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Abstract—In this paper, we study the capacity of a large-scale
random wireless network for multicast. Assume that n wireless
nodes are randomly deployed in a square region with side-length
a and all nodes have the uniform transmission range r and
uniform interference range R > r. We further assume that
each wireless node can transmit (or receive) at W bits/second
over a common wireless channel. For each node vi, we randomly
and independently pick k − 1 points pi,j (1 ≤ j ≤ k − 1) from
the square, and then multicast data to the nearest node for
each pi,j . The aggregated multicast capacity is defined as the
total data rate of all multicast sessions in the network. In this
paper we derive matching asymptotic upper bounds and lower
bounds on multicast capacity of random wireless networks. We
show that the total multicast capacity is Θ(

√
n

log n
· W√

k
) when

k = O( n
log n

); 1 the total multicast capacity is Θ(W ) when
k = Ω( n

log n
). Our bounds unify the previous capacity bounds on

unicast (when k = 2) by Gupta and Kumar [6] and the capacity
bounds on broadcast (when k = n) in [9], [18]. We also study
the capacity of group-multicast for wireless networks where for
each source node, we randomly select k − 1 groups of nodes as
receivers and the nodes in each group are within a constant hops
from the group leader. The same asymptotic upper bounds and
lower bounds still hold. For arbitrary networks, we provide a
constructive lower bound Ω(

√
n√
k
· W ) for aggregated multicast

capacity when we can carefully place nodes and schedule node
transmissions.

Index Terms—Wireless ad hoc networks, capacity, multicast,
broadcast, unicast, scheduling, optimization, VC dimension.

I. INTRODUCTION

In wireless ad hoc networks, wireless nodes may cooperate
in routing each others’ packets. Lack of a centralized control of
the functionality and possible node mobility give rise to many
challenging issues at the network layer, the medium access
layer, and physical layer of a wireless ad hoc network. At the
network layer, a main challenging problem is that of routing,
which has to deal with time-varying network topology, possi-
ble power-constraints of wireless nodes, and the unique char-
acteristics of the wireless channel (such as unstable, broadcast
nature, fading and so on). The choice of medium access control
is also restricted by the fact that the network topology is time-
varying, and there is no centralized control. In the literature,

1A function f(n) = O(g(n)) if there exist N0 > 0 and c > 0
such that for all n > N0, f(n) ≤ c · g(n). A function f(n) =
Ω(g(n)) if there exist N0 > 0 and c > 0 such that for all n > N0,
f(n) ≥ c · g(n). A function f(n) = Θ(g(n)) if f(n) = O(g(n))
and f(n) = Ω(g(n)).

a number of results have been proposed to use the TDMA,
CDMA, FDMA, and the dynamic assignment of frequency
bands to improve the network throughput. Notice that for a
mobile wireless network, a random medium access control
protocol appears to be a favorite due to its simplicity and quick
adaption to mobility and dynamic data rate by nodes. For a
mobile wireless network, static FDMA is inefficient in dense
networks, CDMA is very difficult to implement due to node
mobility and the need for keeping track of spreading codes for
nodes in the time-varying neighborhoods. Notice that TDMA
has recently been proposed to improve the network throughput
for some networks or partial of the networks [1], especially
for static networks. At the physical layer an important issue
is the power-control, which has been studied extensively in
the literature. A careful selection of the transmission power of
nodes can not only improve the nodal life, but also improve the
spatial reuse of frequency and consequently possibly improve
the network throughput.

In many applications, e.g., wireless sensor networks, we
often need a rough estimation on the achievable throughput
when we randomly deploy n wireless nodes in a given region.
The main purpose of this paper is to study the asymptotic
capacity of large scale random wireless networks when we
choose the best protocols for all layers. As in the literature, we
will mainly consider one type of networks, large scale random
networks, where a large number of nodes are randomly placed
in the deployment region. We will study the capacity of a given
wireless network where the nodes positions are randomly
given a priori, and how the capacity of wireless networks scale
with the number of nodes in the networks (when given a fixed
deployment region), or scale with the size of the deployment
region (when given a fixed deployment density) for multicast,
which is a generalization of various number of operations such
as unicast and broadcast. We assume that a set of n wireless
nodes V = {v1, v2, · · · , vn} are randomly distributed (with
uniform distribution) in a square region with a side-length a
and all nodes have the same transmission range r. For majority
results presented in this paper, we assume that the deployment
region a and the transmission range r are selected such that
the resulted network will be connected with high probability2

(w.h.p.). The results derived under this model also imply the

2Here an event is said to happen with high probability, if for any 0 < ε < 1,
there is a large integer N such that for a random network of size at least N ,
the probability that the event happens is at least 1− ε.
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same results for the dense model, when n nodes are distributed
in a fixed region (such as a unit square by a proper scaling)
and the uniform transmission range of all nodes are selected
as the critical transmission range (CTR) to get a connected
network with high probability.

In this paper, we will concentrate on the multicast capacity
of a random wireless network, which generalizes both the uni-
cast capacity [6] and broadcast capacity [9], [18] for random
networks. Assume that a subset S ⊆ V of ns = |S| nodes
will serve as the source nodes of ns multicast sessions. Each
node vi ∈ S randomly and independently chooses nd = k− 1
points Pi = {pi,j | 1 ≤ j ≤ k − 1} in the square. For each
point pi,j , let vi,j be the node from V that is the closest
to pi,j . Then node vi will send data to these k − 1 nodes
Ui = {vi,j | 1 ≤ j ≤ k − 1} at an arbitrary data rate λi. The
aggregated multicast capacity with S as roots for a network
is defined as Λk,S(n) =

∑
vi∈S λi when there is a schedule

of transmissions such that all multicast flows will be received
by their destination nodes successfully within a finite delay.

Due to spatial separation, several wireless nodes can trans-
mit simultaneously provided that these transmissions will not
cause destructive wireless interferences to any of the transmis-
sions. To describe when a transmission is received successfully
by its intended recipient, we will allow one possible model for
a successful one-hop reception: protocol model. We assume
that each node v ∈ V has a fixed constant transmission range
r and a fixed constant interference range R > r. A node u
can successfully receive a transmission from another node v
iff there is no other node w such that ‖w− u‖ ≤ R and node
w is transmitting simultaneously with node v. Here ‖w − u‖
is the Euclidean distance between w and u.

We assume the following simple wireless channel model
as in the literature: each wireless node can transmit at W
bits/second over a common wireless channel. For presentation
simplicity, we assume that there is only one channel in the
wireless networks. As always, we assume that the packets
are sent from node to node in a multi-hop manner until they
reach their final destinations. The packets could be buffered
at intermediate nodes while awaiting for transmission. In this
paper, we assume that the buffer is large enough so packets
will not get dropped by any intermediate node. We leave it
as future work to study the scenario when the buffers of
intermediate nodes are bounded by some values. In some
results, we assume that every intermediate node have infinite
buffer size. For most of the results presented here, the delay
of the routing is not considered, i.e., the delay in the worst
case could be arbitrarily large for some results.

Our Main Contributions: In this paper we propose two
regimes for multicast capacity in terms of k. We derive match-
ing analytical upper bounds and lower bounds on multicast
capacity of a random wireless network. Assume that the side-
length a of the deployment square and the transmission range

r are selected 3 such that the network is connected with high
probability, i.e., a

r = Θ(
√

n
log n ). We show that the aggregated

multicast capacity of n multicast sessions is

Λk(n) =

{
Θ(

√
n

log n · W√
k
) when k = O( n

log n ),

Θ(W ) when k = Ω( n
log n )

(1)

Our bounds unify the previous capacity bounds on unicast
(when k = 2) by Gupta and Kumar [6] and the capacity
bounds on broadcast (when k = n) in [9], [18]. More
generally, we prove that the aggregated multicast capacity of
ns random multicast sessions has the same asymptotic upper-
bound as formula (1), and has the same asymptotic lower-
bound as formula (1) whenever, ns ≥ Θ(log k ·

√
n log n

k ).
Consequently, the per-node multicast capacity λk(n) of n
multicast sessions (with k− 1 receivers per multicast session)
is

λk(n) =

{
Θ(

√
1

n log n · W√
k
) when k = O( n

log n ),

Θ(W
n ) when k = Ω( n

log n )
(2)

The above capacity bounds are implied by a more general
result for the following network setting: there are ns multicast
sessions, each with k − 1 receivers from V , and the trans-
mission range r and side-length a of the deployment square
satisfying that the resulted random network is connected with
high probability. Generally, when ns ≥ Ω(log k ·

√
n log n

k ), we
prove that the aggregated multicast capacity of ns multicast
sessions is

Λk(n) =

{
Θ(a

r · W√
k
) when k = O(a2

r2 )

Θ(W ) when k = Ω(a2

r2 )
(3)

We also study the multicast capacity for group-multicast
where, for each source node, we randomly select k−1 groups
of nodes as receivers and the nodes in each group are within
a constant number of hops from the group leader (who are
nodes closest to k−1 randomly chosen points). We show that
the asymptotic multicast capacity is still Θ(

√
n

log n · W√
k
) when

k = O( n
log n ); and is Θ(W ) when k = Ω( n

log n ). For multicast
in arbitrary networks, we provide a constructive lower bound
Ω(

√
n√
k
·W ) when we can carefully place nodes and schedule

node transmissions.
The rest of the paper is organized as follows. In Section II

we discuss in detail the network model and the channel model
used in this paper. We briefly overview the proof techniques
used to analyze the capacity upper-bound in Section III. In
Section IV, we first present some upper-bounds on multicast
capacity for random networks. In Section V, we then present
an efficient method for multicast and prove that the capacity

3There are two scenarios here. The first case is that the deployment
region is fixed as a unit square while the transmission range r of
each wireless node is adjusted as Θ(

√
log n

n
) such that the random

network is connected with high probability. The second case is that
the transmission range r is fixed as one unit, while the side-length a

of the deployment square is adjusted to its critical value Θ(
√

n
log n

)

such that the random network is connected with high probability.
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achieved by this method asymptotically matches the upper-
bounds derived before. In Section VI, we study the multicast
capacity bounds for group-multicast and the multicast capacity
bounds for arbitrarily networks. We review the related results
on network capacities in Section VII and conclude the paper
in Section VIII with the discussion of some possible future
works.

II. NETWORK MODEL

The capacity of random wireless networks was first studied
in a landmark seminar work by Gupta and Kumar [6]. There
are different approaches to increase the network throughput,
such as reducing the interference, the scheduling on the MAC
layer, route selection on the routing layer, channel assignment
if multi-channels are available, and power control on the
physical layer. In this section, we first introduce our network
system model, then we discuss in detail the interference
models we will use and then define the problem that we will
study in this paper.

We consider large scale random networks. Typically there
are three ways to increase the number of network nodes to
infinity.

1) One is to fix the deployment region and then increase
the node density to infinity. This is typically called the
dense model. This model is widely studied, e.g., Gupta
and Kumar studied the critical transmission range (CTR)
[7] and the capacity for unicast [6] using this model.
Compared with the practical deployment, this model has
a drawback that the minimum power needed for having
a connected network will be arbitrarily small when node
density is sufficiently large.

2) Another way is to fix the node density to a given constant
and increase the deployment region to infinity. This is
typically called the extended model. Notice that to get a
connected network with high probability, we also need to
increase the transmission range of nodes. This model is
also used by several papers to study the CTR or capacity,
e.g., [15], [22]. Compared with a practical deployment,
this model also has a drawback that the minimum power
needed for having a connected network will go to infinity
when the area of the deployment region goes to infinity.
Here we assume that there is a constant lower bound on
the minimum SINR such that the receiver can correctly
decode the signal.

