
Every Packet Counts: Fine-Grained Delay and Loss
Measurement with Reordering

Jiliang Wang1, Shuo Lian2, Wei Dong3, Yunhao Liu1 and Xiang-Yang Li4

1. School of Software and TNLIST, Tsinghua University

2. School of Electronic and Information Engineering, Xi’an Jiaotong University

3. College of Computer Science, Zhejiang University

4. Department of Computer Science, Illinois Institute of Technology

{jiliang, yunhao}@greenorbs.com, lianshuo@mail.xjtu.edu.cn, dongw@zju.edu.cn, xli@cs.iit.edu

Abstract—Delay is an important metric to understand and
improve system performance. While existing approaches focus
on aggregate delay statistics in pre-programmed granularity,
providing only statistical results such as averages and deviations,
those approaches fail to provide fine-grained delay measurement
at a flexible level and thus may miss important delay character-
istics. For example, delay anomalies, which are critical system
performance indicators, may not be captured by existing coarse-
grained approaches. In this work, we propose a fine-grained delay
measurement approach based on a new measurement structure
design called order preserving aggregator (OPA). OPA can
efficiently encode the ordering and loss information by exploiting
inherent data characteristics. Based on OPA, we propose a two-
layer design to convey both ordering and time stamp information,
and then derive per-packet delay/loss measurement with a small
overhead. We evaluate our approach both analytically and
experimentally with widely used real-world data sets. The results
show that our approach can achieve accurate per-packet delay
measurement with an average of per-packet relative error at
2%, and an average of aggregated relative error at 10−5, while
introducing less than 4× 10−4 additional overhead.

I. INTRODUCTION

A. Background

Delay performance is of great importance for various

network applications, ranging from daily used applications

such as voice-over-IP, multimedia streaming, video on de-

mand to applications in different areas such as data center

and automatic trading system [1] [2]. For example, delay

performance will significantly impact the quality of service

for applications such as voice-over-IP, which would further

impact the user experience. Moreover, for critical automatic

trading system with a stringent delay requirement, millions of

trading may be conducted during a very short time period.

Therefore, a small delay for operational packets may result

in a significant impact on the trading amount and hence the

profit [3]. Therefore, delay is a critical metric that protocol

designers and system users care about. It is of great importance

to understand and improve system performance. Consequent-

ly, delay performance measurements have attracted a lot of

research efforts [4] [5] [6] [7] [2] [8] [9].

Intuitively, delay can be measured by embedding a time

stamp to record the sending time in each packet at the sender.

When a packet is received, the receiving time is recorded and

the packet delay can thus be calculated by subtracting the

sending time from the receiving time as long as the sender and

receiver are synchronized. However, in most Internet routers, it

is difficult to modify the IP packets. Even if a time stamp can

be inserted, this intrusive behavior may result in non-negligible

overhead or unforeseen protocol behaviors [5].

To satisfy practical system requirements, a common ap-

plicable approach is to measure packet delay non-intrusively

without modifications to data packets. Following such a design

principle, different methods, e.g., LDA, FineComb, are pro-

posed [5] [6] [7] for providing aggregate delay statistics. For

example, a representative method based on Lossy Difference

Aggregator (LDA) is proposed for delay measurement [5].

With LDA, the aggregated delay for a group of packets can

be calculated without modifications to packets.

B. Motivation

While existing approaches focus on providing aggregated

delay statistics at a pre-programmed granularity, they cannot

provide flexible fine-grained delay measurements. On the

other hand, as revealed in existing works [10], fine-grained

delay measurements are of great importance in performance

monitoring, system diagnosis, traffic engineering and etc.

First, fine-grained delay measurement is required to reveal

detailed system performance. Considering a simple example

in which 999 packets have a delay of 1 ms and 1 packet has

a delay of 1001 ms, this is clearly different from the case

that all 1000 packets have a delay of 2 ms, though both cases

exhibit the same aggregated average delay. Moreover, even

for the same average and deviation, different types of packets

may exhibit different delay performance, e.g., large delays of

interest may appear on a special set of packets that cannot be

revealed from aggregated results on the whole set of packets.

Second, fine-grained delay performance is critical to net-

work diagnosis [10]. In diagnosis it is important to investigate

a special type of packets, e.g., DNS packet, ACK packet. Ex-

isting approaches cannot provide delay measurement at such a

granularity. Moreover, with fine-grained delay measurements

delay anomalies [11] [12] [13] can be revealed. For example,

in a time-critical bidding system, the bidding request packet/978-1-4799-6204-4/14$31.00 c©2014 IEEE

usually has a tight deadline [10]. Failure to meet the deadline

will miss some bidding opportunity or even result in significant

profit loss. Thus measuring the per-packet delay of the request

packet should be important to system diagnosis in real time

bidding system, high performance computing data center and

etc.

Third, fine-grained delay measurement is required or pre-

sumed in various protocols. It can be leveraged to significantly

improve the system performance. For example, many protocols

in Internet and data center [14] [15] show that incorporating

fine-grained delay measurement would improve the system

performance. In [2], it has also shown that fine-grained delay

measurements can be used to recover routing dynamics and

improve routing performance.

Last but not least, inherently aggregated delay performance

cannot be accurately calculated in presence of packet losses

or reorderings [5] [6] [7]. Even with a single lost packet in a

group, the entire group has to be discarded and the average

delay for such a group cannot be calculated. On the other hand,

from the system management perspective, groups of packets

with losses or reorderings should be particularly important to

understand system behavior and reliability. Therefore, accurate

delay measurements for such groups should be very important

and provide useful information that is otherwise difficult to

obtain.

C. Our approach

To address those problems, we need a flexible fine-grained

delay measurement approach to fill the gap. We propose

a fine-grained delay and loss measurement approach. We

design a new data structure called order preserving aggregator

(OPA), with which packet loss as well as ordering information

can be efficiently represented and recovered with a small

overhead. The OPA design exploits the intrinsic data properties

that lost and reordering packets should usually be much

less than legitimate packets, allowing efficient ordering and

loss information representation and recovery. Compared with

existing works, the OPA design incurs an overhead related

to the number of lost and reordering packets rather than a

fixed sampling/probing rate or the total number of packets in

existing works [6].

Based on OPA, we present a novel two-layered information

representation design in which the ordering as well as loss

information, and the time stamp information are separately

transmitted and recovered according to their inherent proper-

ties. Then the received two layers of information are combined

at the receiver to achieve fine-grained delay measurement with

a small overhead.

Compared with existing approaches, our approach has sev-

eral merits. First, our approach provides per-packet delay and

loss measurement, while existing approaches only provide

aggregated statistics. Second, our approach explores the in-

herent data properties, and thus incurs a low computation and

communication overhead. Third, packet delays in groups with

losses or reorderings, which should be of great importance

but cannot be measured in traditional approaches, can be

s1 s2 s3 s4 s5 s6 s7

r2 r3 r4 r5 r6

s0 s8

r1

Fig. 1: Fine-grained delay measurement with packet loss and

reordering.

calculated with our approach. While our approach is proposed

to measure delay in Internet and data center, it can also

be extended for other networks such as wireless ad hoc

networks [2], in which computation and energy resources are

very limited and efficient delay measurement is very crucial.

The contributions are summarized as follows.

