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Abstract—The recently emerged compressive sensing (CS)
theory provides a whole new avenue for data gathering in
wireless sensor networks with benefits of universal sampling
and decentralized encoding. However, existing compressive sens-
ing based data gathering approaches assume the sensed data
has a known constant sparsity, ignoring that the sparsity of
natural signals vary in temporal and spatial domain. In this
paper, we present an adaptive data gathering scheme by com-
pressive sensing for wireless sensor networks. By introducing
autoregressive (AR) model into the reconstruction of the sensed
data, the local correlation in sensed data is exploited and thus
local adaptive sparsity is achieved. The recovered data at the
sink is evaluated by utilizing successive reconstructions, the
relation between error and measurements. Then the number
of measurements is adjusted according to the variation of the
sensed data. Furthermore, a novel abnormal readings detection
and identification mechanism based on combinational sparsity
reconstruction is proposed. Internal error and external event are
distinguished by their specific features. We perform extensive
testing of our scheme on the real data sets and experimental
results validate the efficiency and efficacy of the proposed scheme.
Up to about 8dB SNR gain can be achieved over conventional
CS based method with moderate increase of complexity.

I. INTRODUCTION

One of the main application scenarios of wireless sensor

networks (WSN) is continuous environmental monitoring of

physical phenomenon such as temperature, humidity and light

over a geographical area during certain time period [1]. Gen-

erally, the sensed physical data is transmitted from the sensor

nodes to the data sink through multi-hop routing. Since the

sensor nodes usually have limited computing ability and power

supply, a primary goal of data gathering is to collect the sensed

data at required accuracy with least energy consumption.
Conventional methods such as distributed source coding

techniques [2]–[4], in-network collaborative wavelet trans-

form [5] [6] and clustered data aggregation [7]–[10] have

been proposed to reduce the global data communications.

They utilize the spatial correlation in sensed data at sink

or sensor nodes, but they are either not effective enough to

cope with abnormal events or may bring extra computational

and communication overheads. Recently the combination of

the compressive sensing (CS) theory with WSNs [11]–[15]

provides a new avenue for data gathering. According to the

compressive sensing theory, a sparse signal can be accurately

reconstructed with a relative small number of measurements,

and the measurements are accomplished by random linear

projections onto sensed data. Then it brings the benefits

of simple compression at sensor nodes without introducing

excessive computational and control overheads, which meets

the limited resource constraint of sensor nodes.

Existing CS based data gathering solutions are established

on an assumption that the sensed data has a constant sparsity.

Therefore, a fixed transform basis according to the prior

information of sensed data is adopted to achieve the sparsity

in transform domain. The number of measurements is also

fixed and determined by the relation between least required

number of measurements and the sparsity. Unfortunately, such

assumption is unlikely to hold for real sensed data. In fact,

most natural signals are nonstationary and the sparsity varies in

temporal or spatial domain. Note that sparsity is the guarantee

of accurate reconstruction of measured data in CS theory,

and it also has direct influence on the amount of required

measurements. For example, if the sparsity of sensed data

degrades and is not strictly K sparse in one snapshot, then

more measurements are needed for accurate reconstruction,

otherwise the reconstruction may fail. Thus existing CS based

data gathering solutions will not perform well when the sensor

readings may vary a lot.

To address the above challenges, in this paper we propose an

adaptive data gathering scheme based on CS. The “adaptive”

here has two fold meanings: the first one is that the CS recon-

struction becomes adaptive to the sensed data, which is accom-

plished by the adjustment of autoregressive (AR) parameters in

the objective function; the other is the number of measurement

required to the sensed data is tuned adaptively according to

the variation of data. Spatial correlation is common in the

sensed physical data, thus we introduce the AR model to

exploit such local correlation. We incorporate the AR model

into the objective function of convex optimization, and the

AR model fits the local structure of the sensed data adaptively

by adjusting the parameters. Thus the CS reconstruction is

capable of coping with the variation of sensed data adaptively.

To further deal with the varied sensed data, each time when

the reconstruction is accomplished at sink node, the result is

approximately evaluated and forms a feedback to the sensor

nodes if further measurements are needed. Specifically, the

temporal correlation between historically reconstructed data



is utilized to estimate current reconstruction result at sink

node, then the error of the reconstruction is estimated. By

approximating the reconstruction error as a function of the

number of measurements, the number of extra measurements

is determined. Thus the measurements can adjust adaptively

according to the reconstruction result.

Abnormal event detection is an important task of sensor

networks. The abnormal readings will degrade the sparsity of

sensor readings and thus cause degradation in sensor data re-

construction. We incorporate the abnormal readings detection

into the CS reconstruction novelly by utilizing combinational

sparsity in different domains. Anomaly due to external error

and internal error are then classified and identified by their

specific features.

