Generating Well-Shaped d-dimensional
Delaunay Meshes

Xiang-Yang Li

Dept. of Computer Science, Illinois Institute of Technology, 10 W. 31st Street,
Chicago, IL 60616.

Abstract. A d-dimensional simplicial mesh is a Delaunay triangulation
if the circumsphere of each of its simplices does not contain any vertices
inside. A mesh is well-shaped if the maximum aspect ratio of all its
simplices is bounded from above by a constant. It is a long-term open
problem to generate well-shaped d-dimensional Delaunay meshes for a
given polyhedral domain. In this paper, we present a refinement-based
method that generates well-shaped d-dimensional Delaunay meshes for
any PLC domain with no small input angles. Furthermore, we show that
the generated well-shaped mesh has O(n) d-simplices, where n is the
smallest number of d-simplices of any almost-good meshes for the same
domain. A mesh is almost-good if each of its simplices has a bounded
circumradius to the shortest edge length ratio.
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1 Introduction

Mesh generation is the process of breaking a geometry domain into a collection
of primitive elements. In this paper we exclusively consider d-dimensional simpli-
cial Delaunay meshes. The aspect-ratio of a mesh is the maximum aspect-ratio
among all of its simplicial elements. A mesh is well-shaped if its aspect ratio
is bounded from above by a small constant. The aspect ratio of a simplex is
usually defined as the ratio of its circumradius to its inradius. Generating well-
shaped d-dimensional Delaunay meshes is one of the long-term open problems
in mesh generation when d > 2. An alternative but weaker quality measure-
ment is to use the radius-edge ratio [8]. It is the circumradius divided by the
shortest edge length of the simplex. The radius-edge ratio of a mesh is the max-
imum radius-edge ratio among all of its elements. A mesh is almost-good if it
has a small radius-edge ratio. Numerous methods [3, 8-10] guarantee to generate
almost-good 3-dimensional Delaunay meshes.

Bern et al. [1] showed that any set of n d-dimensional points had a Steiner
Delaunay triangulation with O(n!%/?1) simplices, none of which has an obtuse
dihedral angle. No bound depending only on n is possible if we require a bound
on the minimum dihedral angle [1]. We assume a d-dimensional piecewise lin-
ear complex (PLC) domain {2 as the input. Shewchuk [11] showed that if each



k-dimensional constraining facet in 2 with k& < d—2 is a union of strongly Delau-
nay k-simplices, then (2 has a d-dimensional constrained Delaunay triangulation.
The Delaunay refinement method [3,9,10] can be extended to d-dimensions to
generate almost-good Delaunay meshes if {2 satisfying the projection lemma [10]
and having small input angles. However, it encounters significant difficulties in
producing well-shaped Delaunay meshes in 3D. Chew [4] first proposed to add
a vertex inside the circumsphere of any given badly-shaped tetrahedron (sliver)
to remove it. The difficulty is in proving the existence of, and finding, a Steiner
vertex that does not itself result in slivers. To make it possible, Chew defined
a tetrahedron to be a sliver if it has a large aspect ratio, a small radius-edge
ratio and its circumradius is no more than one unit. Without the restriction on
the circumradius length, almost all results in [4] donot hold any more. In addi-
tion, with this restriction, the termination of his algorithm is straightforward.
Recently, Li [6] extended this algorithm and showed how to generate well-shaped
non-uniform Delaunay meshes in 3D.

In this paper, we show how to generate d-dimensional well-shaped meshes for
a PLC domain with no small angles. In Section 2, we review the basic concepts
and define what is a d-dimensional sliver simplex. * Then we give an algorithm
in Section 3 to generate d-dimensional well-shaped Delaunay meshes. It basically
adds a point around the circumcenter of each of d-simplices containing any k-
dimensional sliver (hereafter, k-sliver). We prove its correctness in Section 4 and
its termination guarantee in Section 5 by showing that the distance between the
closest mesh vertices is just decreased by a constant factor compared with that
of the input mesh. In Section 6, we show that the size of the generated mesh is
within a constant factor of the size of any almost-good mesh generated for the
same domain. Section 7 concludes the paper with discussions.

