipses is a -
ellipse-packing with centers P of Q) with respect to a
spacing function M() if

e For each point p of P, 0.5@ M(p) € S;

o The interiors of any two ellipses s1 and sz in
S do not overlap; and

e For each point q € Q, there is an ellipse in S
that overlaps with 8 ® M (q).

We also can use the idea of Shimada [18] defining the
force between particles to define a weak-3-Ellipse-
Packing. See section 2.2. Let Lg(y), Ly(x) be
the segments, on the line that connects the centers
x and y, from the center to the boundary of each
ellipses M (x), M(y). See Figure 2.

Definition 5.2 [Weak-g-Ellipse-Packing] Let 3
be a positive real constant. A set S of ellipse is a
B-ellipse-packing with centers P of Q with respect to
a spacing function M () if

e For each point p of P, 0.5Q@ M(p) € S;



o For any two ellipses s1 and sz centered at x, y,
the segment Lg(y) and Ly(x) do not overlap.

e For each point q € Q, there is an ellipse in S
that overlaps with 8 ® M (q).

Notice that a 8-Ellipse-packing is always a weak-(-
Ellipse-packing.

5.2 Biting Ellipse Scheme

(a) initial PSLG domain;

>-X

(c)bite non-input vertex;

(b) bite input vertices;

(d) bite a layer.

Figure 3: A snapshot of the biting scheme.

The biting method moves a front from the boundary
of the domain to the interior and adds new mesh
points in the process. See Figure 3. These mesh
points are chosen such that in the mesh generated
from this points set, the edges connected to each
point approximately satisfy the ellipse property. At
each step, we place a new point on the current front
rather than place it in the interior. Each time we
add a point, we remove an ellipse, the biting ellipse
from the remaining interior domain. The boundary
between the union of biting ellipses and the remain-
ing interior domain defines the new front. This pro-
cess is called biting. A biting ellipse at a point x
is ¢y ® M (x), denoted by M (z), where ¢, is a con-
stant satisfying ac, < 0.5. The following is a formal
description of the biting method:

Algorithm Biting Ellipse
1. Compute the control spacing function
M() of Q by combining the local fea-
ture size and the numerical condition;
2. Let the boundary of the domain be
the initial front, see Figure 3 (a);

3. [Vertex Protection]: Bite all the

input vertices by removing their bit-
ing ellipses from the interior of the
domain, see Figure 3 (b);
Modify the front which becomes a set
of segments and arcs. Segments are
represented by the endpoints and arcs
are represented by the center of the
biting ellipse.

4. [Edge Protection]: Bite ellipses
centered on the input boundary:
choose a vertex x on the front and re-
move its biting ellipse. We apply the
same boundary protection technique
as in [12]. See Figure 3 (c) and (d).
Modify the front by introducing the
arc of the new biting ellipses and re-
moving the intersection of it with the
front.

Repeat until all initial input bound-
aries are bitten;

5. [Interior Biting]: Choose a vertex
x on the front and remove its biting
ellipse.

Modify the front by introducing the
arc of the new biting ellipse and re-
moving the intersection of it with the
front.

Repeat until the advancing front is
empty.

6. Construct the Delaunay like triangu-
lation of the centers of the biting el-
lipses as the final mesh.

The biting method always choose the next Steiner
point on the front itself. In other words, the front
itself is a subset of the feasible region for the selec-
tion of new mesh vertices, making it easier to choose
the next point. The intersection of two arcs or an
arc and a boundary segment provides a good can-
didate for a new Steiner point, whose biting ellipse
will reduce the interior.

The biting method constructs an ellipse packing
with respect to the spacing function. The removal
of its biting ellipse ensures that the future edge con-
nection will respect to the ellipse shape. The final
mesh is the triangulation of the resulting point set
by applying the p-locally-Delaunay rule.

Let V be the mesh vertices set generated by our
biting scheme. Let E(V) = {72 ® M(z)|z € V'}
be set of ellipses centered at the mesh vertices.