The proposed scheme is tested extensively on real data sets.

Experimental results show that our adaptive reconstruction

outperforms conventional CS based method in reconstruction

quality. Up to 8dB SNR gain can be achieved with the cost

of increased time complexity, which is constant times of

conventional recovery. Experiments on testbed indicate that

the MSE of reconstruction applying our anomaly processing

scheme is less than 3.0, even with 10% abnormal readings

due to both internal error and external events. The adaptive

measurement is compared with the baseline scheme, less than

half number of reconstructions and less than 20% re-query is

required with our scheme at a cost of 20% more estimation

error than the baseline.

The rest of the paper is organized as follows. Section II

briefly introduces the fundamentals of CS and gives formula-

tion of the problem. Section III elaborates our data gathering

scheme. Experimental results are given in Section IV. In

Section V we discuss related work. In Section VI we conclude

the paper, with discussion of future directions.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Fundamentals of Compressive Sensing

According to CS theory [16]–[19], a sparse signal can

be exactly recovered by solving a programming optimization

problem from non-adaptive linear projections, which preserve

the structure of sparse signals. Then sparse signal can be

sampled much lower than Nyquist sampling rate.

Suppose d is an unknown vector in R
N , and d has sparse

representation in some domain(e.g. basis). If signal d ∈ R
N

can be decomposed as:

d = Ψ−1x =
N∑
i=1

ϕixi (1)

where Ψ−1 = {ϕ1, ϕ2, · · · , ϕN}, ϕi is the i-th column vector

of Ψ−1 and x is the coefficient sequence of d in Ψ domain.

Usually Ψ is orthogonal transform basis such as DCT. We

say d is sparse in the Ψ domain if the coefficient sequence

is supported on a small set, i.e., most of the coefficients are

zero. Furthermore, the signal d is K sparse if the number

of non-zero coefficients in the coefficient sequence is K. If

K � N , then d can be reconstructed by a small number of

measurements from the acquisition system

y = Φd (2)

where Φ is an M × N(M � N) measurement matrix

and matrices Φ and Ψ are incoherent. When the number of

measurements M satisfies:
M ≥ cK log

N

K
(3)

where c is a positive constant, and the measurement matrix Φ
satisfies the Restricted Isometry Property (RIP) [20], then it

has been proved that the signal d can be exactly recovered by

solving the following minimum l1-norm optimization problem

with very high probability [21], [22]

x = min ||x||1, s.t. y = Θx (4)

where Θ = ΦΨ−1. The RIP quantifies how well the mea-

surement matrix Φ preserves the norm of sparse vectors. In

practice, a random matrix is usually chosen as the measure-

ment matrix, e.g., the entries of Φ obey Gaussian or Bernoulli

distributions.

In realistic applications the measurement y is usually pol-

luted by noise, and the measurement is

y = Φd + e (5)

where e represents the additive noise during acquisition. Then

d can be recovered by solving

d = min ||Ψd||1, s.t. ||Φd − y||2 ≤ ε (6)

where ε is the error bound caused by e.

Many approaches have been proposed to solve the above

convex optimization problem, such as Interior Point (IP),

Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP)

and Projection onto Convex Sets (POCS) etc [23]–[26].

B. Problem Formulation

The CS theory provides a simple and universal data gather-

ing solution for WSNs. The sensed data acquisition can be ac-

complished by making a small number of random projections

of the data and transmitting the projection values. The burden

of solving the optimization reconstruction has been shifted to

the sink. Such asymmetric structure makes it quite suitable

for resource constrained WSNs. Moreover, the property of

far less measurements and democracy for equally measuring

each sensed data will bring reduced communication cost and

balanced network load. The two key features of compressive

sensing make it a paradigm for data gathering in WSNs.

In a typical CS based data gathering scenario, the data

readings for all the sensor nodes in a WSN can be represented

as a vector d = [d1, d2, · · · , dN ]T , where N is the number

of nodes in the WSN. The samples to the raw data are

obtained by a M × N(M � N) random matrix b = Φd =
d1φ1 + d2φ2 + · · ·+ dNφN , where M represents the number

of measurement to d and φi is the i-th column vector of Φ.

The sampling process is also the compression process in CS,

which is performed individually by simple multiplications and

addition at each sensor node. Then the M -dimensional vector

rather than the N -dimensional raw data is transmitted to the

sink. Thus the transmission is greatly reduced. The raw data

is recovered from M samples by optimization reconstruction

at sink. And the performance depends on the sparsity of the

sensed data and reconstruction algorithm.