2 Preliminaries

After inserting a new vertex p, every new d-dimensional simplex created in the
Delaunay triangulation of the new vertex set has p as one of its vertices. The
new triangulation can be updated by efficient operations local to the vertex p.
A sphere centered at a point ¢ with a radius r is denoted as (¢, r) hereafter. It is
called empty if it does not contain any mesh vertices inside. The nearest neigh-
bor graph defined by a d-dimensional vertex set is contained in the Delaunay
triangulation of the vertex set. Thus the shortest edge length of the Delaunay
triangulation is the closest distance among mesh vertices. This fact is used in
proving the termination guarantee of our algorithm.

Delaunay refinement methods have been shown to be effective in generating
almost-good meshes in 2 and 3 dimensions [9, 10]. There is also no much diffi-
culty to extend them to d-dimensions, if the input domain satisfies a projection

d-1
lemma [10], to generate meshes with radius-edge ratio no more than v/2~ .

! Surprisingly, a simple extension of 3-dimensional sliver definition to d-dimensions
does not work here.



For a k-simplex p, its min-circumsphere is the smallest d-dimensional sphere
containing the vertices of y on its surface. A point encroaches the domain bound-
ary if it is contained inside the min-circumsphere of a boundary k-simplex p.
Here a k-simplex p is a boundary simplex if it belongs to the Delaunay tri-
angulation of a k-dimensional input boundary polyhedral face. A k;-simplex 7
directly encroaches another ks-simplex 75 if the circumcenter of 71 encroaches 5.
A ki-simplex 71 indirectly encroaches another ks-simplex 75 if the circumcenter
of 11 encroaches a simplex p and p directly or indirectly encroaches 7. Assume
the circumcenter of a ki-simplex 7 encroaches a boundary ks-simplex u. Call 7
the encroaching simplex and p the encroached simpler. Assume that p contains
the projection of the circumcenter of 7 inside. Then Shewchuk [10] showed that
the circumradii of 7 and p satisfy that B, > %RT.

A d-simplex is bad if it has a large aspect ratio. Let’s consider a k-simplex
7, where 1 < k < d. For later convenience, we use R, L, and p(7) = R, /L, to
denote the circumradius, the shortest edge length and the radius-edge ratio of
7. Let V be its volume. We define o = o(7) = V/L¥ as a measure of its quality.
Let g9 and oy, 1 < k < d be positive constants that we specify later.

Definition 1. A k-simplex 7 is well-shaped if p(7) < 0o and o(7) > oy,.

Definition 2. [SLIVER] Call a k-simplex T a k-sliver if p(7) < 0o, o(7) < o,
and each of its facets is well-shaped if k > 3.

We call a d-simplex 7 a sliver-simplez if it contains a k-sliver. If a d-simplex
7 has a small radius-edge ratio and a small o value, then it must have a face x
that is a sliver or 7 itself is a d-sliver. It is not difficulty to prove that the volume

. \G=1)/2; 1 1\ (i+1)/2
of a d-simplex 7 is at most psR%, where ¢4 = 2 H;.i:2 (i=1) z.,ﬂﬂ) . The

d
aspect ratio of 7 is then at most %. This verifies our definition of o.

3 Refinement Algorithm

For a k-simplex 7, we call the intersection of its min-circumsphere with the affine
space defined by its vertices as its k-sphere. When refine a k-simplex 7, we add
a point p inside the shrinked k-sphere (c¢;,dR,), where § < 1 is a constant.
The point p is good if its insertion will not introduce any small slivers in the
new Delaunay triangulation. Here a created sliver p is small if R, < bR, for
a constant b specified later. We call the solid k-dimensional ball (¢;,dR;) the

picking region of T, denoted by P(7). Its volume is ¢36* RY, where ¢}, = 13;1(0/;)
2

Algorithm: REFINEMENT (gg, 0g, 0, b)

Enforce Empty Encroachment: Add the circumcenter ¢, of any encroached
boundary simplex 7 and update the Delaunay triangulation. If ¢, encroaches
any lower dimensional boundary simplex p, add ¢, instead of c;.

Clean Large Radius-Edge Ratio: Add the circumcenter ¢, of any d-simplex
7 with a large p(7) and update the Delaunay triangulation. If ¢, encroaches
any boundary k-simplex, we apply the last rule instead of adding ¢, .



Fig. 1. Left: a 4-dimensional sliver example; Middle: the picking region of a simplex;
Right: the forbidden region of p with circumradius Y. Here R = 290} and D = 2kooY .