3) The third way is to fix the transmission range of all nodes
to some constant, then increase the node density (asymp-
totically same as the node degree when the transmission
range is fixed) and the deployment area to increase the
number of nodes in the network. We call this model
the constant-range model. Assume that n nodes will be
deployed. It has been proved in [21] that the minimum
node degree for connectivity is Θ(log n). This implies
that the area of the deployment region is at most Θ( n

log n ).
In this paper, we will adopt the third model. Notice that our
results presented in this paper actually are immaterial to the
model used. Most results presented in this paper rely on the
ratio a

r where a is the side-length of the deployment square

and r is the transmission range, where either a or r or both
could be a function of n.

In this paper, we assume that there is a set V =
{v1, v2, · · · , vn} of n communication terminals deployed in a
region Ω. We mainly focus on the scenario when Ω is a square
with side length a. Every wireless node has a transmission
range r such that two nodes u and v can communicate directly
if ‖u−v‖ ≤ r and there is no other interference. The complete
communication graph is a undirected graph G = (V,E),
where E is the set of possible communication links uv with
‖u − v‖ ≤ r. In this paper, we mainly assume that the
transmission range r is a constant. Under this assumption, the
side length a of the deployment square region Ω will be a
function of n.

To schedule two links at the same time slot, we must ensure
that the schedule will avoid interference. Several different
interference models have been used to model the interferences
in wireless networks. In this paper, we will mainly focus on
the protocol interference model. We assume that each node vi

has a constant interference range R. Here any node vj will be
interfered by the signal from vk if ‖vk − vj‖ ≤ R and node vk

is sending signal to some node other than vj . In this paper, we
always assume that the interference range R is within a small
constant factor of the transmission range r, i.e., R ≤ β · r for
a constant β ≥ 1.

Capacity Definition: We assume that each node vi could
serve as the source node for some multicast. Assume that a
subset S ⊆ V of ns = |S| nodes will serve as the source nodes
of ns multicast sessions. For each node vi, we randomly and
independently choose a set Pi of nd = k − 1 points Pi =
{pi,j | 1 ≤ j ≤ k − 1} in the deployment square. For each
point pi,j , let vi,j be the node from V that is the closest to
pi,j (arbitrarily choose one if there are multiple nodes with the
same shortest distance). Nodes Ui = {vi,j | 1 ≤ j ≤ k − 1}
will be the destination nodes of multicast from vi. Then node
vi will send data to these k − 1 nodes Ui at an arbitrary data
rate λi. Notice that when the receivers are far away from the
source node, we need multiple intermediate nodes to relay the
data for vi.

Given the set S of ns = |S| source nodes, let λS =
(λi1 , λi2 , · · · , λins−1 , λns) be the rate vector of the multicast
data rate of all ns multicast sessions. Here λij is the data rate
of node vij ∈ S , for 1 ≤ j ≤ ns. When given a fixed network
G = (V, E), where the node positions of all nodes V , the set
of receivers Ui for each source node vi, and the multicast data
rate λi for each source node vi are all fixed, we first define
what is a feasible rate vector λ for the network G.

Definition 1 (Feasible Rate Vector): Given set S of ns

source nodes, a multicast rate vector λS bits/sec is feasible
if there is a spatial and temporal scheme for scheduling
transmissions such that by operating the network in a multi-
hop fashion and buffering at intermediate nodes when awaiting
transmission, every node vi can send λi bits/sec average to its
chosen k−1 destination nodes. That is, there is a T < ∞ such
that in every time interval (with unit seconds) [(i−1) ·T, i ·T ],
every node vi ∈ S can send T · λi bits to its corresponding
k − 1 receivers Ui.

The total throughput capacity of such feasible rate vector
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for multicast is defined as

Λk,S(n) =
∑

vi∈S
λi. (4)

The average per-flow multicast throughput capacity is

λa
k,S(n) =

∑
vi∈S λi

ns
, (5)

The minimum per-flow multicast throughput capacity is

λk,S(n) = min
vi∈S

λi, (6)

where k is the total number of nodes in each multicast session,
including the source node. When S is clear from the context,
we drop S from our notations. When we mention per flow
multicast capacity, hereafter we mean the minimum per flow
multicast capacity, if not explained otherwise.

Definition 2 (Throughput Capacity): An aggregated multi-
cast throughput Λk(n) bits/sec is feasible for ns multicast
sessions (each session with k terminals) if there is a rate
vector λS = (λi1 , λi2 , · · · , λins−1 , λns

) that is feasible and
Λk(n) =

∑
vi∈S λi. Similarly, we say λk(n) = minvi∈S λi is

a feasible per-flow multicast throughput capacity.
Definition 3 (Capacity of Random Networks): The aggre-

gated multicast capacity of a class of random networks is
of order Θ(g(n)) bits/sec if there are deterministic constants
c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr (Λk(n) = cg(n) is feasible) = 1

lim inf
n→∞

Pr (Λk(n) = c′g(n) is feasible) < 1

We say that the multicast capacity per flow of a class of
random networks is of order Θ(f(n)) bits/sec if there are
deterministic constants c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr (λk(n) = c′f(n) is feasible) < 1

Here the probability is computed using all possible connected
random networks formed by n nodes distributed in a square
with side-length a.

Useful Known Results: Throughput this paper, we will
repeatedly use the following results from probability theory
literature.

Lemma 1 (Chebyshev’s Inequality): For a variable X , and
A > 0

Pr (|X − µ| ≥ A) ≤ Var(X)
A2

,

where µ = E(X), Var(X) is the variance of X .
Lemma 2 (Weak Law of large numbers): Consider n un-

correlated variables Xi, 1 ≤ i ≤ n with same expected value
µ = E(Xi) and variance σ2 = Var(Xi). Let X =

∑n
i=1 Xi

n .
Then for any ε > 0,

Pr
(|X − µ| < ε

) ≥ 1− σ2

n · ε2 .

Lemma 3 (Hoeffding’s inequality): Consider n indepen-
dent variables Xi with Pr (Xi ∈ [ai, bi]) = 1. Let X =∑n

i=1 Xi. Then

Pr (X − E(X) ≥ nt) ≤ e
− −2n2t2∑n

i=1(bi−ai)
2
, when 0 < t.

Lemma 4 (Binomial Distribution): Consider n independent
variables Xi ∈ {0, 1} with p = Pr (Xi = 1). Let X =∑n

i=1 Xi. Then

Pr (X ≤ ξ) ≤ e
−2(n·p−ξ)2

n , when 0 < ξ ≤ n · p.

Pr (X > ξ) <
ξ(1− p)

(ξ − n · p)2
, when ξ > n · p.

We will also use the uniform convergence in the weak law of
large numbers. We recall the following definitions by Vapnik
and Chervonenkis [19]. Let U be the input space. Let C be a
family of subsets of U . A finite set S (called sample in machine
learning) is shattered by C, if for every subset B of S, there
exists a set A ∈ C such that A

⋂
S = B. The VC-dimension

of C, denoted by VC-d(C), is defined as the maximum value
d such that there exists a set S with cardinality d that can
be shattered by C. For sets of finite VC-dimension, one has
uniform convergence in the weak law of large numbers:

Theorem 5 (The Vapnik-Chervonenkis Theorem): If C is a
set of finite VC-dimension VC-d(C), and {Xi | i =
1, 2 · · · , N} is a sequence of i.i.d. random variables with
common probability distribution P , then for every ε, δ > 0,

Pr

(
sup
A∈C

∣∣∣∣∣
∑N

i=1 I(Xi ∈ A)
N

− P (A)

∣∣∣∣∣ ≤ ε

)
> 1− δ (7)

whenever

N > max
{

8 ·VC-d(C)
ε

· log
13
ε

,
4
ε

log
2
δ

}
. (8)

Here I(Xi ∈ A) takes value 1 if Xi ∈ A and 0 otherwise.

Notations: Throughput this paper, for a continuous region Ω,
we use |Ω| to denote its area; for a discrete set S, we use |S|
to denote its cardinality; for a tree T , we use ‖T‖ to denote
its total Euclidean edge lengths; x →∞ denotes that variable
x takes value to infinity.

III. GENERAL TECHNIQUES FOR UPPER-BOUNDS

A. Simultaneous Transmissions

In previous studies [6], [16] of capacity of random networks,
a common approach is to analyze the expected number of
hops H(b) a bit b has to travel and the total number of
simultaneous transmissions S = O(a2

r2 ) possible in the system.
If each source node generates data at rate λ, the number
of bits generated by these ns sources in time interval T
is simply λTns. Thus, the total number of transmissions
of all bits to their destinations is λTnsH(b) almost surely.
Consequently, we have λTnsH(b) ≤ T · S. This implies
that λ = O(a2

r2 · 1
nsH(b) ) = O( n

log n · 1
nsH(b) ). In [6], for

unicast, Gupta and Kumar essentially used Θ(1
r ) (assumed

a = 1) as estimation of H(b) and derived Θ( W
ns·r ) as per-node

capacity upper-bound. In [16], for multicast, Shakkottai et al.
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essentially used H(b) = Θ(
√

k
r ) (assumed a = 1) to derive

O( W
ns·
√

k·r ) = O(
√

n

ns

√
k log n

) as per-node capacity upper-
bound. Although this traditional technique is valid and con-
venient for studying the asymptotic unicast capacity and the
multicast capacity with some special configurations (k = n1−ε

for some 0 < ε < 1) [16], this may produce a pessimistic or
even erroneous upper-bound for asymptotic multicast capacity
in a general setting studied in this paper. For example, when
k = n (i.e., broadcast), formula O(

√
n

ns

√
k log n

) only produces
an upper-bound O( 1

ns

√
log n

), which is asymptotically smaller
than the achievable per-node broadcast capacity Θ( 1

ns
) im-

plied in [9], [10], [18]. The reason for this discrepancy is that
for a multicast tree T with total length ‖T‖, value Θ(‖T‖r )
may not give the lower bound on the number of transmissions
needed by the tree T due to the multicast natural of wireless
transmissions. For the example of broadcast, later we will
show that for any broadcast tree T , ‖T‖ = Ω(

√
n) almost

surely. Thus, Θ(‖T‖r ) = Ω( n√
log n

) due to r = Θ(
√

log n
n ).

On the other hand, a simple broadcast based on a connected
dominating set [9] will only require Θ( n

log n ) transmissions.
To address the above challenges and discrepancies, we use

two new approaches to analyze the upper-bound of multicast
capacity:

1) Area Argument: This is based on the area covered by
the transmission disks of all internal nodes in a multicast
tree;

2) Data Copies Argument: This approach is based on the
number of nodes that receive a copy of a multicast data
during the transmissions of all nodes in the tree.

B. Shaded Area of Transmissions

The area argument essentially works as follows. When we
multicast from one source node vi to all its k − 1 receivers
Ui, all nodes lying inside the interference region of any
transmitting node for this multicast session cannot receive data
from other nodes simultaneously. We call the region where
no node can receive data from other transmitting node when
vi is transmitting as shaded by the transmission of vi. For
any node u, let ti(u) be the time-intervals that node u will
transmit data for multicast tree Ti. Thus, a multicast tree will
claim a number of cylinders (D(u, r)× ti(u) for internal node
u in T ) in the space-time dimension R2 × T , where D(u, r)
denotes the transmission disk of node u, T is the scheduling
period. Thus, given a multicast tree Ti for multicast originated
from vi, the pairs of (D(u, r), ti(u)) (i.e., transmission disk
D(u, r) will be used for multicast originated at vi during
the transmission time-interval ti(u)) claimed by this multicast
should be disjoint from the pairs claimed by other multicast
sessions.