• Architecture for fine-grained delay measurement. We

propose the OPA design, a new measurement structure

to efficiently represent and recover the ordering and

loss information by exploiting data properties. Based on

OPA, we design a two-layered information representation

system for efficient fine-grained delay measurement with

a small overhead.

• Performance analysis. We analyze the correctness of our

approach. Further, we also analyze the computation and

communication overhead for the proposed approach.

• Evaluation with real data sets. We evaluate our approach

with real-world data sets. The results demonstrate the

effectiveness of our approach. With only 4 additional

packets for every 104 data packets, which is even less

than traditional probing based methods (e.g., about 10000

per second [5]), per-packet delay can be measured with

an average relative error at 2%, and the aggregated delay

can be masured with a relative error at 10−5.

The remainder of this paper is organized as follows. Sec-

tion II describes the assumptions and the network model

used in our measurement. Section III introduces existing

approaches for delay measurement. Section IV introduces the

framework overview of the delay measurement method and the

design of OPA. Section V shows how to transmit time stamp

information and how to leverage OPA for per-packet delay

measurement. Section VI shows the analytical results of the

proposed method. Section VII shows the evaluation results of

the proposed approach and Section VIII concludes this work.

II. ASSUMPTIONS AND NETWORK MODEL

We consider measuring packet delay from one router to

another router. We denote the router from which the packets

are transmitted as sender and the other as receiver. On the

path from the sender to the receiver, there may be multiple

intermediate routers. Our method can also be applied to

delay measurement between the ingress and egress points on

the same router as in [5] or two nodes in wireless ad hoc

networks [2]. We divide a sequence of packets into segments

and measure packet delay in each segment. We use two packets

as delimiter packets for the sender and receiver to agree on

the start and end of each segment. For example, as shown

in Figure 1, packets from the sender are s1, s2, . . ., sn. The

delimiter packets are s1 and sn, which can be used by the

receiver to locate the corresponding segment, e.g., r1, r2, . . .,
rm where r1 = s1 and rm = sn. Without packet loss and

reordering, we should have m = n and si = ri for 1 ≤ i ≤ n.

In practice, there may exist packet loss or packet reordering.

As a result, packets between the same delimiter packets at

the sender are not necessarily the same with those at the

receiver. The ordering of packets for segments between the

same delimiter packets at the sender and receiver are also

not necessarily the same. For example, as shown in Figure 1,

packet s2 is a reordering packet and packet s4 is a lost packet.

The packets orderings at the sender and receiver, for segments

between the same delimiter packets, are no longer the same.

It should be noted that delimiter packets may also be lost. If a

delimiter packet is lost, we discard the corresponding segment

and move to the next segment. Here we assume delimiter

packets are successfully received.

As in previous works [5] [6] [7], we assume that the sender

and receiver are synchronized. This can be accomplished by

existing time synchronization protocols [16] [17]. As in real

networks, there is no common sequence number in packets

since packets may come from different sources with different

protocols [5] [7]. Meanwhile, the packet cannot be modified.

This is common for the Internet routing infrastructure, in

which the intermediate routers do not modify the packet.

For each packet, the sender can measure the sending time
tsi . When packet ri is received, the receiver can record the

receiving time tri . Our goal is to calculate the delay for each

received packet. The delay is defined as the receiving time

stamp subtracted by the sending time stamp. For example,

if packet ri corresponds to sj at the sender, the delay can

be calculated as td(i) = tri − tsj . Hereafter, we focus our

description on how to measure per-packet delay for a segment

with n packets from the sender.

III. EXISTING APPROACHES

A. Timestamping based approaches

A straightforward approach to measure delay is to insert

a time stamp in each packet. We call such a method times-

tamping (ts) based method. However, ts based method requires

modifications to packets in routers, which is not applicable

to commonly used routers. Even a packet can be modified

and a time stamp can be added, this introduces additional

transmission cost to each packet. Thus adding time stamps

is not preferable for practical applications.

B. Probing based approaches

Probing is a commonly used technique to estimate the

packet loss and delay. In probing based methods, probing

packets are sent from the sender to the receiver. Those

probing packets are assumed to have the same behavior

with other packets. Then by measuring the statistics of the

probing packets, the statistics for other packets can also be

estimated. Probing based methods, which significantly reduce

the measurement overhead, fail to achieve fine-grained delay

measurement results [5] [6] [7].

C. LDA

Loss Difference Aggregator (LDA) is proposed to obtain

the estimation of delay averages and deviations with a small

overhead. In LDA, packets are also divided into groups by a

certain hash function. For each group of packets, the sum of

the time stamps and the number of packets are sent to the

receiver. Upon receiving such information, the receiver first

find the corresponding group of packets by applying the same

hash function. If the total packet counter for the group from

the sender matches that at the receiver, the receiver treats the

two groups as the same. Otherwise the receiver will discard

the entire group. Then the receiver can calculate the average

delay for such a group as follows. For each group, the sum of

delays can be calculated by substracting the sum of the sending

time stamps from the sum of receiving time stamps. Then

the average delay can be calculated by dividing the sum of

delay by the number of packets. Therefore, LDA significantly

reduces the measurement overhead by only transmitting the

sum of time stamps and packet counter. However, when there

exist packet loss or reordering in a group, the entire group

has to be discarded and the delay for packets in such a group

cannot be measured. With even a single loss or reordering

packet, the entire group becomes useless. While LDA provides

aggregate delay results, it cannot achieve fine-grained per-

packet delays.

D. FineComb

In LDA, packets that belong to one segment may be

misidentified into other segments due to packet reordering.

While dividing a segment of packets into groups, some groups

may have packets from other segments or miss some packets.

In such a case, those groups of packets cannot be used for

delay measurement. To address this problem, FineComb [7]

uses a special data structure called stash to recover the

correct packets for a segment. Stash is a structure to maintain

the information of packets near the boundary of segments.

FineComb uses an exhaustive search to check whether a packet

in the stash belongs to a particular group. FineComb needs to

enumerate all possible combinations for packets in the stash,

which introduces a high overhead. Moreover, for groups with

lost packets, FineComb cannot calculate the delay for those

groups.

E. RLI

A per-flow delay measurement approach called reference

latency interpolation (RLI) is proposed in [6]. In RLI, the

sender generates reference packets (which are similar to probe

packets) to the receiver. Then based on the reference packets,

RLI uses interpolation to estimate delays for packets between

the reference packets. With such a method, per-packet delay

can be estimated. However, the interpolation based method

inherently assumes a specific delay distribution (e.g., linear de-

lay distribution) for reference packets and packets inbetween.

sampling
packets

10AB 170
210A 188
30AF 176

sampling

10AB 170
210A 188
5201 175

OPA

OPA
recovery

Fine
grained
delay

time
stamps

1

2

CAH COUNT

Fig. 2: The design overview of OPA for fine-grained delay and

loss measurement.

Thus it may not be able to accurately measure the per-packet

delay in presence of frequent delay changes or significant

delay variations. For example, a sudden increase of packet

delays between two reference packets cannot be captured,

resulting in missing of important information to investigate

variations or anomalies.

F. MAPLE

Recently, MAPLE [10] is proposed to store and query

per-packet delay. MAPLE uses a scalable data structure to

efficiently store and query fine-grained delay information.

MAPLE can be leveraged as the storage and query system for

fine-grained delay in our system. MAPLE focuses on delay

storage and query rather than per-packet delay measurement.