III. DATA GATHERING THROUGH INTELLIGENT

COMPRESSIVE SENSING

In this section, we propose our adaptive data gathering

scheme based on CS. The sensed data is adaptively recon-

structed by incorporating AR model into the existing CS

reconstruction. After that, the recovered data is evaluated to

determine whether the recovery satisfies the accuracy require-

ment and whether further measurements are needed to improve

the reconstruction quality. If so, a feedback is formed to

the sensor nodes to take supplementary measurements. Since

abnormal readings are common in sensor networks, we provide

an abnormal readings detection and identification method to

handle the anomaly in sensed data.

A. Adaptive Reconstruction
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Fig. 1. The sparsity varies in most real natural signals

Prior effort has been made to introduce CS into data gath-

ering, and existing CS based data gathering schemes assume

that the sparsity of the sensed data is a constant and keep

unchanged. Also a fixed set of bases such as DCT and wavelets

is adopted to represent the sparsity of the entirety of sensed

data. However, this does not hold true for natural physical data.

Natural signals are usually nonstationary and their sparsity

varies in spatial and temporal domains. As Fig. 1 shows, Fig.

1(a) plots the snapshot of 1000 temperature data readings from

CTD data [27], Fig. 1(b) plots the corresponding coefficients

after 6-level 5/3 wavelet transform. Most coefficients are near

zero and about 43 coefficients are relatively large, thus the

signal is approximately 43-sparse. Fig. 1(c) plots another snap-

shot of the temperature data and Fig. 1(d) shows its sparsity is

about 61. Thus for existing CS based data gathering schemes,

the reconstruction performance will degrade for varied data.

Moreover, CS based compression methods need to find a space

in which the signal is sufficiently sparse for optimal recovery,

and it poses a challenge to the CS theory and its applications.

The sensor nodes are usually densely deployed to monitor

the same physical phenomenon, thus high degree of spatial

correlation is expected to exist in the sensed data. Various

algorithms have exploited the spatial correlation to solve

different problems such as data aggregation. Here we propose

an adaptive CS reconstruction scheme that adopt the AR model

to exploit the varying local spatial correlation in sensed data.

Suppose the readings from each sensor node is N dimen-

sional vector d, and we have measurements b = Φd = Θx.

Then the reconstruction can be formulated as the following

minimization problem:

x = minα
N∑
i

(di−
∑
j∈Si

aijdij)
2+β||x||1+ 1

2
||Θx−b||22 (7)

where Si is the neighbor index set of the i-th node, which

is also the support set of the AR model, aij is the j-th AR

parameter for the i-th node, and dij is the data reading of the

j-th neighbor for the i-th node. And (7) can be reexpressed

as:

minF (x) = minα||AΨ−1x||22 + β||x||1 + 1

2
||Θx − b||22 (8)

where A is a N ×N matrix and each row of A contains the

AR parameter for each node. The matrix A can be written as:

A =

⎛
⎜⎜⎜⎜⎝

−1 a11 · · · a1j1 0 0

0 −1 a21 · · · a2j2 0

...
...

...
. . .

...

0 0 aN1 · · · aNjN −1

⎞
⎟⎟⎟⎟⎠ (9)

where ji = |Si|, which denotes the cardinality of neighbor set

of the i-th node.

We will solve the minimization in (8) in an alternative way.

Specifically, we’ll decompose the original problem (8) into two

sub-problems of solving A and x separately. We’ll initialize

the AR parameter A0 by smooth values at first, then x0 can

be solved given A0 in (8). And an improved estimation of AR

parameter A1 can be obtained given x0. The process iterates

between revising x given A and revising A given x.

First let’s consider the sub-problem of estimating A given

x. Suppose the AR parameter for the i-th node is denoted as

ai. Since many natural signals have slowly changing second

order statistics, which means the AR parameter ai is nearly

constant or varies little piecewise, we can estimate ai in a local

area Wi. Then the sub-problem can be formulated as:

ai = minG(x) = min
∑
i∈Wi

(di −
∑
j∈Si

aijdij)
2 (10)

then the closed form solution of (10) is:

ai = (BTB)−1BT n (11)

where the i-th row of matrix B consists of the neighbor

readings of di, and column vector n is composed of all the di
in Wi.

Then consider the sub-problem of estimating x given A,

which is solving (8) given A. The optimality condition for (8)

is:

∂F (x) = 0 (12)



Algorithm 1 Solution to the minimization of (8)

Input: Measurement matrix Φ, orthogonal transform matrix Ψ,
measurements b and initial A0

Output: dk, Ak.