Let Ai be the area of the overall region that is shaded by
any transmitting node for the operation (unicast, broadcast,
multicast, or any other operation) of node vi, and λi be the
data rate. Then obviously

∑n
i=1 λi · Ai ≤ W · Φ where Φ is

the total area of the region covered by the transmitting disks
of all nodes. Thus, it is not difficult to prove the following
lemma:

Lemma 6: For any operation O, such as multicast, let Ai

be the area of the region defined by uniting the transmission
regions of all transmitting nodes for operation initiated by node
vi. If Ai is at least ℘ with high probability for every node vi

in S , then, w.h.p., the aggregated capacity for this operation
in a random network deployed in a region with area Φ is at
most Φ·W

℘ .

C. Amortized Receiving

The data-copies argument works as follows. When we
multicast from one source node vi to all its k−1 receivers Ui, it
is more likely that other nodes will also get a copy of the data.
Here, for the purpose of analysis, when a node v sends data
to one of its neighboring nodes, all its neighboring nodes will
be charged a copy of the data. Notice that here a neighboring
node w may not be the intended receiver. However, since when
v is transmitting, any of its neighboring node w cannot receive
data simultaneously from any other transmitting node due to
interference, we will say that node w also gets a copy of the
data. For multicast with k − 1 receivers, clearly, at least k
nodes will get a copy of the data. Generally, assume that Ci

nodes will get a copy of the data when the k−1 receivers are
randomly selected for each possible source node vi. Obviously,∑

vi∈S λi · Ci ≤ n ·W . Further assume that Ci ≥ C almost
surely, i.e., Pr (Ci ≥ C) → 1 as n or k goes to infinity. Then
the total multicast capacity satisfies, almost surely,

Λk(n) =
∑

vi∈S
λi ≤ n ·W

C
. (9)

Clearly, C ≥ k. Next subsection is devoted to give a better
lower bound on C. The following lemma is straightforward.

Lemma 7: For any operation O, such as multicast, let X be
the number of nodes that will receive a copy of the data (i.e.,
fall inside the interference region of any one of its transmitting
nodes). Assume that X is at least N with high probability.
Then, with high probability, the aggregated capacity for this
operation by all nodes in a random network of n nodes is at
most n·W

N .
In our proofs, we will utilize these two technical lemmas to

give upper-bound on the capacity of a random network for an
operation that will be performed by each node of the network,
such as multicast. Notice that the above lemmas require us to
find largest ℘ such that Pr (A ≥ ℘) → 1, or the largest N such
that Pr (X ≥ N ) → 1. In some cases, such ℘ may be much
smaller than the mean value E(A) of A; such N may be much
smaller than the mean value E(X ) of X . In these cases, we
could rely on a much stronger technical lemmas based on law
of large numbers when the number ns of operations needed
to perform goes to infinity.

IV. UPPER BOUNDS ON MULTICAST CAPACITY FOR
RANDOM NETWORKS

A. The upper-bound on a
r

We assume that n wireless nodes V with transmission range
r are randomly and uniformly distributed in a square region
with side length a. We first study the asymptotic bound on a/r
such that the resulted network G = (V, E) is connected with
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probability going to 1 as n goes to infinity. Notice that for a
set of nodes, the CTR for connectivity is always the length
of the longest edge of the Euclidean minimum spanning tree
(EMST) of this set of nodes [7], [14], [15]. Consequently,
studying the CTR for connectivity is equivalent to studying
the longest edge of the EMST of a set V of nodes when V
follows a certain distribution such as Poisson distribution or
random uniform distribution.

Assume n points are distributed uniformly at random in the
2-dimensional unit square and let Mn be the random variable
denoting the length of the longest edge of EMST built on this
set of n nodes. It was proved in [14] that, for any real number
β,

lim
n→∞

Pr
(
nπ ·M2

n − log n ≤ β
)

=
1

ee−β .

Assume n points are distributed uniformly at random in
the 2-dimensional square with side length a. Let Mn,a be the
random variable denoting the length of the longest edge of
EMST built on this set of n nodes. Then a simple scaling
shows that

lim
n→∞

Pr
(

nπ · (Mn,a

a
)2 − log n ≤ β

)
=

1
ee−β .

for any real number β. Thus, with probability 1

ee−β , we know
that the longest edge length Mn,a, of EMST built on n points

distributed in a square with side-length a, is at most
√

log n+β
nπ ·

a. Thus, when β → ∞ and a ≤
√

nπ
log n+β · r, we know that

the longest edge of EMST has length at most r almost surely.
Thus, we have

Theorem 8: Assume that n nodes, each with transmission
range r, are randomly uniformly deployed in a square region of
side length a. When a

r ≤
√

nπ
log n+β for β →∞, the resulted

network G = (V,E) is connected with probability at least
1

ee−β .

For example, we can set a = r
√

n
log n where β = (π−1) log n.

To our surprise, we find that the multicast capacity of a
random network where each multicast session has k − 1 re-
ceivers has two regimes: when the number of receivers k−1 is
over some threshold, multicast capacity is asymptotically same
as the broadcast capacity; otherwise, the multicast capacity
decreases linearly over 1√

k
. In the next subsections, we will

provide upper-bounds for each case separately.

B. When k = O(a2/r2)
We first study the multicast capacity when the number of

receivers is at most O(a2/r2). We will present upper bound
of the total multicast capacity. A trivial upper bound for total
multicast capacity is W ·n since there are n source nodes and
each source node can only send W bits/sec. A refined upper
bound is Λk(n) ≤ n·W

k which is derived from the perspective
of recipients: (1) each node can receive at most W bits/sec,
and (2) among received data by all nodes, any data from any
source node will have at least k copies (one copy at each of
the k − 1 receivers and one copy at the source node). From
Lemma 7, for a multicast tree Ti spanning source node vi and
k−1 receivers Ui, we would like to know a lower bound on the

number of internal nodes used in Ti. To analyze this value,
we first study the asymptotic lower bound of the Euclidean
length ‖Ti‖ of a multicast tree Ti.

Lemma 9: [4] Given any k nodes U , any multicast tree
(also called Steiner tree) spanning these k nodes (may be using
some additional relay nodes) will have an Euclidean length at
least % · ‖EMST (U)‖, where % ≥

√
3

2 and EMST (U) is the
EMST spanning U .
Observe that the tight bound on % =

√
3

2 is the famous Gilbert
and Pollak conjecture which was proved by Du and Hwang
in 1992 [4]. A bound % ≥ 1

2 can be easily proved as follows.
For any steiner multicast tree T spanning these k nodes, we
construct an Euler tour on this tree. Clearly the total length of
the Euler tour (EC) is 2 times of the length of the multicast tree
T . On the other hand, the Euler tour has length at least that of
the Euclidean minimum spanning tree for these k nodes. The
statement follows from ‖EMST‖ < ‖EC‖ = 2 · ‖T‖. Recall
that in this paper, ‖T‖ denotes the total Euclidean length of
all links in a structure T .

Based on Lemma 9, to get a lower bound on ‖Ti‖ of any
multicast tree Ti, we need study the length of EMST spanning
these k random nodes. In [17], Steele established the following
result:

Lemma 10: The total edge length of the EMST of n nodes
randomly and uniformly distributed in a d-dimensional cube
of side-length a is asymptotic to τ(d) · n d−1

d · a, where τ(d)
is a constant depending only on the dimension d.
Thus, based on Lemma 9 and Lemma 10, we have

Lemma 11: The total edge length, denoted by ‖Ti‖, of any
multicast tree Ti spanning k nodes that are randomly placed
in a square of side-length a almost surely is at least, when
k →∞,

% · τ(2) ·
√

k · a.

From now on, for simplicity, we will denote τ ←√
3τ(2)/2. Thus, the total link length of a multicast tree is

at least, almost surely, τ ·
√

k · a when k goes to infinity.
Let X = ‖EMST (U)‖ of a set of k randomly selected

nodes U in a square of side-length a. It was shown in [17]
that Var(X) ¿ a2 · log k. We then show that X ≤ 2

√
2
√

ka.
Lemma 12: For any k nodes U placed in a square region

with side-length a, the length of EMST spanning U is at most
2
√

2
√

ka.
Proof: Given k nodes in the square, we will use Prim’s

algorithm to construct EMST: originally each node is a com-
ponent, and then we iteratively find a shortest edge to connect
two components to form a larger component until only one
component is left. Consider the (k + 1 − g)-th step (for
1 ≤ g ≤ k), which has j connected components as input.
For g ≥ 2, if we partition the square into a b√g − 1c by
b√g − 1c grid with side-length a

b√g−1c , then there is at least
one cell that contains at least two connected components. This
implies that the shortest edge connecting components at the
(k + 1 − g)th step is at most

√
2 a
b√g−1c . Consequently, the

EMST has length at most

k∑

j=2

√
2

a

b√g − 1c ≤
√

k−1∑

i=1

√
2
a · ((i + 1)2 − i2 − 1)

i
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≤ 2
√

2
√

k − 1 · a
This finishes the proof.

Bound the data copies: A straightforward lower-bound on the
number of nodes (including leaf nodes) needed in a multicast
tree spanning k nodes randomly selected in a square of side-
length a is τ ·

√
k · a

r with high probability. This bound can
be derived as follows: (1) the Euclidean length of a multicast
tree is at least τ ·

√
k · a with high probability, and (2) the

transmission range of each node is only r, thus, removing
one tree edge incident on a leaf node will reduce the total
edge length by at most r and we will reduce the number of
nodes by 1. Consequently, we have C ≥ τ ·

√
k · a/r, with

high probability. Although this bound on C is much better
than bound C ≥ k when k = O(a2/r2), the bound can be
further improved based on the following observation. When
nodes on the multicast tree relay data from the source node
to receivers, not only its downstream nodes of the multicast
tree will receive the data, but also all its neighboring nodes (in
communication graph G) will get a copy of the data. We will
then analyze the number of nodes that will get the copy of the
data. Given a multicast tree T , let D(T ) be the region covered
by all transmitting disks of all transmitting nodes (internal
nodes of T ) in the multicast tree T . Observe that the leaf
nodes do not contribute to D(T ) at all here. See Figure 1 (a)
for illustration. Clearly, the area of D(T ), denoted by |D(T )|,

r

a

a

a

a

r

(a) Region D(T ) (b) Dense receivers

Fig. 1. (a) Region D(T ) covered by transmitting disks of internal nodes
in multicast tree T . Here the solid black nodes are receivers/source and
gray nodes are Steiner nodes. (b) Partition of square with side-length a into
squarelets with side-length r. Here the solid black nodes are receivers/source.
Shaded squarelets are squarelets with at least one receiver.

is at most |D(T )| ≤ 2r · ‖T‖ + k · πr2/2 where ‖T‖ is the
total Euclidean length of all links in T . We will prove that the
area of D(T ) is also at least τ

√
ka·r
c0

, w.h.p., for some constant
c0 independent of the network.