IV. OPA DESIGN

In this section, we present the OPA design. The design goals

of per-packet delay and loss measurement are as follows.

• The method should be non-intrusive and should not

require any modification to data packets. Thus the method

does not introduce any change to existing routing proto-

cols.

• The method should be light-weight and efficient, without

incurring much additional computation and communica-

tion overhead. This is very important for practical use of

the method.

• The abnormal delay, e.g., large delays, should be captured

and preserved in order to investigate the important system

metrics.

A. Design framework

A straightforward approach is to send the time stamp infor-

mation from the sender to the receiver. More specifically, we

attach a packet ID to each time stamp in order to calculate the

per-packet delay at the receiver side. This clearly introduces

a high overhead. Moreover, an immediate improved approach

is to send the compressed time stamps to the receiver. At the

receiver side, the time stamps can be recovered and the delay

can be calculated given the receiving time stamps. However,

this does not work in presence of packet loss and reordering.

For a single packet loss or reordering, the compressed informa-

tion cannot be used at the receiver since the receiver does not

know which one is lost. For example, as shown in Figure 1,

assume all packets are correctly received except that packet

s4 is lost. Since the receiver does not know which packet is

lost, it incorrectly calculates the sending time of packet r5
as ts5 (packet r5 should correspond to s6). Consequently the

delay is calculated as tr5 − ts5, which is actually incorrect for

packet r5. What is even worse is that a single packet loss

would pollute an entire group of packets. Thus the aggregated

delay performance (e.g., average delay) cannot be calculated,

not even say the per-packet delay. This problem is further

exacerbated when there exists packet reordering.

Our basic idea is to efficiently transmit the ordering and

time stamp information from the sender to the receiver. The

ordering information contains the position for each packet

from the sender. At the receiver side, not only the time stamps

should be recovered but also the correct ordering and lossy

information in order to calculate the per-packet delay.

It is challenging to represent the ordering and time stamp

information due to reasons from two aspects. First, there

is a significant difference between ordering information and

time stamp information. The ordering information should

be exactly recovered while the time stamp information can

have a small relative error. Second, even for the ordering

information, it is difficult to represent due to a large number

of possible orderings. For example, the possible ordering for a

group of n packets is n!. Considering for possible losses, the

number of combinations is even much higher. Therefore, using

lossless compression, which is a simple and straightforward

idea for the ordering information, leads to a low compression

ratio and thus is not suitable for ordering information. On

the other hand, lossy compression, which recovers the time

stamp information and has a high compression ratio, cannot

recover the ordering information and hence cannot be used

for per-packet delay calculation. This introduces challenges to

transmit and recover the ordering information at the receiver.

As shown in Figure 2, we design a two-layer representation

system. There are several properties that motivate our design.

First, in practical networks the reordering as well as loss

event will not be frequent. Normally, the ordering for received

packets should be very similar to that for packets at the

sender. Intuitively, based on the received information, the

ordering “difference” between the sender and receiver should

be small. Thus instead of transmitting all possible orderings,

the information that needs to be conveyed can be significantly

reduced considering the small ordering difference. Second, the

sending time stamps for packets sent sequentially should be

easy to compress.

More specifically, packets are first divided into groups at

the sender side. For each group, the sender calculates the

corresponding OPA (the first layer) as well as the compressed

time stamps (the second layer), and then transmit the two-

layer information to the receiver. At the receiver, the receiver

can efficiently recover packet ordering and lost packets with

OPAs. Then those two layers are combined for per-packet

delay measurement. We introduce the first layer in Section IV

and the second layer in Section V.

B. Building order preserving aggregator

At the sender side, we first divide the packets of each seg-

ment into groups based on some deterministic hash function

Hash(·). The hash function maps any string to an integer in

the range [1, g]. Therefore, packets in a segment are divided

into g groups, i.e., G1, G2, . . . , Gg . For brevity, we assume

each group has w packets , i.e., n = g × w. Later, we deal

with the case that the number of packets in different groups

are not equal in Section V. Using a randomized hash function

can also divide bursty packet losses (e.g., due to congestion

or buffer overflow) into different groups.

To simplify the presentation, we annotate an unique ascend-

ing sequence number to each packet in a group according to

its sending order. Hence, we denote packets in group Gi as

Gi = (si1, si2, . . . , siw), where sij is the jth packet in group

Gi.

We leverage the hash value to identify each packet. Since

the hash value does not contain any ordering information,

we use a subtle method to encode the ordering information

in the hash value. For each group Gi, the sender calcu-

lates the augmented hash value of the jth packet sij , i.e.,

hij = Hash(sij++j), where ++ is the string concatenation

operation. We call hij as the augmented hash of the jth packet

in group Gi. We also denote Hi as the augmented hash vector

as Hi = (hi1, hi2, . . . , hiw)
T , where (Hi)

T denotes the matrix

transpose of Hi.

For a group Gi, the sender calculates the augmented hash

values for all packets. At the receiver side, if the packet

ordering is exactly the same with that at the sender, the

augmented hash values should be exactly the same. Thus the

receiver can check the ordering information by transmitting

the augmented hash values from the sender to the receiver.

However, this would still incur a high overhead as there is

an augmented hash value for each packet. Meanwhile, this

cannot be used for the case with lost packets. As we have

mentioned, comparing to the total number of packets in each

group, the reordering and lost packets would be very rare.

Thus, the received ordering for each group of packets, which

is similar to the ordering for packets from the sender, contains

useful information that should be exploited.

In our approach we do not send augmented hash values

of all packets to the receiver. Intuitively, we only send the

reordering information to the receiver. To achieve such a goal,

we send the linear combinations of the augmented hash values

for all packets in the group. More specifically, the sender

calculates k linear combinations Bi = (bi1, bi2, . . . , bik)
T for

w packets in group Gi as follows

⎛
⎜⎜⎜⎝

a11 a12 . . . a1w
a21 a22 . . . a2w

...
...

. . .
...

ak1 ak2 . . . akw

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

hi1

hi2

...

hiw

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

bi1
bi2
...

bik

⎞
⎟⎟⎟⎠ (1)

Here A = (axy)1≤x≤k,1≤y≤w is a coefficient matrix. Later

we will introduce how to determine the coefficient matrix.

We call the vector Bi = (bi1, bi2, . . . , bik)
T for group Gi

the Combined Augmented Hash (CAH). The CAH can be

calculated by the sender. Eq. 1 can also be written as

A×Hi = Bi. (2)

It should be noted that Bi has k values and the Hi has w
values. For each group Gi, the sender calculates the combined

augmented hash Bi and then sends a tuple (Bi, w) to the

receiver, where Bi is the CAH and w is the number of

packets in group Gi. We call such a tuple the Order Preserving
Aggregator (OPA). For each segment, the sender can calculate

the OPAs for all groups in order. Then the sender can aggregate

tuples for multiple groups (e.g., in our implementation, the

combined augmented hash has a length of 24 bytes and w has

a length of 4 bytes) into packets and then send the packets to

the receiver.

C. Identify correct groups

To recover the ordering information, the receiver performs

the following steps.

First, the receiver uses the same delimiter packets from the

sender to find the corresponding segment.