Clean the Slivers: For a sliver-simplex 7, add a good point p € P(r) and
update the Delaunay triangulation. If the circumcenter ¢, encroaches the
domain boundary, we apply the following rules instead of finding p. If the
insertion of p introduces some new d-simplices with large radius-edge ratio,
we apply the previous rule to eliminate them immediately.

Encroach Boundary Simplices: If a boundary k-simplex p is encroached di-

rectly or indirectly by a d-simplex with a large radius-edge ratio, add the
circumcenter ¢, and update the Delaunay triangulation. However, if ¢, en-
croaches any other lower dimensional boundary simplex p;, we insert the
circumcenter of y; instead of adding c,,.
If a boundary k-simplex p is encroached directly or indirectly by a sliver-
simplex, add a good point p € P(u) and update the Delaunay triangulation.
However, if ¢, encroaches any other lower dimensional boundary simplex 1,
we add a good point from P(u,) instead of adding p.

The key part of the algorithm is to find a good point p to refine a sliver-
simplex 7. We select some k random points from P(7). Then choose the point
that optimizes the quality o of all created small simplices with a radius-edge
ratio less than go. Another approach is based on a randomized selection [4, 6, 7].
We randomly select a point p € P(7) until we find a good point p. By defining
sliver and small slivers properly, we can show that we are expected to find a
good point p in constant rounds. Then the rest of the paper is devoted to prove
the termination guarantee and the good grading guarantee of the algorithm.

4 Proofs of Correctness

4.1 Sliver Regions

Recall that a k-simplex 7 is a sliver if p(7) < 9o, 0(7) < 0, and all of its facets
are well-shaped. The quality measure o(7) is related with a distance-radius ratio
defined in [2,5]. Consider any vertex p of 7. Let u be the facet formed by other
vertices of 7. Let D be the Euclidean distance of point p from the hyperplane
passing through p. Recall R, is the circumradius of p.
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Lemma 1. For any k-simplex T, Rﬂ < 2k0(u).

PROOF. It follows from the volume of 7: V = o(r)L: = 25 (u)LE~L.

A k-simplex 7 is a sliver if p(7) < go and o (1) = L—‘; < o for a small constant
00, i.e., o, = of. Consequently, we have R% < 2koy if T is a k-sliver.

Given a well-shaped k-simplex 7, a point p that forms a (k+1)-sliver together
with 7 can not be anywhere. It must be around the circumsphere of 7 and is not
far-away from the hyperplane passing 7. We call the locus of such point p as the
sliver region or forbidden region F; of the simplex 7. It is easy to show that F
is contained in the solid sun-hour glass shaped region as illustrated in the right
figure of Figure 1. Let |F;| denote the volume of F.

4=k R where cq is a

Lemma 2. For any well-shaped k-simplex T, |F;| < cq0(
constant depending only on gg, k, and d.

PrROOF. We know that F, is inside the slab region defined by the two hyper-
planes H; and H, illustrated by the right figure of Figure 1. Let 75, r; be the cir-
cumradius of the two spheres intersected by H; and the circumsphere of 7. Here
ry = ||cp|| and 71 = ||eq]|- Tt is easy to show that r3 < (1—(2kog)? +8kogoo) - Y2
and r? > (1 — (2kog)? — 8koooo) - Y2. The volume of a k-sphere with the radius
r is ¢grk. Then

|Fr| < (15 — %) - pa—xD* ",

Notice Vi > 1, 752 — ¢it2 < (13 + #)(r§ — r%). In addition, r5 + 7} =
2(1—(2ko0)?)Y? < 2Y?, and r3 —r? < 16kgoooY 2. The fact that ro > Y implies
that 7, — r; < 16kgoooY . By induction, we have r§ — rk < 2[k/2143 k000 Y.
Consequently, we have |F,| < érda_ x2/*/*113kpo00(2kog)?*YL. The lemma

follows by setting Cq = ¢k¢d,k2dkd_k+1 0o > ¢k¢d7k2|—k/2-|+3k90 (Zk)d_k.

A good point p used to refine a k-simplex 7 cannot be inside F,, N P(r) for
any well-shaped m-simplex p, We use F), ; to denote such intersection region.

Lemma 3. For any k-simplex T and a well-shaped m-simplex p, |F, 1| < ckaoRﬁ,
where c, is a constant that depends only on oo, d and k.