1: x0 = 0; y0 = 0; τ1 > 0; τ2 > 0; ε > 0; ε > 0; k = 0;

2: while ||dk+1−dk||2
||dk||2 < ε do

3: while ||(x,y)k+1−(x,y)k||2
||(x,y)k||2 < ε do

4: sk+1 = xk − τ1(αΨAT yk + ∂( 1
2
||Θxk − b||22));

5: tk+1 = yk + τ2AΨ−1xk;
6: xk+1 = sgn(sk)max{0, |sk| − τ1β};
7: yk+1 = min{ 1

τ2
, ||tk||2} tk

||tk||2 ;

8: end while
9: (ai)k+1 = (BT

k Bk)
−1BT

k nk;
10: k = k + 1;
11: end while

We denote f(x) = ||x||22, then for convex function f and its

convex conjugate f∗, we have

y = ∂f(x) ⇔ x = ∂f∗(y) (13)

Then by introducing a variable y, the optimality condition is

αΨAT y + β∂||x||1 + ∂(
1

2
||Θx − b||22) = 0 (14)

∂f∗(y) = AΨ−1x (15)

We can apply operator splitting method to (14) and (15) with

scalars τ1, τ2 > 0, then

τ1β∂||x||1 + x − s = 0 (16)

s = x − τ1(αΨAT y + ∂(
1

2
||Θx − b||22)) (17)

τ2∂f
∗(y) + y − t = 0 (18)

t = y + τ2AΨ
−1x (19)

For (16) and (18), given s and t, x and y can be obtained by

x = sgn(s)max{0, |s| − τ1β} (20)

y = min{ 1

τ2
, ||t||2} t

||t||2 (21)

Finally the second sub-problem can be solved by the iteration

of s, t, x and y from initial points x0 and y0. And the stopping

criteria of iteration can be defined as the successive error of

x and y is lower than a predefined threshold ε, that is:

||xk+1 − xk||2
||xk||2 < εx and

||yk+1 − yk||2
||yk||2

< εy (22)

The whole solution is depicted in Algorithm 1.

The initial choice of AR parameter ai for a sensor node

can be smooth values such as reciprocal of the number of

neighbors of the node. The time complexity of proposed

adaptive reconstruction is constant times of conventional re-

covery for the iterative process. According to our experimental

results, the outer iteration of revising the AR parameters in

A will converge fast, usually after about 5 outer iterations

the AR parameters in A will be exact to make the algorithm

converge to an accurate solution. Utilizing more neighbors of

current node can provide more samples to estimate the AR

parameters, however, the CS reconstruction performance may

suffer from data overfitting if the order of the AR model

is too high. Moreover, the spatial correlation decreases as

the distance between two nodes increases. Considering that

the sensed data readings from one-hop neighbors demonstrate

direct correlation, we only use the one-hop neighbors of the

sensor nodes in the AR model. The neighbors are determined

by the physical location and topology of the sensor network,

thus are irrelevant with the routings.

B. Abnormal Readings Processing

Anomalous data readings are prevalent in WSNs. Since the

random measured data is information-dense, the perturbations

of the measurements severely influence the successful recon-

struction. We propose to address the problem by utilizing the

combinational sparsity in different domains of sensed data.

First we detect and recover the abnormal readings by combi-

national sparse of sensed data with anomalous readings. Then

the recovered abnormal readings are identified and classified

into two categories of internal error and external event by their

specific patterns. Abnormal readings due to internal errors

fail to represent the sensed physical data, thus they should

be removed and replaced by its underlying normal readings,

while anomaly due to external errors reflects the true scenarios

in the environment and it can be preserved.

Inspired by the overcomplete representation basis in [13],

we use the combinational sparsity to handle the anomaly.

Sensed data with abnormal readings d can be decomposed

into two parts:

d = dn + da (23)

where dn is the normal readings while da is the differ-

ence between abnormal readings and its underlying normal

readings. dn is sparse in some transform domain and as

abnormal readings are usually sporadic in real sensed data,

da can be viewed as being sparse in spatial domain. Thus the

combinational sparsity in different domains is achieved in the

following way:

d = Ψ−1xn + Ida = [Ψ−1 I][xTn dT
a ]

T (24)

Here we introduce the auxiliary variable d′ to incorporate the

AR model into the abnormal detection:

d′ = Ad + d
= [I I Ψ−1 I][(AΨ−1xn)

T (Ada)
T xTn dT

a ]
T (25)