Second, the receiver divides packets of a segment in-

to groups using the same method (i.e., Hash(·)) with the

sender. Assume the received groups are G′
1, G

′
2, . . . , G

′
g . For

the received group G′
i, we denote those packets as G′

i =
(ri1, ri2, . . . , riw′). We also denote the augmented hash for a

received packet rij as h′
ij = Hash(rij++j) and accordingly

H ′
i = (h′

i1, h
′
i2, . . . , h

′
iw′)T . For group Gi, the received OPAi

= (the Order preserving aggregator Bi, the number of packets

w). Based on the received information, there are two different

cases for a group G′
i.

• If w′ = w, we then calculate B′
i = AH ′

i . We require that

the first k rows in matrix A are independent. If Bi =
B′

i, the group of packets in G′
i should be same with the

packets in Gi from the sender. Notice that if G′
i �= Gi,

the probability for Bi = B′
i, i.e., AH ′

i = AHi should be

very low. Meanwhile, since we use the augmented hash

for each packet in the group, the ordering of packets at

the receiver should also be same with that at the sender.

Based on the OPAs, we can check if the packet ordering

are persevered at the receiver, and we can also efficiently

check if the two groups are exactly the same.

• w′ �= w or B′
i �= Bi, those two groups of packets are not

the same. This means that there may be packet losses or

packet reorderings from group Gi to G′
i.

D. OPA recovery

We now deal with the case when there are packet losses

or packet reorderings in a group. First, we consider the case

of packet loss. For presentation simplicity, assume there are

α = w−w′ packet losses. Packet reordering can be processed

similarly. Later, we explain how to deal with the case with

both lost packets and reordering packets. When the number

of lost packets α is less than k, we show that the order

preserving aggregator can be used to derive the reordering

packets, the lost packets and their corresponding positions.

Later we explain how to deal with the case when the number

of packet loss α is unknown.

Even we know there are α(α < k) packet losses in a group,

it is difficult to derive information for lost packets. First, we do

not know the correct position information for the w′ received

packets in this group and we have no information about which

α packets are lost. Second, due to packet losses, the receiver

does not have enough augmented hash values to calculate CAH

B′
i. It is difficult to use the CAH information. For the lost

packets, by no means we can calculate the delay for those

packets. Here, our goal is to determine the positions of the

lost packets and the positions of the received w′ packets.

Therefore, we need to determine the positions for the

received w′ packets among the w packets from the sender,

i.e., mapping the receiving w′ packets to the correct positions

from the sender. We denote σ = (σ1, σ2, . . . , σβ) as a mapping

vector. The jth element σj denotes that the jth packet in G′
i is

the same with the σj packet in Gi. σj = 0 means that the jth

packet in G′
i has no corresponding packet in Gi. Generally,

we have the following definition

Definition 1: For σ = (σ1, σ2, . . . , σw′), we define a σ-

mapping from a vector v = (v1, v2, . . . , vw′) to a vector of

length w as vσ = (vj1 , vj2 , . . . , vjw) where vσ(i) = vji if

there is index ji such that σji = i, otherwise, vσ(i) = ∅.

By performing σ-mapping for w′ packets in G′
i, we can ob-

tain a new ordering and position of packets. For example, if the

vector (received packets) v = (v1, v2, v3) and σ = (2, 3, 1),
we have vσ = (v3, v1, v2). If the vector v = (v1, v2, v3) and

σ = (2, 3, 0), we have vσ = (∅, v1, v2).
With the σ-mapping from the received w′ packets to w

packets in Gi, according to Eq. 2, we have∑
σj �=0

(a1,σj
·Hash(rij ++σj)) +

∑
�∃jσj=l

ak,l · hl = bi1

∑
σj �=0

(a2,σj ·Hash(rij ++σj)) +
∑

�∃jσj=l

ak,l · hl = bi2

· · ·∑
σj �=0

(ak,σj
·Hash(rij ++σj)) +

∑
�∃jσj=l

ak,l · hl = bik

(3)

The first part
∑

σj �=0(·) in the equation is to calculate the

combined augmented hash calculated by mapping the received

packets to the correct position. The second part
∑

�∃jσj=l(·) in

the equation is to calculate the combined augmented hash of

lost packets. The sum of those two parts should be the CAHs.

Denote the matrix Aσ = (ai,σj
) for 1 ≤ i ≤ k, 1 ≤ j ≤ w′

and σj �= 0. Denote the column vector Hσ = (Hash(rij +
+σj))

T for 1 ≤ j ≤ w′ and σj �= 0. Denote σ̄ = {i| � ∃jσj = i
for all j and 1 ≤ i ≤ w}. Denote the matrix Aσ̄ = (ai,l) where

� ∃jσj = l and 1 ≤ i ≤ k. Denote Hσ̄ as a unknown column

vector of length |σ̄|. Eq. (3) can be written as

Aσ ×Hσ +Aσ̄ ×Hσ̄ = Bi. (4)

There are two challenges for us to calculate the position

information for lost packets and received packets according to

the equation. First, we do not know the position of the received

packets and thus we do not have information for Hσ . Second,

we do not have the information for the lost packets. Thus we

do not have information of Hσ̄ . Thus both Hσ and Hσ̄ are

unknown in Eq. 4. Meanwhile, we do no know the mapping

vector σ of the received packets, generally the equation cannot

be solved.

While we cannot solve the equation to obtain the value of

Hσ and Hσ̄ , here we design a subtle method. In this method,

we leverage the properties of packets in Gi and G′
i, to first

calculate the value of σ without solving the equation.

We first consider different cases for Eq. 4. First, if there

are no lost and reordering packets, we have w′ = w and σ =
(1, 2, . . . , w). In this case we can easily obtain Hσ and Hσ̄ .

This case can be easily verified with Eq. 4. Second, there are

some packet losses. In most cases, the lost packets should be

much less comparing to the number of received packets. Thus

we can enumerate all possible packet losses and reorderings.

For each possible packet loss and reordering, we can obtain

a mapping σ. Based on σ, we can solve Eq. 4. Intuitively, as

long as the number of lost packets and reordering packets is

much less than the number of normal packets, the Eq. 4 can

be solved.

Without loss of generality, assume there are α packet losses.

Thus we have |σ̄| = α. Meanwhile, Aσ has k − α columns.

For any mapping vector σ, we can calculate Hσ based on the

received packets. Accordingly, we have the following mapping
equation:

Aσ̄[1, α]×Hσ̄[1, α] = Bi[1, α]−Aσ[1, α]×Hσ[1, α] (5)

where Aσ̄[1, α] is row 1 to row α of Aσ̄ , and similarly

defined for Hσ̄[1, α], Bi[1, α], Aσ[1, α] and Hσ[1, α]. If we

require that Aσ̄[1, α] is invertible, the columns of Aσ̄[1, α]
are independent. Thus we can solve the above equation and

obtain the value for Hσ̄ . After we have solved the Eq. 4, we

still do not know whether the solution is a feasible solution

since we do not have the ground truth for Hσ̄ . Therefore,

to obtain the correct position information for the received

and lost packets, we have the following two steps. First, the

Eq. 4 should be solvable, i.e., the columns in Aα
σ̄ should

be independent. Second, we should leverage the matrix A to

verify the feasibility of the solution of Hσ̄ .

For the first step, we carefully construct the coefficient

matrix A such that any α columns from the first α rows are

independent. We will introduce more details about this step

in the next subsection. In the second step, we require α < k.