Lemma 13: The area of the region D(T ), denoted by
|D(T )|, with high probability, is at least τ

√
ka·r
c0

when the
number of receivers/source nodes k < ( τ(1−(6(d+1)·ρ))

6(d+1)+1 )2 · a2

r2 ,
for some constant c0 = 1/(ρπ), where 0 < ρ < 1

6(d+1) and
constant d ≤ 13.

Proof: For any multicast tree T spanning source node
vi and the set of receivers Ui, for convenience, let V (T ) be
the set of nodes in tree T ; let U ′

i = Ui ∪ {vi}; let I(T )
be all the Steiner nodes used to connect them, i.e., I(T ) =
V (T )\U ′

i . Clearly the communication graph defined on V (T )

(where two nodes are connected iff their Euclidean distance
is no more than r) is connected. We use GT to denote such
induced graph. We will then build another multicast tree T ′

from GT to connect nodes U ′
i .

In graph GT , we build a connected dominating set (CDS)
using a method described in [3], [20]. Source node s will be
added to the CDS if it is not in the CDS. It has been proved in
[3], [20] that, in the constructed CDS, each node on the CDS
has a degree bounded by a constant, say d. For example, it
can be shown that the degree of node in CDS is bounded by
13 if the method presented in [20] is used. The multicast tree
T ′ is then a simple breadth-first-search tree computed from
the CDS, rooted at the source node s.

We essentially will prove that each point from the region
D(T ′) is covered by at most a constant c0 number of disks
from the multicast tree T ′. For each point p in the region, we
divide the disk D(p, r) centered at point p with radius r into
6 equal sized sectors. Thus, any pair of nodes falling into the
same sector will be within distance of r of each other, and thus
connected in the original communication graph. Consequently,
for each point p, the number of disks from D(T ′) that cover
p is at most 6(d + 1). If it is at least 6(d + 1) + 1, then at
least one of the sectors will have at least d + 2 nodes, which
implies that any node in that sector will have degree at least
d+1 in the induced CDS graph. This is a contradiction to the
fact that the degree of induced CDS is bounded by d. Thus,
the area of the region D(T ′) is thus at least |I(T ′)|·πr2

6(d+1) , where
d is the degree bound on the induced CDS graph constructed.
Here |I(T ′)| is the number of internal nodes in multicast tree
T ′.

Notice that some leaf nodes in T may become internal nodes
in T ′; some internal nodes may not be used by tree T ′ at all.
Let A(T ) be the region covered by all disks centered at all
nodes of a tree T , including the leaf nodes. Let `(T ) be the
number of leaf nodes in a tree T . Obviously, |D(T )|+ `(T ) ·
πr2 ≥ |A(T )| ≥ |A(T ′)| ≥ |D(T ′)|. Thus,

|D(T )| ≥ |D(T ′)| − `(T ) · πr2 ≥ |I(T ′)| · πr2

6(d + 1)
− `(T ) · πr2.

Obviously, `(T ) ≤ k. For a multicast tree T ′, there are at
most k leaf nodes. If we remove all edges in T ′ incident on
leaf nodes, the total edge length of all edges left is at least
|T ′|−k ·r. Thus, the number of internal nodes |I(T ′)| in T ′ is
at least |T

′|−k·r
r . Notice that T ′ is a tree spanning the source

node s and all receivers U ′
i . Thus, with high probability, |T ′| ≥

τ
√

k ·a since U ′
i has k nodes. Thus, with high probability, we

have

|I(T ′)| ≥ τ
√

k · a
r

− k.

Assume that k < ( τ(1−(6(d+1)·ρ))
6(d+1)+1 )2 · a2

r2 , which implies

|D(T )| ≥ |I(T ′)| · πr2

6(d + 1)
− `(T ) · πr2

≥
(

τ
√

k·a
r − k

6(d + 1)
− k

)
· πr2

≥ ρπτ
√

k · a · r
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For example, we can set ρ = 1
12(d+1) . This finishes the proof.

For convenience, hereafter, we use

θ1 =
(

τ(1− (6(d + 1) · ρ))
6(d + 1) + 1

)2

to denote the threshold value such that Lemma 13 is true if
k < θ1 · a2

r2 . Based on Lemma 13, we know that the expected
number, denoted by C, of nodes from V that is in the region
D(T ) is at least

|D(T )| · n

a2
≥ τ ·

√
k · a · r · n
c0a2

=
τ ·
√

k · r · n
c0a

Recall that we assume that there is only one single channel
in the network. It is then not difficult to show the following
lemma:

Lemma 14: With high probability, the number C of nodes
that get a copy of the multicast data satisfies C > τ ·r·

√
k·n

2c0a .
Proof: Consider a multicast tree T . Notice that n wireless

nodes will be randomly distributed in a square region of side-
length a. Let Xi = {0, 1} be an indicator variable whether the
ith node vi will fall inside the region D(T ) for a multicast
tree T . Clearly Pr (Xi = 1) = |D(T )|

a2 . Recall that, we already
proved that, with high probability, |D(T )| ≥ τ

√
ka·r
c0

. Thus,
we have

Pr (Xi = 1) ≥ τ
√

k · r
c0 · a .

Obviously, X =
∑n

i=1 Xi is the expected number of nodes
falling inside the region D(T ), which is also the number C
of nodes that will get a copy of the data by multicast. Then
the expected value E(X) ≥ τ

√
k·r·n

c0·a .
Based on Lemma 4, we have

Pr
(

C ≤ n · |D(T )|
2a2

)
≤ e

−2(n· |D(T )|
a2 −n· |D(T )|

2a2 )2

n

= e
−n·|D(T )|2

2a4 ≤ e
−n·τ2·k·r2

2(c0)2·a2

Notice that to guarantee a connected network with high
probability, we have a <

√
πn

log n · r with high probability.
Thus, when n →∞ we have

Pr
(

C ≤ n · |D(T )|
2a2

)
≤ e

−n·τ2·k·r2

2(c0)2·a2 ≤ e
− τ2·k·log n

2πc20 =
1

n
τ2·k
2πc20

Consequently, when n →∞, Pr
(
C ≤ n · |D(T )|

2a2

)
→ 0. Thus,

Pr

(
C >

τ · r ·
√

k · n
2c0 · a

)
≥ Pr

(
C > n · |D(T )|

2a2

)
→ 1.

This finishes the proof.
Consequently, we have the following theorem:
Theorem 15: The multicast capacity with k − 1 receivers

for n nodes that are randomly and uniformly deployed in a
square with side-length a is at most c1 · aW

r
√

k
for some constant

c1 when k < θ1 · a2/r2.

Proof: Notice that the multicast capacity is at most nW
C

and, with high probability, C ≥ τ ·r·
√

k·n
2c0a when k < θ1 ·a2/r2.

Thus, the multicast capacity Λk(n) is at most

nW · 2c0a

τ · r ·
√

k · n = c1 · aW

r
√

k

for a constant c1 = 2c0
τ . This finishes the proof.

Recall that we have proved that, to guarantee that we
have a connected network with high probability, we need
a ≤ r

√
nπ

log n+β for β → ∞. Thus, letting c2 = c1
√

π, we
have the following theory:

Theorem 16: The multicast capacity for a random network
of n nodes, when k < θ1 · a2/r2, is at most

Λk(n) ≤ c2 ·
√

n√
log n ·

√
k
·W = O(

√
n√

log n ·
√

k
·W ).

With ns multicast sessions, the per flow multicast capacity is
at most

λk(n) = min{W,
Λk(n)

ns
} = min{W,O(

√
n

ns

√
log n ·

√
k
·W )}.

Notice that Theorem 15 was proved under the assumption
that k → ∞. When this is not the case, we can prove
that the per-flow multicast capacity λ (when each source
node generates multicast data at rate λ) also satisfies that
λk(n) = O(

√
n

ns

√
log n·

√
k
· W ) when ns → ∞. Since k is

constant in this case, we know that the per-flow multicast
capacity is upper-bounded by the per-flow unicast capacity
with ns unicast sessions. Thus, the per-flow multicast capacity
is almost surely at most O( n

ns

√
log n

· W ), which is same as
O( n

ns

√
log n·

√
k
·W ) since k is constant.

C. When k = Ω(a2

r2 )
In the previous subsection, we showed an upper bound of

the multicast capacity when k < θ1 · a2/r2. In this subsection
we will present an upper bound on multicast capacity when
k ≥ θ1 · a2/r2. We will essentially show that in this case,
multicast is asymptotically equivalent to broadcast. Broadcast
capacity of single-source of an arbitrary network has been
studied in [9], [18]. In this paper, we will prove that the
achievable integrated multicast capacity is only Θ(W ) if an
arbitrary k subset of the n nodes will serve as receivers for
each possible source node vi.

We partition the square of side-length a into squarelets, each
with side length r. The square will be partitioned into M =
da2/r2e squarelets, say B1, B2, · · · , BM . Recall that we will
randomly select k ≥ θ1 · a2/r2 receivers in the square region.
See Figure 1 (b) for illustration.

Lemma 17: With probability at least 1 − 1
ρ2eθ1M

, at least
ρ · M squarelets will have at least one receiver when k ≥
θ1 · a2/r2 for a constant θ1.

Proof: Let X be the number of squarelets that do not have
any receivers inside, and A be a fixed fraction of squarelets,
say A = ρ ·M for a constant 0 < ρ < 1. Define variable Xi

Xi =

{
1 if squarelet Bi is empty of receivers,
0 if squarelet Bi is not empty of receivers.

(10)
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Notice X =
∑n

i=1 Xi, and Var(X) = Var(
∑M

i=1 Xi) =∑M
i=1

∑M
j=1 Cov(Xi, Xj), where Cov(Xi, Xj) = E(Xi ·

Xj) − E(Xi)E(Xj) is the covariance of variable Xi and
Xj . We then compute such Cov(Xi, Xj) for all possible
pairs of i and j: Cov(Xi, Xi) = E(Xi) − E(Xi)2 and
E(Xi) = (1 − 1

M )k; and E(Xi · Xj) = (1 − 2
M )k if i 6= j.

Consequently, we have:

Var(X) = M(M − 1)[(1− 2
M

)k − (1− 1
M

)2k]

+M [(1− 1
M

)k − (1− 1
M

)2k]

= M(M − 1)[(1− 2
M

)k − (1− 2
M

+
1

M2
)k]

+M [(1− 1
M

)k − (1− 1
M

)2k]

Since [(1− 2
M )k − (1− 2

M + 1
M2 )k] ≤ 0, we have

Var(X) ≤ M [(1− 1
M

)k − (1− 1
M

)2k].

From Lemma 1, we have

Pr (X − E(X) ≥ ρ ·M) ≤ M [(1− 1
M )k − (1− 1

M )2k]
ρ2M2

Recall that k ≥ θ1 · M . The expected value E(X) of X ,
denoted by µ, is M · (1− 1

M )k ≤ M · e−θ1 . Thus,

Pr
(
X ≥ (e−θ1 + ρ) ·M) ≤ ( 1

e )θ1 − ( 1
e )2θ1

ρ2
· 1
M

When M → ∞, the probability goes to zero. We can also
show that, with high probability, there is at most a constant
fraction of squarelets that will be empty of receivers. This
finishes the proof.

We then prove that the union of the transmission disks of
these k nodes (k−1 receivers and 1 source node) in a multicast
will cover at least a constant fraction, say 0 < ρ2 ≤ 1, of the
deployment region.

Lemma 18: The union of the transmission disks of these
k nodes (k − 1 receivers and 1 source node) in a multicast
will cover at least a constant fraction, say 0 < ρ2 ≤ 1, of the
deployment region.