= (Ψ′)−1x′

where (Ψ′)−1 = [I I Ψ−1 I]. For both normal readings

transform coefficients xn and anomalous readings da, it’s

obvious that AΨ−1xn and Ada are also sparse even with an

initial A. Take the recovered CTD data in Fig. 1(a) with 160

measurements for example, for AΨ−1xn, only 4 out of 1000

coefficients have absolute value greater than 0.1. Thus x′ is

sparse in the combinational domain Ψ′.
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Fig. 2. The typical anomalous sensed temperature data from trace of GreenOrbs

Since d′ doesn’t really exist at sensor nodes as d, we need

to deduce the measurement of d′ from d. For the original

anomaly contaminated sensed data d, the random measurement

is accomplished by Φd, thus the measurement for d′ is:

Φd′ = Φ(Ad + d) = Φ(A+ I)d = Φ′d (26)

where the new measure matrix Φ′ = Φ(A+I). It indicates that

using a measure matrix Φ(A+ I) to d is equivalent to using

measure matrix Φ to d′. An intuitionistic idea is to change the

measure matrix into Φ(A+ I) at sensor nodes. We shift such

transform to the sink to keep sensor nodes unchanged, which

means still a random measure matrix Φ is deployed at sensor

nodes. Then when the original measurement Φd is obtained,

the measure matrix Φ′ for d′ becomes

Φ′ = Φ(A+ I)−1 (27)

and Φ(A + I)−1 is a matrix with random property, thus it

can be used as measure matrix. Then (25) and (27) can be

incorporated into CS reconstruction, and a large non-zero

value in da indicates the location of the abnormal readings.

Thus both the location and values of the abnormal readings

can be solved.
We classify the abnormal readings into two categories to

process them in different ways. Internal and external errors of

anomalous readings demonstrate different features and we can

use the recovered abnormal data to distinguish them from each

other. Fig. 2 plots the prevalent anomalous sensed temperature

readings from trace data of GreenOrbs [28] in several days

with time interval of 10 minutes. Such anomaly is observed

when the sensor node has low battery voltage, which is the

main cause of abnormal readings in the system. Frequent

dramatic fluctuation and exceeding of normal temperature

range can be observed and thus distinguish themselves from

normal readings. Usually abnormal readings due to external

events have limited peak values and gradual change compared

with that of internal errors. We can leverage such domain

knowledge and prior information to develop heuristic rules

to identify anomaly in sensed data. Specifically we utilize

thresholding and variance analysis to distinguish the abnormal

readings. A relative larger abnormal reading and its variance

is more likely to indicate an internal error, while anomaly with

relative smaller reading and variance is an external event with

higher probability. The internal errors can be further classified

by their unique features.

Take the faulty data in Fig. 2 as an example, which is the

predominant anomaly we observed in the GreenOrbs trace.

The detected abnormal readings are first compared with thresh-

old h1, then the variance of the readings within a time window

containing n samples is computed. We set two thresholds h2

and larger h3 for the variation to indicate different levels of

fluctuation. For abnormal data in right half of Fig. 2(b), the

anomalous data will be identified as it’s above h1 and the

variance of readings within a window will be far below h2.

For the abnormal data in Fig. 2(d), it exceeds both h1 and

h3. The readings in Fig. 2(a) actually combines two cases in

Fig. 2(b) and Fig. 2(d). The data in Fig. 2(c) will be below h1

while its variation is between h2 and h3. By exploiting such

specific features we can identify the typical abnormal readings

caused by internal errors, and consider the other anomaly as

external event occurs in sensor networks.

C. Adaptive Measurements

In most previous effort of CS based data gathering, the

measurements and the reconstruction are separate. The sensed

data is measured by random projection followed by optimiza-

tion reconstruction. The data is assumed to be time-invariant

and strictly K-sparse, thus the measurements are sufficient

for accurate recovery. Nevertheless, due to the fluctuation in

the time-varying sensed data, the sparsity of sensor readings

may degrade as time varies. Thus the measurements may be

insufficient for accuracy recovery. Although an adaptive mea-

surement algorithm is proposed in [29] based on the adaptive

CS theory, it jointly optimize the routing and compression

to obtain optimal measurement, which greatly increases the

complexity.

We propose to evaluate the reconstructed sensor readings

and adjust measurements according to the evaluation. Each

reconstruction is first checked whether the measurement is

sufficient at sink by utilizing the temporal correlation between

sensor readings. If not, a feedback is formed to inform the

sensor nodes for small number of probing measurements to

determine current reconstruction error. The reconstruction er-

ror can be formulated as a function of number of measurement,

and it can be approximated by curve fitting with current

reconstruction and probing measurement. The approximation

is then utilized to specify the trend of decreasing error with

increase of measurements. Thus the rough number of further



measurements required to satisfy the accuracy requirement is

obtained.