As α < k, we can use the remaining k − α rows as checking

rows. Accordingly, we have the checking equation:

Aσ̄ [α+1, k]×Hσ̄ [α+1, k] = Bi[α+1, k]−Aσ [α+1, k]×Hσ [α+1, k].
(6)

In summary, here we have the mapping equation and checking

equation. The mapping equation is used to find the possible

mappings from the received packets to the sent packets. The

checking equation is used to verify the feasibility of the

Algorithm 1 OPARecovery

1: σ ← 0;
2: Calculate Bi from the received OPA for group Gi;
3: for all possible σ do
4: Calculate Hσ , Aσ;
5: Calculate Hσ̄ according to mapping equation Eq. 5;
6: if The checking equation Eq. 6 is satisfied then
7: return (σ, σ̄);
8: return (NULL, NULL);

mapping. If σ is a correct mapping vector, it should satisfy the

checking equation. Otherwise, if σ is not a correct mapping

vector, the checking equation cannot be satisfied.

Therefore, we can enumerate possible σ to calculate Hσ .

Based on Hσ and the mapping equation Eq. 5, we can obtain

Hσ̄ . Then we can check Hσ̄ with the checking equation Eq. 6.

Intuitively, the basic idea of the method is as follows. First,

we enumerate all possible positions for the received packets.

Based on the positions, we can obtain Hσ and Hσ̄ . Then we

can further use the checking equation to check whether the

solved Hσ and Hσ̄ are feasible. If yes, we call σ a feasible

mapping vector. Accordingly, we obtain the correct position

for the received packets as well as the lost packets. Otherwise,

the position vector σ is not correct. Notice that, as we will

show later, considering the small number of packet losses and

reorderings, we can significantly reduce the enumeration cost.

E. Constructing the coefficient matrix

To ensure that Eq. 5 is solvable, we require that any α
columns in the submatrix Aσ[1, α] are independent. Here we

leverage the Vandermonde matrix to construct the matrix A,

i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
a1 a2 . . . aw
a21 a22 . . . a2w
.
.
.

.

.

.
. . .

.

.

.

ak1 ak2 . . . akw

⎞
⎟⎟⎟⎟⎟⎠

(7)

where ai �= aj for i �= j. It can be proved that any α columns

in submatrix Aσ[1, α] are independent. This can be derived

from the property of the matrix A. Therefore, we can always

solve the mapping equation Eq. 5.

Normally, we only need one checking row (checking equa-

tion) for each group. Therefore, in a group with α lost packets,

i.e., |σ̄| = α, we only require that the matrix A has α + 1
rows. Then we can use the first α rows for mapping equation

and the last row (row α + 1) for the checking equation to

verify if a solution is feasible. The basic algorithm for OPA

recovery is shown in Algorithm 1. Line 2 means to recover

the CAH from the received OPA for group Gi. Line 4 to

line 5 show the calculation of Hσ̄ . Line 6 shows using the

checking equation to verify Hσ̄ . As we can see, with more

lost packets, the computation overhead is higher. For a group

of w packets with α lost packets, the number of cases we

need to check is C(w,α), i.e., the number of loops executed in

Algorithm 1. Later, in Section VI, we will show how to reduce

the computation overhead especially when the loss ratio for a

segment is high. The proposed method only requires to send

Bi of length α+1 while the original method requires sending

all the w time stamps and the packet IDs. Considering that in

most cases α � w, the proposed method significantly reduces

the overhead.

Example. We use a simplified example to explain the

basic procedure of our approach. Assume a group G1 from

the sender has three packets (s11, s12, s13), say (2, 5, 7).

We use a very simple augmented hash function as hij =
Hash(si,j++j) = si,j++j. The sender performs the following

steps:

• the augmented hash values for those three packets are

h11 = s11++1 = 21, h12 = s12++2 = 52, and

h13 = s13++3 = 73 and H1 = (h11, h12, h13)
T =

(21, 52, 73)T , respectively;

• assume the coefficient matrix A =

(
1 1 1
1 2 3

)
. Thus

the CAH is calculated as

B1 = AH1 =

(
1 1 1
1 2 3

)⎛
⎝ 21

52
73

⎞
⎠ .

Therefore, B1 = (1·21+1·52+1·73, 1·21+2·52+3·73) =
(146, 344);

• the packet counter w is 3;

• the OPA = ((146, 344), 3).

The receiver receives OPA = ((146, 344), 3). If the re-

ceiver packets are G′
1 = (2, 5, 7). We can calculate H ′

1 =
(21, 52, 73). Thus we have B′

1 = AH ′
1 = (146, 344) and

w′ = 3. Therefore, OPA′ = ((146, 344), 3) = OPA. Thus we can

see from the received OPA that there is no loss and reordering.

Then we can calculate the delay for each packet according to

the compressed time stamps.

If the received two packets are r11 = 2, and r12 = 7, the

second packet 5 is lost and the other two packets are received.

In such a case, we calculate the number of lost packets as

α = w′ − w = 1. Then according to Algorithm 1, we check

the position of the lost packet. Assume that the first packet is

lost, i.e., (x, 2, 7), according to the augmented hash function

we have h′
12 = 22 and h′

13 = 73. Thus we have

(
1 1 1
1 2 3

)⎛
⎝ h′

11

h′
12

h′
13

⎞
⎠ =

(
146
344

)
.

By 1 · h′
11 +1 · h′

12 +1 · h′
13 = 146, we have h′

11 = 51. Using

this for the checking equation, we have 1 · h′
11 + 2 · h′

12 +
3 · h′

13 = 314 �= 344. Thus the lost packet is not the first

packet. Similarly, we can check whether the second packet is

lost. Finally, we identify the second packet as the lost packet

and obtain σ = (1, 3).

V. DELAY CALCULATION

After we have recovered the positions for all received

packets, we then calculate the per-packet delay.

Algorithm 2 CalculateDelay

1: (σ, σ̄) ← OPARecovery();
2: Record the received time stamps tr1, t

r
2, . . . , t

r
w′ ;

3: Recover the sending time stamps t̃s1, t̃
s
2, . . . , t̃

s
w;

4: td(i) ← −1 for 1 ≤ i ≤ w′; //initialization
5: for i = 1 to |σ| do
6: if σ(i) �= 0 then
7: td(i) ← tri − t̃sσ(i);

A. Time stamp compression

To calculate the fine-grained delay, the sender needs to send

the time stamp information to the receiver. With OPA, we can

efficiently recover the ordering and loss information. We send

the compressed time stamps to the receiver in the second layer.

There are two properties for time stamps that facilitate the

compression. First, the variation of each time stamp will not

be large since packets are sent on a high speed data link, e.g.,

for a link up to several Gbps. Second, as we have recovered

the ordering/loss information in the first layer, here we can

use lossy compression method to achieve a high compress

ratio. In our implementation, we use wavelet for time stamp

compression.

We have also observed two merits of the wavelet compres-

sion: the sum of error for all recovered time stamps is nearly

zero-sum. Thus the average delay calculated is very closed to

the true average. Second, the error is evenly distributed and

very small, thus bursty and abnormal delays can be captured

even in presence of time stamp error. It is worth noting

that time stamp compression is not the focus of our method

and other time stamp compression methods can be leveraged,

e.g., [18] [19].