4.2 Existence

We then show that given a k-simplex 7 in an almost-good d-dimensional sim-
plicial Delaunay mesh, there is a good point p in P(7). Let S(7) be the set of
simplices in any dimensions that each can form a small Delaunay sliver with a
point from P(7). A created sliver p is Delaunay if it belongs to the Delaunay
triangulation by inserting a point from P(7); it is small if R, < bR,.

We first recall some results from Talmor et al. and extend it to d-dimensions.
For a mesh vertex v, the edge length variation, denoted by v(v), is defined as the



length of the longest edge incident on it divided by the length of the shortest
edge incident on it. Talmor[12] proved that, given an almost-good mesh in 3D,
the edge length variation of each mesh vertex is at most a constant depending
on the radius-edge ratio of the mesh. This result is extended to d-dimensions.

Lemma 4. Given any vertex v of a d-dimensional almost good mesh, v(v) < vy,
where vy is a constant depending on the mesh’s radius-edge ratio gq.

Lemma 5. Given a k-simplex 7 of an almost-good mesh, the number of the
vertices of S(T) is at most a constant depending on vy and b.

PROOF. Assume that a well-shaped m-simplex u forms a Delaunay sliver to-
gether with a point p € P(7). The edges of p have lengths at most 2R,, < 2bR;.
The edges incident on any vertex q of u before point p is introduced have length
at least 2bR, /vp. It implies that the closest distance among all vertices from
S(7) is at least 2bR; /vp. It is simple to show that all such vertices are inside the
sphere centered at ¢, with a radius (§ + 2b)R,. Then by a volume argument, the
number of vertices of S(7) is a constant.

Thus the number of simplices in S(7) is also a constant, let’s say, W.
Theorem 1. Good point exists in any k-simplex T of an almost-good mesh.

ProoF. Each simplex p from S(7) claims a forbidden region F), with volume at
most ¢ -aoRﬁ. The circumradius R, of p is at most bR,. The volume of P(7) is
é1,0F RE. Therefore, if we select ¢ such that W - cyoob? RE < ¢1,6F RE, then the
pigeonhole principal will guarantee the existence of a good point p € P(7).

5 Termination Guarantee

A Ek-sliver is called created if it contains at least one Steiner vertex; otherwise
it is called original. We classify the bad d-simplices into three categories. The
simplices containing an original k-sliver are called original sliver-simplices. The
simplices containing only created k-slivers are called created sliver-simplices. The
third category has d-simplices with a large radius-edge ratio. Let e(7) be the
shortest edge length introduced by eliminating a d-simplex 7. Here e(7) could
be less than L, for a sliver-simplex 7. For simplicity, we assume that all original
sliver-simplices are removed first.

Lemma 6. For an original sliver-simplex p, e(u) > %LT.

Lemma 7. For a simplex T with IE—: > 0o, (1) > \é’;’_lLT.

The proofs are similar to the 3-dimensional counterpart, which are omitted.
It remains to show that refining any created sliver-simplex will not introduce
shorter edges to the mesh. Let’s consider a sliver-simplex p. Assume it contains



a k-sliver 7 created by inserting a point from the picking region of an element,
say f(7). Element f(7) is called the parent of the k-sliver 7. There are three
cases: f(7) is a sliver-simplex; f(7) is a d-simplex with a large radius-edge ratio;
f(7) is an encroached boundary simplex.

Lemma 8. Assume a sliver-simplex p contains a k-sliver T created by splitting

another sliver-simplex f(7). Then e(u) > g;?f “Lg(r).

Lemma 9. Assume a sliver-simplex p contains a k-sliver T, and parent f(T)

has a large radius-edge ratio. Then e(u) > (\1/_531910 L.

Lemma 10. Assume a sliver-simplex p contains o sliver T created by splitting
a boundary m-simplex x that is encroached directly or indirectly by p(x). Then

1. e(n) > (1_6)5#, if d-simplez p(x) has a large radius-edge ratio.

2. e(u) > %, if d-simplez p(x) is a sliver-simplez.

Combining all above analysis, we know that the shortest distance between
all mesh vertices is at least \/li;dfrl factor of that of the original mesh if we choose
b, § and go such that (1 — 8)b > v2"" and (1 — 8)go > 29. We then have the
following theorem by a volume argument.