According to [30], for a sparse signal x ∈ R
N which

has exactly k non-zero components, and the measurements

are random Gaussian samples, the correct recovery can be

declared if one of the following conditions is satisfied:

1) x̂M+1 = x̂M , the reconstruction with M + 1 measure-

ments is the same with that of M measurements;

2) ||x̂M ||0 < M , x̂M has fewer than M non-zero entries.

However, the signal is approximately sparse in practice: most

of the coefficients after orthogonal transformations are rela-

tively small rather than exactly zero. For approximately sparse

signal x under random Gaussian measurements, the distortion

between original signal and recovery with M measurements

can be bounded as:

d(x, x̂M ) ≤ d(x̂M+T , x̂M )

sin θ
(28)

where θ is the angle between the vector connecting x with

x̂M and N − (M + T ) dimensional hyperplane [30]. And

E[ 1
sin θ ] ≥

√
N−M

T , from which the recovery error can be

further approximated by

d(x, x̂M ) ≈ d(x̂M+T , x̂M )

√
N −M

T
(29)

(28) and (29) indicate that extra measurements are required to

approximate the recovery error of current reconstruction.

Once the sink receives M measurements and recovers x̂M ,

it is first compared with its last recovered normal reading and

check if the difference D is within a threshold h. Such process

is reasonable because many natural signals such as temperature

will not change dramatically in a short time period. If the

absolute difference is below h, then we can consider x̂M as

a successful recovery. Otherwise the reconstruction is viewed

as faulty one and our problem turns into how to determine the

number of supplemental measurements efficiently. A baseline

approach is to successively add measurements at a rate till the

required accuracy is achieved. However, it brings much extra

computational and communication burden. To reduce such

complexity, we propose to fit the trend of decreasing error as a

function of measurements and approximately gives the number

of extra measurements T required. First extra m(m � M)
probing measurements are taken to determine the error of

current recovery and approximate number of supplementary

measurements. m can be defined as m = αM , where α is

a scale coefficient related to difference D. The larger D is,

the higher probability the sparsity has increased dramatically,

thus a larger α will take more measurement to capture the

variation accurately. The m supplemental measurements is

divided into n parts so that m = nt, and n is the number

of probing reconstructions for error curve fitting. Then the

sensed data with increasing number of measurements are

recovered: x̂M , x̂M+t, · · · , x̂M+nt. Thus by (29) the recovery

error êM , êM+t, · · · , êM+(n−1)t can be estimated. The error

function of number of measurement is then approximated

by curve fitting to get the rough number of supplementary

measurement required by the accuracy. We represent the error

function and error bound as f̃ and ε respectively. Then the

minimal T that satisfies f̃(M +m+T ) ≤ ε approximates the

extra number of measurements to the sensed data required by

the error bound.

Note that when the sparsity of the sensed data decreases,

the number of measurements can also be reduced accordingly

to reduce communication cost. If the current reconstruction

with M measurements already satisfies accuracy requirement,

then M − αM out of M measurements at sink are used

for a probing reconstruction and recovery error êM−αM is

estimated. If êM−αM is below the error bound ε, then M−αM
measurements are sufficient for an accurate recovery and

sensor nodes are notified to send only M −αM measurement

next time. Otherwise the number of measurement M will

keep unchanged. Here we suggest not to reduce the number

of measurement immediately after the sparsity of sensed data

decreases to avoid fluctuations and frequent adjustments.

We use the real CTD trace data to illustrate our adaptive

measurement scheme. Fig. 3 depicts the real recovery error
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Fig. 3. Estimated recovery error and real error

and corresponding estimated error of 1000 reconstructed tem-

perature data with different number of measurements. The

original temperature data is approximately 43 sparse after 6-

level 5/3 wavelet transform. The fitted curves are also plotted,

from which the relation between measurements and recovery

error can be formulated as an exponential function. Fig. 3

also clearly indicates that the difference between estimation

and real error decreases as measurements increase, but non-

monotonically. When there are enough measurements, around

80 in Fig. 3 for example, the estimation and real error begin

to be coherent with each other very well. Thus we can use the

error estimation to evaluate the recovery error when the real

error is unavailable at sink. If the recovery is below accuracy

requirement, extra supplemental measurements of sensed data

is required, which can be approximately solved by the fitted

error function of number of measurement.

