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Abstract. Differentiated service (DiffServ) is a mechanism to provide the Quality of Service (QoS) with a certain
performance guarantee. In this paper, we study how to design the DiffServ multicast when the participants are
selfish. We assume that the cost of a linko provide a multicast service with bandwidth demanid a; - z. This
generalizes the traditional link weighted Steiner tree problem. The main contribution of the paper is as follows. This
paper studies the strategyproof mechanism design and fair payment sharing scheme for DiffServ multicast. First of
all, we show that a previous approximation method does not imply a strategyproof mechanism. We then give a
polynomial time method to construct a multicast tree whose cost is no more tiiraes of the optimal when the

cost coefficient of each link is known. Based on this tree, we design a truthful mechanism for DiffServ multicast,
i.e., we give a polynomial-time computable payment scheme to compensate each chosen relay links such that each
link maximizes its profit when it declares its coefficient truthfully. We also study how to share the payment to relay
links among the given set of receivers who require the multicast service. Both positive results and negative results
are presented.
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1 Introduction

The Differentiated Services framework (DiffServ) [1, 2] has been proposed to provide multiple Quality of Service
(QoS) classes over IP networks. DiffServ is built upon a simple model of traffic conditioning and policing at the links
of the network in addition to classifying flows into different service classes. The traffic is forwarded using simple
differentiated treatments, called per-hop behaviors (PHBS), in the core of the network. This differential treatment
results in differential pricing [3], which is one of the motivating factors for adopting DiffServ by major network
providers and ISPs.

Multicast has been a popular mechanism for supporting group-based applications, such as video-conference and
content distribution. Although multicast and DiffServ are complementary technologies, there are still some architec-
tural conflicts between them. The first notable conflict is that multicast often requires the maintenance of per-group
state information at all routers, while DiffServ usually relies on statelessness of the core. The second notable con-
flict is that multicast is often based @eceiver-drivenQoS, while DiffServ is usually based @ender-driverQosS.
Edge-based multicast (EBM) approach was proposed recently to address these possible conflicts. In this paper, we
characterize the different QoS of the links by the amount of bandwidth they dedicate to the multicast transmission.

In a multicast, different receivers of a multicast group could request different bandwidth demands. Each link
of the network may have different costs of providing multicast with different bandwidth dedication [4]. Due to the
heterogeneity in receivers’ demand requirements, different links in a multicast tree will carry different traffic such that
the demand requirements of downstream receivers are satisfied. The cost of a link in a multicast tree is then the cost
needed to dedicate a certain bandwidth for downstream receivers. This is often the maximum bandwidth required by
downstream receivers. Then the DiffServ multicast problem is to finekaand the bandwidth reservation at each link
such that the receivers’ bandwidth QoS demand are met. Recall that the traditional Steiner tree problem is NP-hard for
both node weighted [5, 6] and link weighted graph [7, 8], and it is a special case of constructing the DiffServ multicast
tree with the minimum cost.

What makes things more complicated is that the links that relay the packets nmaytm®operativeinstead of
cooperativeassumed by previous protocols. This means that the relay links will aim to maximize their own benefits
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instead of the whole network’s performance. We assume that a link will provide the service to receivers only if they
received a payment large enough to compensate its relay cost. To do so, each link is first asked to report its relay cost
and then a payment to this link is calculated based on some mechanisms. It is not often in the best interests of these
relay links to report their costs truthfully when we pay whatever they asked. Thus, instead of paying the links their
declaredcosts, we should design some payment scheme that can ensure all links reveal their true costs out of their own
interests, which is known agrategyproof The strategyproof mechanism for traditional multicast has been previously
addressed in [9, 10]. However, unlike the traditional multicast in which every link Ha®dcost in the multicast
transmission, each link may incur different costs for different bandwidth demands in DiffServ multicast. Furthermore,
the strategyproof payment scheme is not the end story for the DiffServ multicast. A natural question to ask is that how
these payments (or costs if the links are indeed cooperative to report their true costs alwéaidyaskared among

the receivers, which is known as thaulticast payment sharingroblem. In summary, in this paper, we study three
different aspects of the DiffServ multicast: the construction of the multicast tree that has low cost, a strategyproof
payment scheme, and a fair payment sharing scheme.