Theorem 2. The algorithm terminates in generating well-shaped Delaunay meshes.

6 Good Grading Guarantee

As [6,7,10], we study the relation between the nearest neighbor function defined
by the final mesh and the local feature size function defined by the input do-
main. The local feature size Ifs(z) of a point x is the radius of the smallest ball
intersecting two non-incident segments or vertices. The nearest neighbor N (x)
of a point z is its distance to the second nearest mesh vertex.

With each vertex v, we associate an insertion edge length e, equal to the
length of the shortest edge connected to v immediately after v is introduced
into the Delaunay mesh. Notice that v may not have to be inserted into the
mesh actually. If v is an input vertex, then e, is the distance between v and its
nearest input neighbor. So e, > Ifs(v) from the definition of Ifs(v). If v is from
the picking region of a sliver-simplex 7, then (1 + §)R, > e, > (1 — §)R,. The
inequality (14 6)R, > e, comes from the fact that there is a mesh vertex on the
circumsphere of 7.

For the sake of convenience of analyzing, we also define a parent vertex p(v)
for each vertex v, unless v is an input vertex. Intuitively, for any noninput vertex
v, p(v) is the vertex “responsible” for the insertion of v. We discuss in detail what
means by responsible here. Assume v is inserted inside the picking region of a
simplex p. If simplex p has p(u) > go, then p(v) is the most recently inserted
end point of the shortest edge of p. If i is a sliver-simplex containing an original



k-sliver 7, then p(v) is an end point of the shortest edge of 7. If u is a created
sliver-simplex containing a created k-sliver 7, then p(v) is the most recently
inserted vertex of 7. If u is an encroached boundary k-simplex, then p(v) is the
encroaching vertex. For the sake of simplicity, we always use the almost-good
mesh generated by Delaunay refinement method as input mesh. Therefore the
boundary simplices can not be encroached by input vertices. Ruppert [9] and
Shewchuk [10] showed that N() defined on the mesh generated by Delaunay
refinement method is within a constant factor of Ifs(v), i.e., N(v) ~ Ifs(v).

Lemma 11. Let v be a vertex in the final mesh and let p = p(v). Then we have
ey > lfs(v) for an input vertex v; and e, > C - e, for a Steiner point v, where C
is a constant specified in the proof.

ProOF. If v is an original input vertex, then e, > Ilfs(v) from the definition
of Ifs(v). Thus the theorem holds. Then consider a non-input vertex v. We first
consider that v is selected from the picking region of a d-simplex; say u.

Case 1.1: p is a d-simplex with large radius-edge ratio p(u) > go. The parent
p is one of the end points of the shortest edge of u. Let L, be the length of
the shortest edge pg of p. Then ¢ is an original vertex or is inserted before p.
Therefore, e, < |lp—gql| =L, < %. Thus e, = R, > 00 - €p.

Case 1.2: y is a sliver-simplex containing an original k-sliver 7. The parent
p = p(v) is one of the end points of the shortest edge of 7. Let L, be the length
of the shortest edge pq of 7. Similar to the previous case, we have e, < ||p — ¢|| =
L,. Notice that R, > R, > L, /2. Thus e, > (1 = §)R, > 152 - e,

Case 1.3: u is a sliver-simplex containing a created k-sliver 7. There are three
cases about the parent element f(7) of 7: f(7) is a sliver; f(7) has a large radius-
edge ratio; f(7) is an encroached k-dimensional boundary simplex. Recall that
the parent vertex p = p(v) is the most recently inserted vertex of 7.

Subcase 1.3.1: f(7) is a sliver. Recall that the insertion of p from the picking
region of sliver f(7) will always avoid creating small slivers. Thus, R, > bRy(,),
where Ry () is the circumradius of f(r). Notice that e, < (1 + 6)Ry(;). Thus,

v > (1= 08)bRy(ry > 53D €p.

Subcase 1.3.2: f(7) has p(f(7)) > go- Let pq be an edge of simplex 7, where
p is inserted from the picking region of f(7). Notice that e, < |[p — ¢||- We also
have R, > [|p — g||/2- Thus, e, > (1 =R, > (1 - )R, > 152 - ¢,.