The receiver first recovers the sending time stamps. Denote

the recovered time stamps as t̃s1, t̃
s
2, . . . , t̃

s
w. For each packet,

the receiver can also record the receiving time stamps tri1 , t
r
i2
,

. . . , triw′ . According to the result of σ, we can calculate the

position for the received packets. Thus we can calculate the

delay for those w′ packets by the receiving time stamp − the

sending time stamp, i.e., td(i) = tri − t̃sσ(i), where σ(i) is the

ith element in σ and σ(i) �= 0. The main steps for calculate

delay are shown in Algorithm 2. Line 2 and Line 2 show how

to obtain the sending and receiving time stamps. Line 5-7 show

how to use the mapping vector to calculate the delay for each

packet.

B. Deal with reordering

It can be seen that the reordering can also be processed with

our proposed method. In presence of reordering, we need to

accordingly enumerate possible positions and mapping vector

σ. For example, for a group of four packets (1, 2, 3, 4). If

the received packets are (1, 3, 2). We have σ = (1, 3, 2).
Intuitively, we need to check all possible reorderings and

generate corresponding mapping vector σ. Practically, for a

received packet rx, the position difference between the original

position and the reordered position is often bounded by a shift

d [10]. Thus in the mapping vector σ the possible positions

are x − d, x − d + 1, . . . , x, x + 1, x + d. This significantly

reduces the computation overhead for solving the mapping

equation. With a grouping method, the possible positions for

a reordering packet are further reduced. For example, if we

have 10 groups of packets, the number of possible positions

for a packet in the grouping results is reduced from d to d/10.

For reordering with no shift bound, the position cannot be

identified with OPA.

C. Discussion

It is possible that different groups in a segment have

different sizes. In case that some group has more than w
packets, the sender can extend the columns of the coefficient

matrix A according to the construction method. As long as

matrix A has more than w columns, the proposed method can

still be used to recover the correct positions.

To achieve fine-grained delay measurement, it is required

to maintain a buffer for all receiving time stamps. As our

approach processes packets segment by segment, the maxi-

mum buffer size we need to maintain is the same with the

segment size. In order to further reduce the memory overhead,

we use the following approaches. First, we can choose an

appropriate segment size to fit the memory constraint. Second,

our approach can also be used in a on-demand manner. An user

can specify particular constraints on the packets that need to be

measured. For example, an user may be interested in packet

delay for a particular protocol [12]. The user can measure

packets in a particular flow or measure packets in a particular

time period. In such cases, very limited information needs to

be maintained by the router with our method. Recently, a fine-

grained delay storage and query architecture is proposed [10].

This can be further combined with our approach for efficient

per-packet storage and query.

It should also be noted that considering the low communi-

cation overhead and concise representation of OPA approach,

the received information can be stored on the receiver. The

stored information can then be used to calculate per-packet

delay.

It is possible that packet loss may not be random, e.g.,

packet loss may be bursty due to congestion. In such a case,

our method uses a random hash function to divide packets

into groups. Bursty packets will be grouped into different

groups. Thus the distribution of packet losses will impact the

effectiveness of our approach.

VI. ANALYSIS

A. Computation overhead

As introduced in Section IV, an important factor impacts

the performance of our approach is the computation overhead.

We need to enumerate different combinations of errors. In our

approach, the computation overhead is significantly reduced

after packet grouping considering that the loss rate is usually

low. As we can see from the Algorithm 1 and Algorithm 2,

the overhead is determined by the number of errors and the

number of groups rather than a fixed probing rate. On one

hand, with more groups, the number of OPAs as well as the

102 103 104 105 106 107 1080.5

0.6

0.7

0.8

0.9

1

overhead

P
er

ce
nt

ag
e

of
 re

co
ve

re
d

pa
ck

et
s

Fig. 3: Overhead with respect to recovered packets.

information to the receiver would increase. For each group,

there should be at least one augmented hash value. In the

extreme case, a group contains only one packet and the number

of augmented hash values is equal to the number of packets,

leading to a high communication overhead. On the other hand,

with more groups, the expected number of errors in each group

will become smaller and thus the computation overhead for

each group will be reduced. Therefore, we should carefully

choose the number of groups considering the computation

overhead and communication overhead.

Assume we divide the packets into g groups, we first

calculate the probability for the number of errors in each

group. Assume there are n packets and a total number of δ
errors (including packet losses and reorderings) in a segment.

It should be noted here that since packets are grouped based on

a randomized hash function, thus here it does not matter for the

distribution of the losses and reorderings. For example, losses

and reorderings can be randomly distributed or be bursty.

Denote pr(err = ξ) as the probability that a particular group

has ξ errors, we have

pr(err = ξ) = C(δ, ξ) · (1
g
)ξ · (1− 1

g
)δ−ξ (8)

For ξ packet losses, the number of possible permutations we

need to check in each group is C(w, ξ). Further, for ξ packet

reordering, the number of possible permutations is d ·C(w, ξ).
Intuitively, for a large shift in reordering, e.g., d = 1000,

the computation overhead will be very large. However, by the

grouping technique, the shift can be significantly reduced. For

example, with 100 groups, the original shift of d = 1000 can

be reduced to 1000/100 = 10 in average in each group, which

significantly reduces the computation overhead. In the original

data, the reordering shift of d is reduced to an average shift

of d/g after dividing the data into g groups. We calculate the

overhead as the number mappings in Algorithm 1 we need to

test, which also refers to the number of loops (line 2 ∼ line

7) to be executed in Algorithm 1. We have

E(overhead) ≤ d/g ·
w∑

ξ=0

C(w, ξ) · pr(err = ξ) · g

= d ·
w∑

ξ=0

C(w, ξ) · pr(err = ξ)

(9)

In practice, we select the number of groups proportional to

the number of errors, e.g., in our implementation, we select the

number of groups as 2δ ∼ 10δ. Usually, the number of errors is

20 40 60 80 100
0

5

10 x 105

of groups

re
co

ve
re

d

200 400 600 800 1000
0

5

10 x 105

of groups

re
co

ve
re

d

Fig. 4: Delays that can be calculated with respect to the

number of groups for a total of 106 packets. Loss ratio

ρ = 10−5 for the upper figure and ρ = 10−4 for the below

figure.

not high, thus the number of groups is also not high. Increasing

the number of groups significantly reduces the computation

overhead. To further reduce the number of errors, we can also

leverage the sampling methods as in [5] [6] [7] [20] [21].

In our approach, considering that the number of errors

should be very low in each group, we can ignore those groups

with errors more than a threshold to reduce the overhead. We

calculate the expected overhead E(overhead′) as

E(overhead′) = d ·
k∑

ξ=0

C(w, ξ) · pr(err = ξ) (10)

where k is the maximum number of errors we consider in a

group. With such a technique, there may exist groups that can-

not be recovered due to errors more than k. For a larger k, there

will be more recovered packets (packets that are not ignored).

Meanwhile, the computation overhead will also accordingly

increase. Thus we calculate the number of recovered packets

with respect to computation overhead. Figure 3 shows the

percentage of recovered packets with respect to computation

overhead. The number of groups is set to 10δ. Compared

with existing approaches based on a fixed sampling/probing

overhead, the overhead of our proposed approach is related

to the number of errors in each group. We can increase

the number of groups when the errors increase. Since errors

in most networks should be very low, the corresponding

computation overhead should also be very low. As shown in

Figure 3, the computation overhead is very low to recover most

of the packets, e.g., the computation overhead is less than 105

to recover more than 99.99% of packets. It should also be

noted that when the error rate is very high (e.g., 1/10), though

increasing the number of groups can reduce the computation

overhead, this would inevitably increase the communication

overhead. Accordingly, the benefit of OPA becomes small.