Proof: Based on lemma 17, we know that among M
squarelets partitioned from the deployment region, there are
at least ρ ·M squarelets, each of which contains at least one
receiver (or source) node inside. In each such a squarelet Bj ,
there is at least one receiver and thus at least one transmitting
node in the multicast tree that covers this receiver. The
transmitting node must lie inside this squarelet or 8 adjacent
squarelets. On the other hand, each transmitting disk can cover
receivers from at most 9 squarelets. Consequently, we must
have at least ρ · M/9 transmitting disks to cover receivers
from ρ ·M squarelets. Recall that the squarelet side-length is
r, which implies that each point in the deployment region is
covered by at most 9 such representative transmission disks.
Consequently, the total area covered by these representative
transmission disks is at least ρ ·M · πr2/81. Recall that the
deployment region has area a2 and M = da2/r2e. Thus, the
area of all transmission disks of all these k nodes is at least

ρ2 = ρ·π
81 fraction of the total area of the deployment region.

This finishes the proof.
Based on the above lemmas, the following theorem is

straightforward.
Theorem 19: When k ≥ θ ·a2/r2 for a constant θ, the total

multicast capacity Λk(n) of all nodes is bounded from above
by

Λk(n) ≤ W · a2

ρ2a2
=

W

ρ2
= O(W )

where ρ2 is a constant depending only on θ.
Proof: The total multicast capacity of all nodes is

bounded from above by

W · a2

ρ2a2
=

W

ρ2
.

Notice that here W · a2 is the total bits×meter2/sec that can
be occupied by all nodes’ transmissions: the transmission of
one node will cover an area at most πr2 and the transmission
disks of active transmitting nodes at any time instance should
be disjoint, which implies that, the total bits×meter2/sec
achievable is at most W · a2. On the other hand, for each
bit in a multicast session, it must cover at least ρ2a

2 meter2

in the deployment region. This finishes the proof.
Notice that for broadcast, it has been proved in [9], [18]

that the broadcast capacity is only Θ(W ). Here we essentially
prove that for multicast, when the number of receivers is large
enough (at least Ω(a2

r2 )), the asymptotic multicast capacity is
also only O(W ).

V. LOWER BOUNDS ON MULTICAST CAPACITY WITH
RANDOM NETWORKS

In the previous section, we have derived upper bounds
on the multicast capacity Λk(n). In this section, we will
derive asymptotically matching lower bounds on the multicast
capacity Λk(n). Specifically, we will provide a multicast
scheme and prove that the multicast capacity achieved by our
scheme matches the asymptotic upper bounds.

A. Partition Square Using Squarelets

Our multicast scheme is based on a good approximation of a
minimum connected dominating set (MCDS) of a random net-
work. First, partition the region into squarelets, each of side-
length r/

√
5. Thus, any two nodes from 2 adjacent squarelets

(sharing a common side) will be able to communicate with
each other directly. Randomly select one node from each
squarelet. Clearly the set of selected nodes is a dominating
set. If every squarelet has a node inside it, obviously, the set
of selected nodes will form a connected dominating set (CDS).

Notice that, it is possible that, for some squarelet, there is no
node inside, and thus, we cannot find a multicast tree MT (U ′

1)
later by Algorithm 1. We show that this almost surely cannot
happen.

Lemma 20: There is a sequence of δ(n) → 0 such that

Pr (Every squarelet contains a node) ≥ 1− δ(n)

Proof: Let C be the class of axis-aligned squares of side-
length r√

5
. Notice that the probability that a node fall in such



10

a square is r2

5 · 1
a2 = r2

5a2 . Recall that, to have a connected

network, we almost surely have r/a ≥
√

log n
nπ . It is easy to

show that the VC-dimension of C is at most 4 (it is at least 3,
4). Hence, for all squarelets S,

Pr
(

sup
S∈C

∣∣∣∣
# of nodes in S

n
− r2

5a2

∣∣∣∣ ≤ ε(n)
)

> 1− δ(n)

whenever

n ≥ max
{

32
ε(n)

· log
13

ε(n)
,

4
ε(n)

log
2

δ(n)

}
. (11)

This condition 11 is satisfied when

ε(n) =
32 log n

n
, δ(n) =

2
n

.

Thus,

Pr
(

sup
S∈C

{# of nodes in S ≥ nr2

5a2
− n · ε(n)}

)
> 1− δ(n)

Thus, if we choose r and a such that

r ≥ 14 · a ·
√

log n

n
(12)

then nr2

5a2 − n · ε(n) ≥ 7 log n. Consequently, we have

Pr (∀ squarelet S, # of nodes in S ≥ 7 log n) > 1− 2
n

The theorem then follows.
Notice that, generally, when r = a

√
log n
c·n , to make sure

that every squarelet with side-length r/β will have at least
one node inside, it is sufficient to require that c < 1

32β2 .
For each node on the CDS, we show that every node can be

scheduled to transmit once every ∆ time-slots, where constant
∆ depending only on R and r. For each node v, consider a
node u whose transmission will interfere with the transmission
of node v. Clearly node u will be completely inside the disk
centered at v with radius R+r. Thus, the squarelet containing
u must be inside the disk centered at v with radius R + r +√

2√
5
r < R + 2r. Let ∆ be the maximum number of nodes in

CDS whose transmission will interfere with the transmission
of a node v in CDS. Using the area argument, we can show
that

∆ ≤ π · (R + 2r)2

r2/5
= 5π(2 +

R

r
)2.

This property ensures that we can schedule the transmissions
of all nodes in CDS by a TDMA manner such that all nodes
will be able to transmit at least once in every ∆ time slots.
Notice that here ∆ is a constant.

4A detailed analysis can show that its VC-dimension is exactly 3. Consider
any four points x1, x2, x3 and x4. If the convex hull of them has 3 corners,
then one node, say x4 is inside. Obviously, any square containing x1, x2

and x3 will have x4 inside. So {x1, x2, x3} cannot be realized. When the
convex hull has all 4 nodes, let x1x2x3x4 be the convex hull in clockwise
order. Since {x1, x2, x3, x4} can be realized, they must be inside a square
with the side-length r/

√
5. Then it is easy to show that either {x1, x3} or

{x2, x4} cannot be realized. This finishes the proof.

B. When k ≤ θ1a
2/r2

When the number of receivers, plus the source node, k is
at most θ1

a2

r2 , we will construct a multicast tree from CDS.
Consider an instance of a random network G = (V, E) and
also an instance of multicast with v1 as the source node
and U1 = {v2, v3, · · · vk} as the receiver nodes. Let U ′

1 =
{v1, v2, v3, · · · vk}. We will construct a multicast structure as
following Algorithm 1.

2

u

v

w

w

1

(a) Squarelets partition (b) Manhattan Routing Tree

Fig. 2. Partition of square with side-length a into squarelets with side-length
r/
√

5. For an edge uv ∈ EMST (U ′1), find a node w (either node w1 or
node w2 which has same row as u and same column as v) to connect them.
Right figure illustrates a multicast tree constructed using Manhattan approach,
where dotted lines denote an original spanning tree of nodes in a multicast
session.

To show that the above routing Algorithm 1 achieves the
asymptotically optimum multicast capacity, we need show that
the total number of copies that a multicast bit is “received” by
all nodes is at most O( r·

√
k·n

a ), which will be derived based
on the upper bound on the area covered by all transmission
disks in the multicast tree MT (Pi). The following theorem
will bound total Euclidean length of edges in the multicast
tree MT (Pi)

Theorem 21: The total Euclidean length of the multicast
tree MT (Pi) is at most c3

√
ka for a constant c3 depending

only on θ1.
Proof: For k nodes Pi in a multicast session with

source node vi, we first constructed the Euclidean spanning
tree EST (Pi). Same as the proof for Lemma 12, the total
Euclidean length of all edges in EST (Pi) is at most 2

√
2
√

ka.
For each edge uv ∈ EST (Pi), we will select a sequence of
nodes (one in each of the squarelets crossed by segment uw
or wv) to connect them. Assume that segment uw crosses x
squarelets (including the one containing u and w), and segment
wv crosses y squarelets. Let s be the size of the squarelet,
which is r/

√
5 here. Then the path P(u, v) has Euclidean

length at most (x + y)s · √2 because the path has length at
most

√
2s in each crossed squarelet and it will cross x + y

squarelets. Additionally, we have
{

(x · s)2 + (y · s)2 ≥ ‖uv‖2
((x− 1) · s)2 + ((y − 1) · s)2 ≤ ‖uv‖2 (13)

Thus, (x − 1) + (y − 1) ≤ √
2
√

(x− 1)2 + (y − 1)2 =√
2‖uv‖

s . Then, P(u, v) has Euclidean length at most

(x + y)s ·
√

2 ≤ 2‖uv‖+ 2
√

2s.
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Algorithm 1 Multicast Capacity Achieving Manhattan Rout-
ing Based on a Squarelet for Nodes Ui

1: We partition the deployment square into squarelets, each
with side length r/

√
5 (as in [16], see Figure 1 (b)

for illustration). Thus, we have d a
r/
√

5
e squarelets. Each

squarelet is denoted by (i, j) when it is the ith column
and jth row.

2: Let Pi = {pi,1, pi,2, · · · , pi,k} be the set of randomly and
independently selected points used to find the terminals
Ui = {vi,1, vi,2, · · · , vi,k}. Recall that vi,j is the closest
node to point pi,j .

3: We build an Euclidean spanning tree, denoted as EST (P ),
connecting points in Pi, using following method (also
described in Lemma 12):
(1) Originally, k nodes Pi form k components;
(2) repeat steps (3) and (4) for g = 1, 2, · · · , k − 1,
(3) for the gth step, partition the deployment square into
at most k − g square-shaped-cells, each with side length
d a
b√k−gce;

(4) find a cell that contains two points of Pi that are
from 2 different connected components and then connect
them using Manhattan routing; merge these two connected
components.

4: For each link uv in the tree EST (Pi), assume that u and v
are inside squarelet (iu, ju) and squarelet (iv, jv) respec-
tively. Find a point w in squarelet (iv, ju) (or squarelet
(iu, jv)), i.e., uwv is a Manhattan path connecting u and
v. See Figure 2 (a) for illustration. The resulted structure
by uniting all such paths for all links in EST (Pi) will
serve the routing guideline for multicast.

5: For each edge uw in EST (Pi), find a node in each of the
squarelets that are crossed by line uw. We connect these
nodes in sequence to form a path, denoted as P(u, v),
connecting points u and v. Notice that here such structure
may not be a tree. If this is the case, we could remove
the cycles that do not contain nodes from Pi. Denote the
resulted tree as MT (Pi).

6: For each receiver vi,j , if it is not inside the squarelet s
containing point pi,j , let v′i,j be the node selected inside
the squarelet s. Notice that, such v′i,j exists for every
squarelets, with probability at least 1 − 2/n. Node v′i,j
then relay the data to node vi,j (the relay takes at most
2 hops). The final tree (including these additional relays)
are called multicast tree MTR(Ui).

The total Euclidean length of all edges in MT (Pi) is at most
∑

uv∈EST (Pi)

2‖uv‖+ 2
√

2s

= 2‖EST (Pi)‖+ 2
√

2
r√
5
· k

≤ 2 · (2
√

2
√

ka) +
2
√

10
5

√
k · a · r

a
·
√

k

≤ (4
√

2 +
2
√

10
5

·
√

θ1)
√

k · a.