Final subcase 1.3.3: f(7) is an encroached boundary k-simplex. We first con-
sider the scenario that f(7) is encroached by a sliver-simplex directly or indi-
rectly. We then know that the insertion of p from f(7) will always avoid creating
small slivers because the mesh is almost-good. Thus R, > bRj(,). Notice that

ep < (1 +6)Rs(y)- Thus, e, > (1 —6)bRs(r) > %b - ep. We then consider the
scenario that f(7) is encroached by a d-simplex with a large radius-edge ratio
directly or indirectly. Here parent p is selected from the picking region of f(7).
Let pg be an edge of 7. Notice that e, < |[p — ¢||. We also have R, > ||p — ¢||/2.
Thus, e, > (1 -0)R, > (1 - 0)R; > 12;‘5 - ep.

Then we consider that v is selected from the picking region of a boundary
k-simplex x, which is encroached by a m-simplex p.



Case 2.1: p is encroached by a sliver-simplex directly or indirectly. Here
parent p is always the circumcenter of u. Notice that R, < v/2R, and e, <
(1 +96)R,. Thus, e, > (1 —0)R, > \/51(%316) - ep.

Case 2.2: y is encroached directly or indirectly by a d-simplex with a large
radius-edge ratio. Parent p is the circumcenter of . We always have R, < V2R,
and e, = R,,. Thus, e, = R, > R,V/2 > 4 - ep.

For a vertex v, as [10], we define D, = @ We call D, the density ratio
at point v. Clearly, initially D, is at most one for an input vertex v, and after
inserting new vertices, D, tends to become larger.

Lemma 12. Letv be a vertex with a parent p = p(v) if there is any. Assume that
ey > C-ep. If v is inserted due to eliminating sliver-simplex, then D, < %+%.
If v is inserted beause of eliminating a d-simplex with a large radius-edge ratio,
then D, <1+ 22,

The proof is omitted, which is almost the same as the 3-dimensional counterpart.

Theorem 3. There are fized constants Dy, > 1, 1 < k < d such at for any
vertex v inserted or rejected at the picking region of a bad k-simplex, D, < Dy,.
Specifically, the values of D; should satisfy the following conditions:

00A+v2 ' B, ab+a?+aBys 2

Dy >
aZmea S S T b et b

k
Dy_k = By_1 +V2 o¥Dy,

where1 <k <d—-1,A=a(1-8)+ ﬁjgjl_2, and B; = Ej-zl( 2jozj+1). Hence,

there is a constant D = max?_, {Dy} such that D, < D for all mesh vertez v.
The proof, which is based on induction, of the theorem is omitted due to space
limit. The following theorem concludes that the generated mesh has good grad-
ing, i.e., for any mesh vertex v, N(v) is at least some constant factor of Ifs(v).

Theorem 4. For any mesh vertex v generated by refinement algorithm, the dis-

tance connected to its nearest neighbor vertex u is at least Ugfl)

The proof is omitted here, which is the same as the three-dimensional counter-

part. Thus, if g9 > 2%a? and b > \/ﬁd_lad, our algorithm generates well-shaped
Delaunay meshes with good grading. Ruppert showed that the nearest neighbor
value N(v) of a mesh vertex v of any almost-good mesh is at most a constant
factor of Ifs(v), where the constant depends on the radius-edge ratio of the mesh.
The above Lemma 4 shows that the nearest neighbor N(v) for the well-shaped
Delaunay mesh is at least some constant factor of Ifs(v). Notice that the num-
ber of vertices of an almost-good mesh is O( [, Wda:) Then we have the
following theorem.

Theorem 5. Given a d-dimensional almost-good mesh with n vertices, the gen-

erated well-shaped mesh has O(n) vertices, where the constant depends on d and
the radius-edge ratios of the meshes.



7 Discussions

In this paper, we present a refinement-based method that guarantees to remove
all slivers in a d-dimensional almost-good simplicial mesh. Notice that the oq
derived from all the proofs may be too small for any practical use. We would
like to conduct some experiments to see what g can guarantee that there is no
small slivers created. In addition, we could have different definitions about slivers
depending upon the location of the simplex: inside or near the domain boundary.
This could also improve the bound on o¢. Let pg be the minimum radius-edge
ratio of a d-simplex. It is easy to show that py = @ and pg = ﬁ, which
is much less than the radius-edge ratio bound gg achieved by our algorithm
(and also the Delaunay refinement). We would like to know if we can get better
radius-edge ratio bound on the d-simplices of the generated mesh.
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