It can also be seen that delays for most of the packets can

be successfully calculated. For example, Figure 4 shows the

number of packet delays that can be calculated when we only

consider groups with less than two errors (k = 2). We can see

that delay for almost all packets can be calculated.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

relative error

C
D

F

RLI
OPA

Fig. 5: comparison of relative

per-packet delay error of RLI

and OPA.

0 20 40 60 80 100
0

50

100

150

200

packet index

de
la

y
(m

s)

original delay
RLI

0 20 40 60 80 100
0

50

100

150

200

packet index

de
la

y
(m

s)

original delay
OPA

Fig. 6: left: true delay and the corresponding recovered

large delays with RLI; right: true delay and corresponding

recovered large delays with OPA.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

relative error

C
D

F

RLI
OPA

Fig. 7: error for estimation of

large delays in RLI and OPA.

B. Communication overhead

We also consider the total communication overhead from the

sender to the receiver. The communication overhead consists

of two parts according to the two-layer design as shown in

Figure 2. The first part is the overhead for sending OPAs.

The second part is the overhead used for sending compressed

time stamps. For the first part, according to our analysis in the

above section, the overhead in each group is (ξ + 1) · L1 to

calculate packet delay, where ξ is the number of errors in a

group and L1 is the size of OPA (12 bytes in our approach).

More specifically, the total communication overhead for OPAs

is 3L1 = 3 × 12 = 36 bytes for groups with no more than

2 errors. For the second part, the overhead depends on the

compression ratio. The overhead can be calculated as θL2

where θ is the compression ratio and L2 is the number of

time stamps. Thus the total overhead is 3L1 + θL2 for each

group.

In our implementation, assume we have 100 groups for

each segment, a compression ratio of θ = 1/10 and a time

stamp of 4 bytes, the total overhead is 100 × 36 + 100 ×
10000 × 4 × 1/10 = 403600 bytes for 106 packets, which

can be sent in about 269 packets (with MTU = 1500 bytes).

The amortized overhead is 269/106 ≈ 3/104. This also means

for 104 packets, we only introduce no more than 3 packets to

achieve fine-grained delay and loss measurement.

VII. EVALUATION

A. Data set

As prior works [5] [6], we use the traffic data collected on

real-world routers at San Jose (SANJ) and Chicago (CHIC)

respectively. We use the Weibull delay distribution model to

generate delay in our evaluation. The delay has a cumulative

distribution function pr(X ≤ x) = 1− e(−x/λ)K where λ and

K denote the scale and shape of the distribution. We use the

same model as in [7] [6] for delay distribution. Those two data

sets and the settings are also used in other delay measurement

approaches, e.g., [5] [7] [6]. As in those approaches, we add

random losses and reorderings according to a specified loss

and reordering rate that we introduce in each experiment.

B. Methodology

We implement the OPA data structure to calculate per-

packet delay. For the time stamp compression part, there

are many efficient wavelet compression methods [22]. We

use the standard wavelet compression for all time stamps.

Nevertheless, other wavelet compression methods can also be

used. At the receiver side, we accordingly calculate per-packet

delay by combining OPA and compressed time stamps. We

evaluate the performance of the calculated per-packet delay in

terms of per-packet relative delay error. We also demonstrate

that our method can be used to detect abnormal delays that

would otherwise unable to reveal.

To compare the performance of OPA with existing ap-

proaches, we implement the methods of LDA [5], FineCom-

b [7] and RLI [6]. As for those methods only RLI can provide

per-packet delay measurements, we first compare the perfor-

mance of OPA with RLI in terms of relative per-packet delay

error. We also show that compared with RLI, OPA provides

more accurate fine-grained delay measurements. Moreover, we

show that OPA can also identify the delay anomalies that are

ignored with RLI.

Further, we compare OPA with LDA, FineComb, RLI in

terms of

• average delay,

• standard deviation,

• overhead, and

• number of delays that can be calculated.

C. Fine-grained delay measurement

We first compare OPA with RLI and evaluate the perfor-

mance of OPA for fine-grained delay measurement. We vary

the loss rate from 10−5 to a relative high rate 10−3. As we

have introduced, OPA is effective to detect abnormal delays

(e.g., large delays). Thus we randomly add large delays to the

delay distribution with a probability 1/104. Since the data rate

in our evaluation is relative stable, the reference packets are

added in a fixed rate of 1/1000. We also evaluate other rates

for the reference packet, e.g., 1/300 and 1/10 as suggested

in [6]. We find that the result is similar to that of 1/1000. Thus

we choose a rate of 1/1000 in order to reduce the overhead

of RLI.

10−5 10−4 10−310−8

10−6

10−4

10−2

100

loss rate

re
la

tiv
e

er
ro

r

LDA
FineComb
RLI
OPA

(a)

10−5 10−4 10−310−4

10−3

10−2

10−1

100

loss rate

re
la

tiv
e

er
ro

r

LDA
FineComb
RLI
OPA

(b)

10−5 10−4 10−310−8

10−7

10−6

10−5

10−4

10−3

loss rate

ov
er

he
ad

LDA
FineComb
RLI
OPA

(c)

10−5 10−4 10−30.4

0.5

0.6

0.7

0.8

0.9

1

loss rate

fra
ct

io
n

of
 c

al
cu

la
te

d
pa

ck
et

s

LDA
FineComb
RLI
OPA

(d)

Fig. 8: Comparison of LDA, FineComb, RLI and OPA. (a) error of average delay, (b) error of standard deviation, (c)

communication overhead and (d) fraction of delays that can be calculated.

For comparison, we define the per-packet relative delay er-

ror and average delay error. Assume there are totally n packets.

Denote the true delay of packet i as td(i) where 1 ≤ i ≤ n.

The average delay is calculated as t̄d =
∑n

i=1 td(i)/n. For

an approach F , we denote the estimate delay for packet i by

F with tFd (i). Therefore, we calculate the per-packet relative

error for packet i as

εFi = (tFd (i)− td(i))/td(i) (11)

Meanwhile, we define the average delay error as

η = (t̄Fd − t̄d)/t̄d (12)

It should be noted that we can calculate per-packet relative

delay error only for RLI and OPA. For other protocols, we

cannot calculate the per-packet delay and thus the per-packet

relative delay error. First, we compare the per-packet relative

delay error provided by OPA and RLI. Figure 5 shows the CDF

of per-packet relative delay error. There are two observations

from this figure. First, the relative per-packet delay error for

RLI is larger than OPA. Second, the relative per-packet delay

error is very small for OPA. In our evaluation, most of the

relative per-packet delay error is less than 5%. The averaged

per-packet relative delay error is 2%.
To investigate how OPA can be used to effectively calculate

per-packet delay, we compare the calculated delay by RLI and

OPA with the original delay. In this experiment, we insert large

delays to normal delays to see if RLI and OPA can correctly

identify those large delays. As shown in Figure 6, the left

figure illustrates the calculated delay with RLI and the original

delay. We can see that most of the calculate delays with RLI

are very small. This is because RLI uses interpolation based

approach between reference packets. For such a method, since

the large delays are infrequent, packets with large delays are

not likely to be chosen as the reference packets. Therefore,

the delay calculated from interpolation with reference packets

of small delays will also be very small, resulting in a large

estimation error for those large delays. This also explains

Figure 5 that RLI has a high relative error. While in the

right figure of Figure 6, we can see that OPA can effectively

estimate each packet especially for those large delays with a

small error. It should be noted in Figure 6, we only plot the

large delays and their estimations for clarity.