Fig. 3 also indicates that when the measurement is severely

insufficient, which corresponds to the scenario when the
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(d) Relative error comparison

Fig. 4. Reconstruction comparison of our scheme and conventional CS

sparsity of sensed data increases dramatically, the real recon-

struction error and the estimated error is quite different and

the reconstruction error can not be evaluated correctly. For

such situation we suggest to increase the measurements in the

baseline way, that is by successively increasing number of

measurement by αM till the difference of reconstruction x̂M

and x̂M+αM is quite small.

IV. EXPERIMENTAL RESULTS

In this section, we will give the experimental results of our

scheme on real sensor data sets.

Fig. 4 depicts the reconstruction quality comparison of

recovered 1000 CTD temperature data between our scheme

and conventional CS reconstruction. The data is from the CTD

dataset on March 29, 2008 and March 26, 2008 respectively.

The SNR and relative error E are reconstruction quality

criteria as defined below:

SNR = 10 log10

(
N∑
i=1

d2i /
N∑
i=1

(di − d̂i)
2

)
(30)

E = ||d − d̂||2/||d||2 (31)

where N is length of the signal and d̂i is the reconstructed

value of the i-th node. Gaussian random matrix is used as

measurement matrix in both methods. The reconstructions are

repeated 20 times to avoid fluctuation. We use the Fixed-Point

Continuation (FPC) method [31] to solve the conventional

CS reconstruction in (6). The figures indicate our scheme

outperforms traditional reconstruction by up to about 8dB in

SNR, and the relative error is about 0.30% with only 160

random measurements of the 1000 temperature data. The cost

is that the time complexity of our adaptive scheme is constant

times of that of FPC and the constant is about 5 according to

our experiments. Also the topology of the sensor networks
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Fig. 5. Reconstruction quality of our scheme with different ratio of anomaly

is needed to specify the neighbors for each sensor node.

Note that when the measurement is extremely insufficient

for accurate reconstruction, which means the recovered data

degrades severely and thus is useless, our method has a little

lower SNR value. The reason is that when the recovered data

greatly deviate from the original sensed data, the solution of

AR model parameter will be inaccurate and thus affects the

accurate reconstruction in turn.

Our proposed abnormal readings processing scheme is vali-

dated on a testbed with 5×10 sensors deployed in a 2m×1m
rectangular area. The abnormal readings due to internal error

is realized by supplying the sensor nodes with low power

battery, and the patterns of anomaly is as depicted in Fig.

2. Anomaly due to external event is realized by changing

the environmental temperature for some sensor nodes. The

total anomaly ratio is set 10%, that is 10 out of 50 sensor

nodes will produce anomaly of both internal and external

error. And among these sensors the ratio of event caused

anomaly is set from 2% to 20%. The ground truth of the

abnormal readings are preserved by the duplicate sensors. The

abnormal readings of sensed temperature data are first detected

by the combinational sparse reconstruction. Then anomaly

due to external event and internal error is identified by the

domain knowledge based rules as defined in Section III-B.

The length of time window to calculate the variation is set

10 successive readings. Anomaly due to external event will

be kept while internal error caused abnormal readings will be

replaced by its recovered underlying value. According to the

domain knowledge and prior information, the threshold h1,h2

and h3 are 102,102 and 104 respectively in our experiments.

The reconstruction quality is as shown in Fig. 5. Fig. 5(a)

indicates that recovery error increases as ratio of external

events increases. The MSE of recovery error is less than 3.0
when the ratio is below 10%. In Fig. 5(b) we compare the

result with a contrast scheme, in which internal and external

error are not distinguished. Thus all the abnormal readings are

considered as error and replaced by the estimated value.

We test our adaptive measurement scheme on the CTD

trace data as shown in Fig. 1. We start from the current

reconstruction with 90 measurement of the 1000 temperature

data, and the accuracy requirement ε of the reconstruction

MSE is 0.03. The scale coefficient α is set about 22% and

thus there are 20 probing measurements at first. We set n
as 4 in our experiment to reduce the complexity. Together
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Fig. 6. Fitting result of estimated errors with 4 probing reconstructions

with initial construction x̂90 we have 5 reconstructions with

different number of measurements: x̂90, x̂95, x̂100, x̂105 and

x̂110. Then recovery error function f̃ can be approximately

formulated by curve fitting of ê90, ê95, ê100 and ê105.

Fig. 6 shows the result of fitting result with 4 probing

measurements. We compare it with the baseline scheme, in

which the number of measurement is successively increased.

The baseline scheme will take 11 more reconstructions and

broadcasts of requiring measurements from sensor nodes, the

error requirement can be satisfied with about 145 measure-

ments. While the curve fitting formulates the trend of recovery

error decrease and the fitted error function f̃ indicates about

155 measurements will be enough for the required accuracy.