The last inequality comes from k ≤ θ1a
2/r2. This finishes

proof by setting c3 = 4
√

2 + 2
√

10
5 · √θ1.

Here we denote the region covered by all transmission
disks of all internal nodes in MT (Pi) as D(T ) and the
number of nodes lying in D(T ) as C. We then show that with
high probability, the multicast capacity achieved using above
routing approach is within a constant factor of the asymptotic
optimum. We essentially show that, with high probability, the
number C of nodes that will receive a copy of the multicast
data is within 2E(C).

Lemma 22: Given a multicast tree constructed by Algo-
rithm 1, the number of nodes that will get a copy of a
multicast data is, with high probability, at most c4

n·r·
√

k
a , when

k ≤ θ1
a2

r2 . Here c4 is a constant.
Proof: Consider a set of receivers U1 for source node v1.

Let tree T be the multicast tree MT (Pi) constructed above.
Let Xi ∈ {0, 1} be an indicator variable whether the ith node
vi will fall inside the region D(T ) for a multicast tree T .
Clearly p = Pr (Xi = 1) = |D(T )|

a2 . Notice that the area of
D(T ) is at most 2r · ‖T‖+ kπr2/2, and edge length ‖T‖ ≤
c3 ·

√
k · a. Obviously, X =

∑n
i=1 Xi is the number of nodes

falling inside the region D(T ), and X is binomial distribution.
Using Lemma 4, we have

Pr
(

C > |D(T )| · 2n

a2

)
≤ |D(T )| · 2n

a2 · (1− |D(T )|
a2 )

(|D(T )| · 2n
a2 − n·|D(T )|

a2 )2

=
2[1− |D(T )|

a2 ]
|D(T )| · n

a2

≤ 2a2

n · |D(T )| ≤
2c0 · a2

n · τ
√

k · a · r
=

a

r

1
n
√

k

2c0

τ
≤ 1√

n · k · log n

2c0
√

c

τ

The last inequality comes from the assumption that a/r ≤√
c·n

log n . The second to last inequality comes from Lemma 13

that |D(T )| ≥ τ
√

k·a·r
c0

, w.h.p.. Consequently,

Pr
(

C ≤ |D(T )| · 2n

a2

)
≥ 1− 1√

n · k · log n

2c0
√

c

τ
.

Thus the number of nodes that can get a copy of the data for
multicast within nodes Pi, with high probability, is at most

|D(T )|·2n

a2
≤ c3

√
k·4n · r

a
+πnk

r2

a2
≤ (4c3+π

√
θ1)·n

√
k· r

a
,

The last inequality comes from k ≤ θ1
a2

r2 . The lemma follows
by setting c4 = 4c3 + π

√
θ1.

Recall that, by performing multicast based on CDS struc-
ture, we can guarantee that each node will be able to transmit
once every ∆ time-slots. This implies that the total bits/sec
achieved by all nodes is at least n ·W/∆. Consequently, the
multicast capacity is at least

n ·W/∆
(4c3 + π

√
θ1) · n

√
k · r

a

=
1

(4c3 + π
√

θ1) ·∆
· a ·W

r
√

k

By setting, c5 = 1
(4c3+π

√
θ1)·∆ , we have the following theo-

rem.
Theorem 23: The total multicast capacity Λk(n) achievable

by all multicast flows is at least c5
a·W
r
√

k
, when k ≤ θ1

a2

r2 and
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a/r ≤
√

cn
log n for some constant c ∈ (0, 1/160]. Here c5 is a

constant.
Observe that the correctness of Theorem 23 relies on the

fact that a
r ≤

√
cn

log n and k ≤ θ1a
2/r2. Here constant

0 < c < 1/160, from condition (12). Consequently, by letting
a
r =

√
cn

log n for 0 < c < 1/160, and c′2 = c5
√

c, based on
Theorem 23, we have

Corollary 24: The multicast capacity for a random network
of n nodes, when k < θ1 · a2/r2, is at least

Λk(n) ≥ c′2 ·
√

n√
log n ·

√
k
·W = Ω(

√
n√

log n ·
√

k
·W ).

Consequently, the multicast capacity per flow (with n sources)
is at least

λk(n) =
Λk(n)

n
= Ω(

1√
n log n ·

√
k
·W ).

Observe that the correctness of Theorem 23 requires the
following two additional properties of our routing scheme

1) The traffic “load” of every routing squarelet is no more
than a constant factor of W bits/sec (at most W

∆ in
this paper), due to the requirement of TDMA node
scheduling.

2) At least a constant fraction of nodes V that will send
the multicast data or is within the transmission range
of some transmitting nodes. This is required for using
nW/∆ as an approximation of the total bits “received” by
all nodes per unit time. This condition is clearly satisfied
when every node could serve as the multicast source. We
will prove that it is still true when there are ns multicast
sessions and ns satisfies some condition.

We will first prove that, for any squarelet s, with high
probability, the traffic load (total data rates) assigned to nodes
in s is at most W/∆. Given a squarelet, we define its flow-
load as the total number of multicast sessions that will be
routed through nodes inside this squarelet. We show that under
our routing algorithm, for any squarelet, with high probability,
its flow-load is no more than Θ(

√
kn log n). To prove our

claim, we first study a simple unicast case. Consider a grid
of L× L squarelets. Consider a specific squarelet s that is of
ith row and jth column in the squarelet-grid. See Figure 3
for an illustration. Randomly pick two nodes u and v from

v
w2

1w
u

i

j

1

1

L

L

(i,j)

Fig. 3. The expected flow load on a squarelet.

the grid and connect them via Manhattan routing. Let Xs be
a random variable denoting whether the Manhattan routing

will use nodes from the squarelet s. Let ps(L) denote the
probability that the Manhattan routing will use nodes from
the squarelet s, i.e., ps(L) = Pr (Xs = 1). Then

ps(L) =
i− 1
L2

· L− i + 1
L

+
j − 1
L2

· L− j + 1
L

. (14)

Here i−1
L2 · L−i+1

L (resp. j−1
L2 · L−j+1

L ) is the probability that
squarelet s is used when u (resp. v)is on the same row (resp.
column) as s. It is easy to show that

2
L2

≤ ps(L) ≤ 2
L

.

Let us now study the number of times that a specific
squarelet s is used by our routing structure for multicast.

Lemma 25: Given a squarelet s, the probability that a
random multicast flow will be routed via the squarelet s is
at most c6

√
k · r

a .
Proof: Recall that we will construct the Euclidean span-

ning tree as the method described in Algorithm 1 and then
find multicast routing structure as Algorithm 1. For a given
multicast session, this squarelet s may be used in any one
of the k steps to build the spanning tree. For step g (with
1 ≤ g ≤ k − 1), recall that we will partition the square
with side-length a into b√k − gc2 ≤ k − g cells, each with
side-length a

b√k−gc . From pigeonhole principle, there exists a
cell that contains two nodes, say u and v, from two different
connected components. We will connect them and merge these
two connected components. Here we will connect u and v
using Manhattan routing as illustrated in Figure 2. Let Xs,g
be the indicator whether the specific squarelet s is used in this
gth step. Clearly, the probability that Pr (Xs,g = 1) is

Pr (Xs,g = 1) =
1

b√k − gc2 · ps(d
a

b√k−gc
r/
√

5
e), (15)

where 1
b√k−gc2 is the probability that the cell containing

squarelet s is used, and ps(d
a

b√k−gc
r/
√

5
e) is the probability that

squarelet s is used when that cell containing s is used. Here
d

a
b√k−gc
r/
√

5
e is the number of squarelets per row in a cell, i.e.,

the value of L in formula 14. Consequently,

p = Pr (Xs = 1) ≤
k−1∑
g=1

Pr (Xs,g = 1)

=
k−1∑
g=1

1
b√k − gc2 · ps(d

a
b√k−gc
r/
√

5
e)

≤
k−1∑
g=1

1
k − g

· ps(d
√

5a

rb√k − gce)

≤
k−1∑
g=1

1
k − g

· 2 · r
√

k − g√
5a

=
k−1∑
g=1

1√
g
· 2r√

5a

≤ 4
√

10
5

√
k · r

a

The theorem follows from by setting c6 = 4
√

10
5 .
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Similarly, using 2
L2 ≤ ps(L), we can show that

Lemma 26: Given a squarelet s, the probability that a
random multicast flow will be routed via the squarelet s is
at least k · r2

5a2 .
Thus, given any squarelet s, the expected number of flows

that will be routed through the squarelet s is at most c6 ·
ns

√
k r

a , given ns multicast sessions. Notice that, to achieve
larger multicast capacity, we will set a

r =
√

cn
log n for some

constant 0 < c ≤ 1/160 (see proof of Lemma 20). Thus,

Pr (Xs = 1) ≤ c6

√
k·log n

cn . Then we have the following
lemma

Lemma 27: Given ns multicast sessions, the expected num-
ber of multicast routing flows that use a specific squarelet s
is at most c6√

c
· ns ·

√
k·log n

n . When ns = n, it is at most
c6√

c
· √k · n · log n.

Recall that, the multicast rooted at vi will first randomly and
independently select k−1 points P ′i . To use the VC Theorem,
we will construct a multicast tree using the union of node vi

and P ′i as Pi, which is the input of Algorithm 1. The data
will then be relayed to every node vi,j if it did not receive the
data before. Thus, the points used to construct the multicast
trees MT (Pi) for different source nodes are independently
and randomly chosen in the deployment region. Notice that,
given k terminals U , the multicast tree MT (U) constructed
by Algorithm 1 can be uniquely defined by its terminals
U , thus has dimension 2k. In other words, every point in
2k-dimensional cube (with side-length a), corresponds to a
multicast tree. Given any 2-dimensional axis-aligned square
h (not necessarily the squarelet produced by partitioning the
deployment region), let set T (h) be the set of multicast trees
(equivalently, the set of points in R2k defining these trees)
that will intersect the square h (i.e., one of its edges will have
point inside h). Let

F = {T (h) | h is an axis-aligned square with size
r√
5
}.

We will show that the VC-dimension of F is at most d =
Θ(log k).

To prove this, we first study the VC-dimension of the
following system. Let X be the universal set of 2-dimensional
segments. For an axis-aligned square h with a fixed side-
length, let X(h) be the set of all segments from X that
intersect (or is contained inside) the square h. Let

S = {X(h) | h is an axis-aligned square with size
r√
5
}.

Given any set of m line segments L = {L1, L2, · · · , Lm}, we
show that the cardinality of

ΠS(L) = {L(h) | h is a 2D square with side-length
r√
5
}

is polynomial of m.
Lemma 28: The cardinality of ΠS(L) is at most 2m2,

where m is the cardinality of L.
Proof: This is essentially to study the number of different

sets of segments that can be intersected by all 2-dimensional
solid square h. Imagine that we move a square J (with
fixed side-length) all over the 2-dimensional space and at any

moment we can only see the region not covered by the square
J . A view is defined as the set of (partial or full) segments that
can be seen through the square J . Then the view will change
only if one the following 4 events happens:

1) A segment starts entering the view and the first point seen
is its end-point.

2) A segment starts entering the view and the first point seen
is an interior point of the segment.

3) A segment starts leaving the view and the last point seen
is its end-point.

4) A segment starts leaving the view and the last point seen
is an interior point of the segment.