To further investigate the performance, we calculate cumu-

lative distribution of per-packet relative delay error for those

large delays in Figure 7. In Figure 7, we show the cumulative

distribution of delay error for RLI and OPA respectively. We

have two findings. First, we can see that with OPA, per-packet

delay can be efficiently recovered since most of the relative

errors are distributed between -0.05 and 0.05. The relative per-

packet delay error of RLI is larger than OPA. Second, with RLI

those large delay are smoothed, leading to a negative relative

error as shown in Figure 7.

D. Comparison with existing approaches (LDA, FineComb,
RLI)

In additional to per-packet delay, we also compare OPA

with existing approaches (LDA, FineComb and RLI) in terms

of average delay and standard deviation. Further, we also com-

pare the overhead and ratio of recovered delays (i.e., delays

that can be calculated) for those four approaches in order to

examine their practical performance. In this experiment, we

also randomly add large delays to the original delay.

Figure 8 (a) shows the comparison of the error for average

delay with those four approaches. We can see that all those

four approaches have a very small error for the average delay.

For brevity, here we use the absolute value of relative error.

Figure 8 (b) shows the comparison of error for standard

deviation with those four approaches. We can see that all four

approaches have acceptable relative error. RLI has the largest

relative error. As we have explained, RLI cannot identify those

large delays, leading to a larger error in average delay and

standard deviation.

Figure 8 (c) shows the communication overhead from the

sender to the receiver for delay calculation with those four

approaches. It is worth noting that RLI and OPA calculate per-

packet delay while LDA and FineComb calculate the aggre-

gated delay statistics. The overhead of LDA is determined by

the number of groups and banks. The overhead of FineComb

is determined by the size of stash and the number of groups.

The overhead of RLI depends on the number of reference

packets. The overhead of OPA depends on the number of

groups and the compression ratio. Figure 8 shows that the

overhead of OPA and RLI is higher than that of the other two

approaches. This is reasonable since OPA and RLI provide per-

packet measurements rather than aggregated delay statistics.

Nevertheless, the overhead of OPA is still in the order of 10−4,

which indicates OPA only needs several packets to measure

delay for 10000 packets. This is an acceptable overhead for

practical use. The result also coincides with the analytical

result in Section VI. It can also be seen that RLI has a relative

stable overhead as long as the data rate and rate for reference

packets are fixed.
Figure 8 (d) shows the fraction of recovered delays (i.e.,

delays that can be calculated for different approaches). In LDA

and FineComb, a group of packets cannot be used if the group

contains lost packets. The sampling technique can reduce the

expected packet losses. However, it also reduces the total

number of recovered delays. For RLI, almost all delays can be

calculated except for lost packets. For OPA, theoretically, OPA

can recover all groups of packets with losses and reordering.

In practical implementation, we only calculate the delays in

groups with no more than two errors. There may exist groups

with more than two errors and thus those groups are not

recovered. In practice, as shown in Figure 8 (d), by carefully

selecting the group number, the fraction of recovered delays

is very high for OPA and RLI, which is higher than that of

the other two approaches.

VIII. CONCLUSION

Fine-grained delay measurement is critical to understand

and improve system performance and diagnose network prob-

lems. We design a new data structure named order preserving

aggregator (OPA) for fine-grained delay measurement. Based

on OPA, ordering and loss information can be efficiently

represented and recovered at the receiver with a small overhead

by exploiting intrinsic data properties, i.e., most of received

packets are order-preserved and correct. Leveraging OPA, we

propose a two-layer design to efficiently calculate the per-

packet delay. We implement OPA and evaluate its performance

with real-world data. Results show that OPA achieves per-

packet delay with 2% relative error while only incurring 0.04%

overhead. We believe OPA can be widely used as an efficient

per-packet delay and loss measurement approach in system

management, performance monitoring and diagnosis.

ACKNOWLEDGEMENT

This work is supported in part by NSFC under grant

61202359, 61373166, NSFC Major program under grant

61190110 and China Post doctoral Science Foundation under

grant 2012M520013.

REFERENCES

[1] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in Proceedings of
SIGCOMM, 2008.

[2] M. Keller, J. Beutel, and L. Thiele, “How was your journey? uncovering
routing dynamics in deployed sensor networks with multi-hop network
tomography,” in Proceedings of ACM SenSys, 2012.

[3] R. MARTIN. [Online]. Available: Wall street’s quest to process data at
the speed of light. http://www.informationweek.com/news/infrastructure/
showArticle.jhtml?articleID=199200297.

[4] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Mea-
surement and analysis of single-hop delay on an ip backbone network,”
IEEE Journal on Selected Areas in Communications (JSAC)., vol. 21,
no. 6, pp. 908–921, 2006.

[5] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese, “Every
microsecond counts: Tracking fine-grain latencies with a lossy difference
aggregator,” in Proceedings of ACM SIGCOMM, 2009.

[6] M. Lee, N. G. Duffield, and R. R. Kompella, “Not all microseconds
are equal: fine-grained per-flow measurements with reference latency
interpolation,” in Proceedings of ACM SIGCOMM, 2010.

[7] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese, “Fine-grained
latency and loss measurements in the presence of reordering,” in
Proceedings of SIGMETRICS, 2011.

[8] M. Keller, L. Thiele, and J. Beutel, “Reconstruction of the correct
temporal order of sensor network data,” in Proceedings of IPSN, 2011.

[9] M. Shahzad and A. X. Liu, “Noise can help: Accurate and efficient per-
flow latency measurement without packet probing and time stamping,”
in Proceedings of ACM SIGMETRICS, 2014.

[10] M. Lee, N. Duffield, and R. R. Kompella, “Maple: A scalable architec-
ture for maintaining packet latency measurements,” in Proceedings of
ACM SIGCOMM IMC, 2012.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Ab-
stractions for network update,” in Proceedings of the ACM SIGCOMM,
2012.

[12] A. A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates,
Y. Zhang, and J. Emmons, “Detecting the performance impact of
upgrades in large operational networks,” in Proceedings of the ACM
SIGCOMM, 2010.

[13] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
fault lines: Understanding the causes and impact of network failures,”
in Proceedings of the ACM SIGCOMM, 2010.

[14] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in Proceedings of the ACM SIGCOMM, 2012.

[15] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proceedings of
the ACM SIGCOMM, 2011.

[16] “Ieee. standard for a precision clock synchronization protocol for
networked measurement and control systems, 2002. ieee/ansi 1588
standard.”

[17] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in Proceedings of USENIX OSDI,
2002.

[18] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Near-optimal sparse fourier representations via sampling,” in Proceed-
ings of STOC, 2002.

[19] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss, “Fast, small-space algorithms for approximate histogram
maintenance,” in Proceedings of STOC, 2002.

[20] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,” IEEE/ACM Transaction on Networking, vol. 9, no. 3,
pp. 280–292, 2001.

[21] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” in Proceedings of SIGCOMM, 2004.

[22] O. Rioul and P. Duhamel, “Fast algorithms for discrete and continuous
wavelet transforms,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 569–586, 1992.