The main contribution of the paper is as follows. First of all, we show that a previous approximation method
does not imply a strategyproof mechanism. We then characterize the necessary and sufficient conditions about the
multicast tree construction methods such that we can design a strategyproof payment scheme based on this. We give a
polynomial time method to construct a multicast tree whose cost is no mor8 tiraas of the optimal when the cost
coefficient of each link is known. We then design a truthful algorithm mechanism for DiffServ muliieastie give
a polynomial-time computable payment scheme to compensate all chosen relay links such that each link maximizes
its profit when it declares its coefficient truthfully. We also study how to share the payment to relay links among the
given set of receivers who require the multicast service. Both positive results and negative results are presented.

The rest of the paper is organized as follows. In Section 2, we specify the network model, define the problem,
and review the necessary technical preliminaries. We also briefly review some approximation methods to construct the
multicast tree. We study how to pay the links in Section 3 and how to share the payment in Section 4 after presenting
our approximation method for constructing the multicast tree. We conclude our paper by pointing out some possible
future researches in Section 5.

2 Preliminaries and Previous Works

2.1 Algorithmic Mechanism Design

In a standard model of algorithm mechanism design, there agents{1,2,--- ,n}. Each agent € {1,--- ,n} has
someprivateinformationt;, called itstype e.qg. its cost to forward a packet in a network environment. All agents’ type
defines grofilet = (¢1,t2,- - , ). Each agent declares a valid type/ which may be different from its actual type

t; and all agents’ strategy defines a declared type vector(ry, - - - , 7,,). A mechanism\/ = (O, P) is composed of
two parts: an output functio® that maps a declared type vectaio an outpub and apaymenfunctionP that decides

the monetary payment = P;(7) for every agent. Each agent has a valuation function; (¢;, o) that expressed its
preference over different outcomes. Ageéstutility or calledprofit is u;(¢;,0) = w;(t;,0) + p;, given outputo and
paymentp;. An agent is said to beational if it always chooses its strategy to maximize its utilityu,.

Letr_; = (74, ,Ti1,Tix1," "+ ,Tn), i.€., the strategies of all other agents exceahd r|'t; = (11,72, ,
Ti—1,ti, Tix1, -+, Tn). A mechanism istrategyproofif for every agent, revealing its true type; will maximize its
utility regardlesof what other agents do. In this paper, we are only interested in mechahisms$O, P) that satisfy
the following three conditions:

1. Incentive Compatibility (IC) : V agenti, V7, w; (t;, O(7|';)) + pi(7]%;) > w;(t;, O(1)) + pi(7)
2. Individual Rationality (IR) (a.k.a., Voluntary Participation): Each agent must have a non-negative utility, i.e.,

w;(t;, O(T|";)) + pi(7|'t;) > 0.

3. Polynomial Time Computability (PC): O andP are computed in polynomial time.

2.2 Problem Statement

Differentiated Multicast Tree Construction: We assume that there is a connected network (V, E) with vertex
setV, edge seF, where|V| = n and|E| = m. Every edges; has a cost function; = a;2 wherex is the bandwidth
e; dedicates to the multicast transmission. Hereaftés called the cost coefficient of the lirk. All links’ coefficients
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define a vectoa = (aq, a9, -+ ,a.,). There is a source nodeand a set of receive® C V that request to receive the
multicast service. Every receiver € R has a bandwidth demand that specifies the minimum bandwidth it needs.
The DiffServ multicast is also called Quality of Service Steiner Tree (QoSST) problem in [11].

A bandwidth demand is homogeneous if all receivers require the same bandwidth. This is the standard Steiner
tree problem and several constant approximation algorithms [7, 8] have been proposed. For differentiated multicast
(also called heterogeneous hereafter), different receivers may require different bandwidth. The differentiated multicast
problem consists of two parts: 1) a network topology rooted at the senidat spans all receivers in the receiver set; 2)

a bandwidth reservation for each link for this multicast. The tree topology and bandwidth reservation should satisfy that
for any receiver;, each link on the tree path betweerands has a bandwidth reservation not smaller tianrhus,

for a link ¢;, the reserved bandwidth should not be smaller than the maximum bandwidth demand of its downstream
receivers. The weight of a multicast topolo@ywith link bandwidth reservation vectdr = {by,bs,--- , by} is

W(T,b) = >, crCi = Y. crai - bi. Given the cost coefficients vectarof all links and the bandwidth demard

of all receivers, the differentiated multicast problem is to construct affraad a bandwidth reservatidgnwith the
minimum costw (T, b).