For scenarios 1) and 3), the square J must have one of its side-
edge touching an end-point of some segment. For scenarios 2)
and 4), it must be the case that a corner of the square J touches
the segment on that interior point. See Figure 4 for illustration.
When one of the above 4 events happens to the square J , we

Fig. 4. Scenarios when a square is stable.

call that J has a support. Obviously, when a square has only
one support, we can still move the square without changing the
view, while keep this support. We can keep moving until the
square has another support. A square (axis-aligned and with a
fixed side-length) is called stable if it has at least 2 supports
(at least one at x-axis and one at y-axis). Notice that there is
a degenerate case here: we cannot find another support when
we move a square to find another support. In this degenerated
case, the square is called stable if one of its corners touches
an end-point of a segment. Consequently, the cardinality of
ΠS(L) is at most the number of stable squares produced by
these segments. Notice that, given any pair of segments, it can
produce at most 4 stable squares. See Figure 5 for illustration.
Thus, the cardinality of ΠS(L) is at most m2

2 · 4 = 2m2. This

(a) (b) (c)

Fig. 5. Scenarios when two segments can produce a stable square.

finishes the proof.
Notice that, for m segments L, the cardinality of ΠS(L)

is at most m2

2 · 4 = 2m2. It implies that when a set L with
cardinality m is shatterable by S , 2m2 ≥ 2m. Thus, m < 7.
Consequently, the VC-dimension of S is at most 6.

Lemma 29: The VC-dimension of F is at most d =
O(log k).
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Proof: Consider any m trees T =
{T1, T2, · · · , Tm−1, Tm} that is shatterable by F . If we
consider only the segments in these trees, there are m(k− 1)
segments. From Lemma 28, we know that the cardinality of
ΠF (T ) is at most 2m2 · (k − 1)2. Thus, if T is shatterable
by F , we have

2m2 · (k − 1)2 ≥ 2m

Thus, m < 3 log k, when k ≥ 212. When k < 212, m is also
at most a constant. This finishes the proof.

2 subsetsm

Fig. 6. An example that VC-dimension of trees is Θ(log k). Here shaded
squares will produce 2m distinctive subsets. Here white nodes belong to one
tree, and black nodes belong to another tree.

Lemma 30: The VC-dimension of F is at least d =
Ω(log k).

Proof: We show by example that the VC-dimension of F
is at least log 2k

3 . See Figure 6 for illustration. In the example,
we will present m trees such that we can view exactly any
subset of these m trees using a shaded square with a fixed
side-length `. There are 2m such subsets. We will have 2m

disjoint shaded squares, each corresponding to a subset. Every
tree will put one terminal in a shaded square if it belongs to the
corresponding subset. Thus, we need exactly 2m−1 terminals
from each tree that will be put in these shaded squares. To
make sure that trees generated will not cross a shaded square
which it does not belong to, we will an add additional node on
top of each shaded square: in the spanning tree, a node in the
shaded square will only connect with nodes in the unshaded
squares. Then it is easy to see that the total number of nodes a
tree needed is 2m+2m−1 (each for 2m squares on top and each
for 2m−1 squares on bottom). Thus, we set m as 2m+1+2m >
k ≥ 2m + 2m−1. This implies that log 2k

3 − 1 < m ≤ log 2k
3 .

The theorem then follows.
Consequently, the VC-dimension of F is d = Θ(log k).
Theorem 31: Assume that there are N random multicast

sessions. There is a sequence of δ(n) → 0 such that

Pr
(
∀ squarelet s, # of flows using s ≤ 3

√
c6N

2

√
k

r

a

)

≥ 1− δ(n)

Proof: The terminals to constructed multicast trees are
i.i.d. variables. Then the multicast trees are i.i.d. variables.
Thus, we can use the VC-Theorem. Recall that, given a square
h, the probability that a multicast tree will cross h is at most
c6

√
k · r

a (see Lemma 25). Hence, for all squarelets S,

Pr
(

sup
S∈F

∣∣∣∣
# of flows using S

N
− P (S)

∣∣∣∣ ≤ ε(n)
)

> 1− δ(n)

whenever

N ≥ max
{

8d

ε(n)
· log

13
ε(n)

,
4

ε(n)
log

2
δ(n)

}
. (16)

Here d is the VC-dimension of F and P (S) is the probability
of a set S, which is at most c6

√
k · r

a . Thus,

Pr

(
sup
S∈F

# of flows using S

N
≤ c6

√
kr

a
+ ε(n)

)
> 1− δ(n)

whenever condition (16) is satisfied. Let

ε(n) =
c6

√
kr

2a
, and δ(n) =

2
n

. (17)

Let a
r =

√
c·n

log n for a constant 0 < c ≤ 1/160.

Then it is sufficient that N ≥ max{8d
√

c
c6

√
n

k log n ·
log( 26

√
c

c6

√
n

k log n ), 8
√

c
c6

√
n

k log n log n}. When n is suffi-
ciently large, it is sufficient that

N ≥ 4d
√

c

c6

√
n log n

k
. (18)

This finishes the proof.
Similar to Theorem 31, we can prove the following theorem

using Lemma 26.
Theorem 32: Assume that there are N random multicast

sessions. There is a sequence of δ(n) → 0 such that

Pr (∀ squarelet s, # of flows using s ≥ 1)
≥ 1− δ(n)

when N ≥ Ω(max{log n, a2

kr2 }).
Notice that condition (18) can always be satisfied as long

as we have ns = Ω(
√

n log n
k · log k) multicast sessions.

Consequently, if we assign data rate

λ =
W

2∆( 3
√

c6N
2

√
k r

a )
= O(

W

log n
) (19)

to each of the N multicast sessions (with random source node
and random terminal points), with probability at least 1− 2

n ,
the total data rate that will be routed through every squarelet
is at most W

2∆ . Recall that, for a multicast rooted at vi, our
routing will first send data to squarelets containing points Pi.
Then for 1 ≤ j ≤ k − 1, we need forward the data from
the squarelet containing the point pi,j to the nearest node
vi,j respectively. Notice that we have proved that, for every
squarelet, with probability at least 1 − 2

n , there are at least
Θ(log n) nodes inside. Thus, with probability at least 1− 2

n ,
every data can be transferred to some node inside the squarelet.
Consequently, counting this last-hop relay, with probability at
least 1− 2

n , the total data rate every squarelet has to route is
at most 2 W

2∆ = W
∆ . Thus, these flows can be supported by a

TDMA scheduling.
Consequently, we have the following theorem
Theorem 33: Assume k ≤ θ1

a2

r2 , there are ns random

multicast sessions and ns ≥ 4d
√

c
c6

√
n log n

k . With probability
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at least (1− 2
n )2 ≥ 1− 4

n , the achievable aggregated multicast
capacity is at least

Λk(n) =
W

3
√

c6∆
√

k r
a

= Θ(
W√

k
· a

r
). (20)

Theorem 34: Assume k ≤ θ1
a2

r2 , there are ns random

multicast sessions and ns ≥ 4d
√

c
c6

√
n log n

k . With probability
at least (1 − 2

n )2 ≥ 1 − 4
n , the achievable per-flow multicast

capacity is at least

λk(n) =
W

3
√

c6∆
· a

nsr
√

k
= Θ(

W

ns

√
k
· a

r
). (21)

By setting a
r =

√
c·n

log n for a constant c ≤ 1/160, we know
that the achievable aggregated multicast capacity is at least
Θ(

√
n

k log n · W ), and the per-flow multicast capacity is at

least Θ(
√

n
k log n · W

ns
) (which is smaller than O( W

log n·log k ),

thus feasible) when there are at least ns = Ω(
√

n log n
k · log k)

randomly and independently chosen flows.

C. When k ≥ θ1
a2

r2

In this case, we have proved that the upper bound on the
total multicast capacity is only W/%2 = Θ(W ). Obviously,
the total multicast capacity is at least the lower bound of the
capacity for broadcast. In [9], they present a broadcast scheme
to achieve capacity Θ(W ). Thus, we have the following
theorem

Theorem 35: The total multicast capacity Λk(n) achievable
by all multicast flows is at least c7W when k = Ω(a2/r2),
where c7 = 1

∆ and constant ∆ is the maximum number of
CDS nodes that are within interference range R of a node.

VI. OTHER MULTICASTS

A. Capacity Bound for Group Multicast

In previous sections we have studied the asymptotic mul-
ticast capacity by assuming that we randomly select k − 1
receivers for each multicast session. In this section, we study
the multicast capacity of so-called k-group multicast: for each
source node vi, there are k − 1 groups of receivers gi,1, gi,2,
· · · , gi,k−1. The receivers in each group gi,j are covered by
a disk with radius δ · r for a constant δ and centered at one
of the receivers in the group. We assume that the center node
in each group is randomly selected. The number of nodes in
each group could be arbitrary. For simplicity, let node zi,j

be the center node of group gi,j . We then study the multicast
capacity for group-multicast when each node vi will have k−1
randomly selected groups and it wants to send data with rate
λi to all receivers in these k − 1 groups.

As the case when each group has only one node, when
k ≥ θ1a

2/r2, it is easy to prove that the capacity for group-
multicast is at most W/%2 as Theorem 19. Clearly, a simple
broadcast based on the connecting dominating set constructed
previously will also achieve a capacity for group-multicast at
least W

∆ . Consequently, we have

Theorem 36: For group-multicast, when k ≥ θ1a
2/r2 for

any constant θ1 > 0, the capacity of group-multicast is at
most W/%2 and at least W

∆ .
First, for group-multicast, a multicast tree has to reach the

center node zi,j of each group gi,j . Then from Theorem 15,
the capacity of group-multicast is at most c1 · aW

r
√

k
with high

probability when k < θ1 · a2/r2. We then show how to
design multicast routing for the group-multicast problem: we
first apply our multicast scheme for traditional multicast when
nodes zi,j , 1 ≤ j ≤ k − 1, are receivers for source node vi.
We then let node zi,j multicast locally to all receivers in the
group gi,j . We already proved in Theorem 21, the total length
of the multicast tree to span these randomly selected nodes
zi,j is at most c3‖EMST (U ′

i)‖ with high probability. Recall
that ‖EMST (U ′

i)‖ ≤ 3τ(2)
√

k·a
2 with high probability. Notice

that the total area covered by transmitting disks of relay nodes
used for relaying data from each zi,j to receivers in its group is
at most π(δ +1)r2. Then, the area covered by all transmitting
disks for a multicast session is at most

2r · |MT (Pi)|+ (k − 1) · π(δ + 1)r2

≤ 2r · c3
3τ(2)

√
k · a

2
+ k · π(δ + 1)r2 (w.h.p.)

≤ (
θ1π(δ + 1)2 + 3c3τ(2)

) ·
√

k · a · r
The last inequality comes from the fact that k ≤ θ1

a2

r2 . For
convenience, let c8 = θ1π(δ + 1)2 + 3c3τ(2). Then similar to
Theorem 23, we can prove that the number of nodes that will
get a copy of the data from one multicast session is at most
c8

√
k · a · r · 2n

a2 = 2c8 · n ·
√

k · r
a . Thus, we have

Theorem 37: When k ≤ θ1a
2/r2, the aggregated multicast

capacity for group-multicast with k − 1 groups is at most
c1 · aW

r
√

k
, and is at least c9

a·W
r
√

k
, with high probability. Here

constant c9 = 2c8∆.

B. Bounds for Arbitrary Networks
In previous studies we concentrated on the multicast ca-

pacity for random networks when nodes will be randomly
placed in the deployment region. In this section we will study
what is the asymptotic maximum multicast capacity that can
be achieved by a specific connected network when nodes’
position can be carefully selected.