Theorem 5.1 If the distance of metric is measured
by the S-Distance (4.17), our biting scheme gener-
ates a weak }'f—‘;zz ellipse packing E(V') with respect

to 2_?_2’@ ® M().

Proof: First, for any two vertices x € V, y € V,
we have |f(z) — f(y)| < a|lz — y||. See definition
4.17 for the definition of f(). Assume that vertex
x is bitten before y, i.e., ||z — y|| > ¢ f(x). Then
f@) + f(y) < 2f(x) + af|z — y||- It follows that
(522 f(@))/2+ (322 f(y))/2 < ||z —y|. In other
words, it satisfies the second condition of the defi-
nition for weak-3-packing.

Notice that any point z in the domain is covered by
at least one biting ellipse. Assume that z is covered
by ellipse ¢, @ M (x), i.e., ||z —z|| < epf(x). f(2) >
f(x) —al|z— z|| implies that f(z) > (1/cy—a)||x—
2||. Tet f = H2% then S f(2) + s f(2) >
||z — 2||. Then the theorem follows. O
For solving the finite element system, it is crucial
to generate a mesh that has high quality element,
especially on the boundary of the mesh. Our biting
method generates the vertices of the mesh starting
from the input boundary. It first makes sure that
there are no vertices close to the boundary, com-
pared with its local size requirement. To do so, the
basic approach of the biting method is to make sure
that after biting all boundary edges, the new fronts
are not close to the input boundary.

5.3 Conformity of the Triangulation

For isotropic mesh, we say a mesh conforms well to
the given control spacing, if the nearest neighbor
value, or edge length function is within a constant
factor of the control spacing. In this section, we
give definitions for the conformity measure of the
final triangulation.

It is easy to prove that, if a triangle K = Azixoxs
is a non-degenerated element, then there exists a
unique metric Mg such that K is equilateral with
unit edge lengths under Mk, i.e., ||z; — x;||mc =1,
for 1 <i < j < 3. Assume that ¢ is the barry-center
of K, and Mg is the required control spacing for c.
Then we use the following definition to measure how
bad K conforms to a given control spacing.

Definition 5.3 [Nonconformity] The noncon-
formity of the triangle K is defined as ||Mkg —
Mel|/||Mel|-

Notice that the perfect matched element will have
the nonconformity 0; the larger the nonconformity

of any element, the worse the element conforms to
the given control spacing. If an element K has con-
formity bound above from a constant 7y, then the
angle at each vertex of K computed according to
the given control spacing has a lower bound.

Definition 5.4 [y-Well-Conformed Mesh] 4
mesh is y-well-conformed if every triangle element
of the mesh has nonconformity at most v,

The connection between a good ellipse packing and
the v-Well-Conformed Mesh is still unknown.

6 Conclusion

In this paper, we have defined a set of operations on
tensor metrics. An important application of these
operations is that it enable us to define the distance
between the ellipses, which is used to measure the
Lipschitz property of anisotropic spacing function.
The Lipschitz condition is very important in the def-
initions of well-spaced ellipse-packing and the defi-
nition of the locally Delaunay condition. These def-
initions are the bases for us to extend various prov-
ably good meshing methods from isotropic domain
to anisotropic domains.

Built upon these definitions, we develop a new
anisotropic meshing scheme which combines the
practicality characteristics of the advancing front
methods and packing methods. Our scheme, el-
lipse biting method, applies some variations of the
advancing front method to generate a good ellipse
packing. We proposed a p-locally Delaunay trian-
gulation to construct the final mesh. It is as simple
and as practical as the advancing front methods.
The standard advancing front methods, however,
have some trouble to construct elements in the re-
gion where the fronts meet. Our ellipse biting
method resolves the difficulty that occurs at the end
of the advancing front methods. It is also efficient
to generate a good ellipse packing by biting method.
We are in the process of conducting the experiments
of our ellipse biting program.
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