Then on the base of 20 probing measurements, 45 more

measurements are required from sensor nodes. And the extra

required number is 55 in baseline. Thus the proposed curve

fitting scheme needs only about 5 extra reconstructions and

2 broadcast in our experiment, which is far less than that

of baseline. We adopt curve fitting to estimate the extra

number of measurements rather than find an accurate solution,

thus error is inevitable. For example actually only about

140 measurement is enough as indicated in Fig. 6. And

the estimated error is 20% more than the baseline scheme.

However, considering the number of sensed temperature data

is 1000, the measurements is still far less than that even with

such error.

V. RELATED WORK

In this section, we’ll classify the data gathering techniques

into two categories of conventional approaches and CS based.

And we’ll briefly introduce the prior work as follows.

Conventional non-CS approaches. Much effort has been

made on non-CS data gathering in WSNs and prior effort

mainly focuses on three directions: (1) Data aggregation

techniques. Similar with the theory of vector quantization,

clusters of sensed data are formed and a small subset of sensor

nodes are selected, which are sufficient to reconstruct data

of the whole sensor network. So only a subset of nodes are

involved in the communication and the global communication

cost incurred during data gathering is thus reduced. [7]–[10]

share such similar idea. (2) Distributed source coding. These

schemes are based on the Slepian-Wolf coding theory and

spatial correlation is utilized at sink node [2]–[4]. However,

they typically require exact knowledge of the correlation be-

tween attributes, otherwise they will fail. (3) Collaborative in-

network compression. Collaborative in-network compression

can be viewed as an extension of traditional transform in signal

processing to sensor networks with irregular topology. Nodes

can communicate with their neighbors and spatial correlation

is exploited by collaborative transform such as distributed

wavelet transform [5] and graph wavelet transform [6].

CS based approaches. Compressive sensing provides two

features of universal sampling and decentralized simple encod-

ing, which makes it a new paradigm for data gathering in sen-

sor networks. [11] propose a universal compressive wireless

sensing (CWS) scheme, in which sensed data is measured by

synchronized amplitude-modulated analog transmissions to the

fusion center in a single-hop network. [12] discusses methods

to sparsify networked data and decoding algorithms when

apply CS for data collection in WSN. [13] presents the first

complete scheme to apply CS to data gathering in large scale

sensor networks. The capacity gain of the scheme is validated

by both analysis and simulation result. And different practical

ways to make the sensed data sparse are discussed. [29]

proposes an adaptive algorithm based on adaptive CS theory to

collect data in sensor networks. By maximizing information

gain per energy cost during each measurement, the scheme

adaptively collects data in a energy efficient way. However,

during each measurements the projection vector is obtained

by solving an NP-hard optimization problem, which brings

relative high computational and communication overhead. [14]

compares the throughput of non-CS and plain-CS schemes

and proposes a hybrid-CS scheme to improve performance, in

which non-CS scheme is applied in the earlier stages of data

collection and CS based collection is only applied at nodes

whose traffic is larger than some extent. [15] discusses the

problem from the aspect of energy efficiency. It investigates

the energy efficiency of applying CS to data gathering in

WSNs, aiming at minimizing energy consumption through

joint routing and compressed aggregation. The optimization

problem is proved NP-completeness and both optimal and

near-optimal solutions are given.

VI. CONCLUSION

In this paper, we have illustrated a data gathering scheme for

WSNs by intelligent compressive sensing. We suggest that the

assumption of constant sparse of sensed data in conventional

CS based data gathering is unrealistic for most natural signals.

To address the problem of reconstruction quality degradation

due to sensed data variation, we propose our adaptive data

gathering scheme based on CS. By incorporating the AR

model to exploit the local spatial correlation between sensed

data of neighboring sensor nodes, the reconstruction is thus



adaptive to the variation of sensed data by adjusting the AR

parameters. The measurement also adjusts with the sensed data

adaptively by evaluating the recovery result and approximating

the number of measurement required to satisfy the demand

of accuracy. Since anomaly is prevalent in sensor networks,

we provide an abnormal readings detection and identification

scheme. The abnormal readings are novelly detected by combi-

national sparsity CS reconstruction. Specific features from real

trace data are utilized to distinguish the external events and

internal errors. Experimental results on real trace data validate

the efficacy and efficiency of our scheme.

Since the property of information-dense for the random

measurements in CS, the loss of measured sensor data will

severely degrade the quality of data reconstruction. However,

because of the unreliability of the sensor networks, packet loss

is prevalent in a deployed sensor networks, which poses a great

challenge to the application of the CS based data gathering in

WSN. How to address this problem is of great significance,

and we will investigate it in our future work.
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