We first present a constructive lower bound on the multicast
capacity. Assume that n nodes are deployed in a

√
n by

√
n

grid, each cell has side-length r, i.e. the side-length of the
square is a = r

√
n. The k−1 receivers are randomly selected

from the grid points. We then perform multicast as before: the
multicast tree is constructed based on the Euclidean minimum
spanning tree connecting source node and k − 1 receivers.
Let L be the total length of the Euclidean MST constructed
above. Similar to previous studies in Subsection V-B, we know
that the multicast capacity Λn satisfies Λn ≥ c′5

W ·a2

L·r for some
constant c′5 depending only on R/r. Lemma 12 gives an upper
bound on L for the Euclidean minimum spanning tree. This
implies the following corollary:

Corollary 38: The multicast capacity Λn of n nodes for an
arbitrary network, where we can choose node positions, is at
least c′5

2
√

2
1√
k

a
r ·W .
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We then present an upper-bound on the multicast capacity
of an arbitrary network of n nodes deployed in a square of
side-length a meters, where n is sufficiently large. Consider a
bit b that is sent from the source node to all receivers. Let A
be the average area a bit has to cover. Notice that when a node
transmit a bit b, then all nodes within its transmission range
cannot receive data from other nodes due to interference, thus,
we say the bit b covers the transmission disk of the transmitting
node. Obviously, we have

Λn ·A ≤ W · a2,

where Λn is the aggregated multicast capacity of all nodes.
Left-side of the inequality denotes the total bits×meter2

achieved by all multicast sessions, while the right-side of
the inequality is derived from the fact that, at any time, the
simultaneously transmitting disks must be disjoint.

C. Capacity Bounds for d-dimensional Networks

It is not difficult to extend our capacity bounds to networks
in d dimensions. Assume that the network nodes are randomly
deployed in a d-dimensional cube with side-length a and every
node has a transmission range r and an interference range R.
The total Euclidean length of edges in any tree spanning k
nodes randomly distributed in the d-dimensional cube is, with
high probability, at least Ω(k

d−1
d a) [17]. Similar to 12, we can

show that the total Euclidean length of the edges in EMST
spanning any k nodes is at most O(k

d−1
d a). The total volume

of the region shaded by all transmitting spheres of all internal
nodes of a multicast tree is then at the order of Θ(k

d−1
d · ar ·rd).

Consequently, the number of nodes that will get a copy of
the multicast data is at the order of Θ(k

d−1
d · a

r · rd · n
ad ),

which is at most n when k ≤ θd(a
r )d for some constant

θd depending only on dimension d. This implies that the
aggregated multicast capacity of ns multicast sessions is at
the order of Θ( nW

nk
d−1

d ( r
a )d−1

) = Θ( W

k
d−1

d

· (a
r )d−1). To show

the lower-bound on achievable multicast capacity, we will also
partition the cube into cubelets with side length r/

√
3 + d

such that two nodes inside two cubelets sharing a (d − 1)-
dimensional facet can communicate with each other directly.
We can then show that, given a specific cubelet, the probability
that a random multicast flow will be routed through this
cubelet is k

d−1
d · ( r

a )d−1. Consequently, we have the following
theorem:

Theorem 39: Assume that n nodes are randomly placed in
a d-dimensional cube of side-length a and each node has a
fixed transmission range r. The aggregated multicast capacity
of ns random multicast sessions (each with k terminals) is

Λk(n) =





Θ((a
r )d−1 · W

k
d−1

d

) when k ≤ θd(a
r )d, and

ns = Ω((a
r )d−1 log n

k
d−1

d

).

Θ(W ) when k ≥ θd(a
r )d

(22)
Recall that Penrose [14] showed that the asymptotic length

of the longest edge of EMST of n nodes randomly placed in
a d-dimensional cube of unit side-length is ( 2(1−1/d) log n

θn )1/d

where θ is the volume of the unit ball in d-dimension. Thus, to

get a connected network, we need a and r satisfy the following
condition, with high probability,

a

r
≤ cd

d

√
n

log n

for some constant cd depending on dimension d. Thus, we
have the following theorem.

Theorem 40: If we can choose the transmission range r or
the deployment region a, the aggregated multicast capacity
of ns multicast sessions for n randomly placed nodes in a
d-dimensional cube of side-length a is

Λk(n) =





Θ(W · ( n
k log n )1−

1
d ) when k ≤ θd(cd)d n

log n , and
ns = Ω(( n

k log n )1−
1
d · log n).

Θ(W ) when k ≥ θd(cd)d n
log n

(23)

VII. LITERATURE REVIEWS

Network capacity has been extensively studied recently.
Capacity can be generalized to the notion of capacity region
for fixed networks. For a given statistical description of the
network, a set of constraints (such as power per node, link
capacity, etc.), and a list of desired communication pairs, the
capacity region is the closure of all rate tuples that can be
achieved simultaneously. Here a rate tuple specifies the rate
for each of the desired communications. Kyasanur and Vaidya
[12] studied the capacity region on random multi-hop multi-
radio multi-channel wireless networks when there are total c
channels available and each node has m wireless interfaces
with m ≤ c. On the other aspect, several papers [2], [11]
recently studied how to satisfy a certain traffic demand vector
from all wireless nodes by a joint routing, link scheduling, and
channel assignment under certain wireless interference models.

Gupta and Kumar [6] studied the asymptotic unicast capac-
ity of a multi-hop wireless networks for two different models.
When each wireless node is capable of transmitting at W bits
per second using a constant transmission range, the throughput
obtainable by each node for a randomly chosen destination is
Θ( W√

n log n
) bits per second under a non-interference protocol,

where n in number of nodes. If nodes are optimally assigned
and transmission range is optimally chosen, even under op-
timal circumstances, the throughput is only Θ( W√

n
) bits per

second for each node. Similar results also hold for physical
interference model. Notice that the results presented in [6] did
not consider the additional burden in coordinating access to
wireless channels, the effect of mobility and link failures, the
effect of the need to route traffic in a distributed way. They
also did not address the delay of the route. The delay could
caused by burst traffic or when nodes are mobile and links
are not stable. It can also be imagined that using directional
antennas or beam-forming will help to improve the spatially
concurrency of transmissions and thus the capacity of the
networks.

Grossglauser and Tse [5] recently showed that mobility
actually can help to improve the unicast capacity if we allow
arbitrary large delay. Their main result shows that the average
long-term throughput per source-destination pair can be kept
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constant even as the number of nodes per unit area increases.
Notice that this is in sharp contrast to the fixed network
scenario (when nodes are static after random deployment).
The main idea used in [5] is to use some intermediate node
to serve as ferry node: this node will carry the data from the
source node and move around and it will dump the data to
the target node when it is within its communication range.
In other words, essentially, the result presented in [5] still
obey the capacity bound proposed in [6]: the capacity is
improved because the average distance L a packet has to
be transmitted is reduced from Θ(1) in [6] to Θ(r(n)) in
[5]. In summary, for random networks, under the protocol
model, the achievable per-flow throughput capacity λ(n) and
the average travel distance L satisfies λ(n) ·L ≤ Θ( W

∆2n·r(n) ).
Similar phenomenon has also been observed in [13]. They
found that the traffic pattern determines whether the per flow
capacity of a wireless network will scale to large networks.
They observed that non-local traffic patterns in which the
average distance grows with the network size result in a
rapid decrease of per flow capacity. They also examined the
interactions of the 802.11 MAC and the ad hoc forwarding
and the effect on the capacity of wireless networks. Although
802.11 discovers reasonably good schedules, they nonetheless
observed capacities markedly less than the optimal even for
very simple networks, such as chain and lattice networks, with
very regular traffic patterns. This confirms the importance of
using carefully designed transmission schedule to improve the
network throughput whenever it is possible.

Broadcast capacity of an arbitrary network has been studied
in [9], [18]. They essentially show that the broadcast capacity
of a given network is Θ(W ) for single source broadcast and
the achievable broadcast capacity per flow is only Θ(W/n)
if each of the n nodes will serve as source node. The upper
bound Θ(W ) on broadcast capacity trivially holds since each
node can receive at most W bits/sec. The capacity Θ(W )
is achieved by constructing a connected dominating set in
which we can schedule every node in CDS to transmit at least
once in constant time slots. This capacity bounds also apply
to random networks. Keshavarz-Haddad et al. [10] studied
the broadcast capacity with dynamic power adjustment for
physical interference model.

Multicast capacity was not fully studied in the literature.
Jacquet and Rodolakis [8] studied the scaling properties of
multicast for random wireless networks. They essentially
studied the normalized multicast cost, which is defined as the
ratio of the number of links in the multicast tree over the
average route length from a random source in the multicast
group to a random destination in the multicast group. They
briefly showed that the maximum rate at which a node can
transmit multicast data is O( W√

kn log n
). At the same time as

our results, Shakkottai et al. [16] studied the multicast capacity
of random networks when the number of multicast sources is
nε for some ε > 0, and the number of receivers per multicast
flow is n1−ε. They assume the protocol interference model
and use the dense random network model. They show that the
sum of the source rates Λ(n) that the network can support
is O(

√
nε√

log n
) w.h.p., with a per flow throughput capacity of

O( 1√
nε log n

) w.h.p.. Notice that this result can be implied by
our results using ns = nε and k = n1−ε. To achieve the upper
bound, they propose a simple and novel routing architecture,
called the multicast comb, to transfer multicast data in the
network.

VIII. CONCLUSIONS

In this paper, we essentially studied the multicast capacity
that can be achieved by some random wireless networks. We
derive analytical upper bounds and lower bounds on multicast
capacity of a wireless network when all nodes are uniformly
and randomly deployed in a square region with side-length a,
and all nodes have the same transmission range r. We show
that the total multicast capacity is only Θ(

√
n

log n · W√
k
) when

k = O( n
log n ); the total multicast capacity is Θ(W ) when k =

Ω( n
log n ). We also studied the multicast capacity for group-

multicast and for arbitrary networks.
Observe that all our results are proved when the deployment

region is a square with side-length a and the transmission
range of all nodes is uniform with value r. It is not difficult to
show that all our results still apply when the deployment region
is a square with side length a = 1, while the transmission
range is selected appropriately, i.e., r = Θ(

√
log n
πn ). It is

also not difficult to show that our results still hold when
r = 1 while the deployment region has a bounded aspect
ratio such as a disk. Further, we considered the protocol
interference model for random networks. It is not difficult
to show that our results still hold (with different constants)
when we apply the physical interference model (where all
nodes have fixed uniform transmission power P ) and the signal
power at distance d decays as 1

dα for α > 2. The basic
idea is to show that, for such physical interference model,
there is a logic transmission range r and interference range R
(with R = Θ(r)) such that when ‖u − v‖ ≤ r and no other
transmitting nodes within distance R of receiving node v, node
u can always successfully send data to v. All computations
will be similar by using such logic transmission range and
interference range. The details of all computations are omitted
here due to space limit.

There are some interesting questions left for study for
multicast capacity. The first question is what is the multicast
capacity when the link capacity is not uniform: shorter links
will have larger capacity. The second question is what is the
multicast capacity when the Gaussian channel is used, instead
of assuming that each node has a constant transmission range
and has a constant data rate W . Last but not the least question
is what is the tradeoffs between the delay and multicast
capacity for random mobile networks?
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