The DiffServ multicast problem was studied before in several contexts. Maxemchuk [4] proposed a heuristic algo-
rithm for its solution. Some results for the case of few rates were obtained in [12, 13]. Specifically, an algorithm was
suggested in [13] for the case of two non-zero rates with approximation ra%ia,o;ﬁ/herea ~ 1.549 is currently the
best approximation ratio [8] of an algorithm for the Steiner tree problem. Recently, Cherih{14] gave the first
constant-factor approximation algorithm for an unbounded number of rates. They achieved an approximation ratio of
4« using rounding anda: ~ 4.211 using randomized rounding. Recently, Karpinskal. [11] gave algorithms with
improved approximation factors. They achieved an approximation rati®6® when there are two non-zero rates and
an approximation ratio df.802 when there is an unbounded number of rates. Calinesali[15] gave a Primal-Dual
algorithm with approximation ratid.311. Xue et al. [16] and Kimet al. [17] studied the Grade of Service Steiner
Tree Problem (GOSST) in Euclidean planes.

Payment Computation: Throughout this paper, we assume all the links are selfish and rational. Recall that a mech-
anismM consists of two parts: an output meth@dand a payment scheni Thus, after designing a methd2ito
construct a multicast tree, we need to design a payment scReorethe links such that the mechanisii = (O, P)
is truthful. We useP (R, a) to denote the total payment to the linke., P(R,a) = 3, .5 Pi(R,a). HereP;(R, a)
denotes the payment to a limk given the cost coefficient vectarand the receiver set.
Payment Sharing: For a given set of receivelR, after we calculate the payment for every link, it is natural to ask
who will pay these payments. Two possible payment models have been proposed in the literature.

1. Outside banlor Group payment modehn outside bank or an organization to which the receivers belong will pay

all these relay agents.

2. Payment sharing modetach receivei should pay aeasonablesharingg; of the total payment. We will address

what we mean “reasonable” (or calléadr) later.

For outside bank model, the only thing we should care is how to find the truthful mechanism for the multicast,
which will be addressed in Section 3. In practice, it is often the case that the receivers have to share the payments
among themselves. Thus, we will study how to share the payments fairly. Notice that the payment sharing is different
from the traditional cost sharing studied in [18—20], which assumes that costs of relay links are public and the multicast
topology is a fixed tree. Given a netwofkwith coefficienta and a set of potential receivels we let{(i, R) > 0
denote how much receivet is charged. We will give both negative and positive results on designing fair payment
sharing mechanisms.

2.3 Literature Review of Steiner Tree Construction

Given a homogeneous bandwidth demahdhe weight of a tred’ is w(T,d) = >_, crci = >, crai-d =
d) .. crai =d-w(T,(1)). Thus, in order to minimize the weight of the tree that spans all receivers, we can normalize
the demand of every receiver to Therefore, we can define cost vector a and the problem becomes the standard
link weighted Steiner tree problem, which enjoys several constant approximation metods [7, 8]. In Algorithm 1 we
review a2-approximation method given in [7]. We call the tree constructed by Algorithniihla Weighted Steiner
Tree(LST), denoted a&.ST(R, c).

The method by Charikaet al. [14] works as follows. Given an instance of the DiffServ multicast, they first

construct the rounded-up instance by rounding up all demands of receivers to the nearest owkenfthey solve
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Algorithm 1 Construct homogeneous multicast tree

Input: A networkG = (V, E), cis the cost vector of the links, a source nedend a receiver demand vectar
Output: A spanning tred.ST'(R, c) rooted ats that spans the receiver sit

1: Initialize LST(R, c) = 0.

2: repeat

3. for each receive; in R do

Find the least cost pattCP (s, ;, G) betweens andr;.

end for

Find the receiver; with the minimum cost of the shortest patEP(s, r;, G).
Remover; from R and add_-CP(s,r;, G) to LST(R, ¢).

8: Setalllinks’ costs oi.CP(s, r;, G) as0.

9: until R is empty.
10: OutputLST(R,c).

NoahR

the standard Steiner tree problem for the receivers of each different demand separately by applying any of the well-
known heuristics. Finally, they do a “clean-up” process that transforms the graph given by the union of these Steiner
trees into a tree. They proved that this simple approach yields;a approximation of the optimal cost, whetg is

the approximation factor of the used Steiner tree heuristic. Our algorithm is similar to this approach at the first glance,
but it has some key differences, which will be described later.

3 Payment for Selfish Links

In this section, we discuss how to design a truthful payment scheme for links when they are selfish. For the multicast
when the receivers have a homogeneous bandwidth demand, in [10], Li and Wang proved that the VCG mechanism
[21-23] is not truthful if the tree is computed by Algorithm 1. In light of the failure of VCG mechanism, they proposed

a truthful payment scheme for any round-based method constructing a multicast tree.

To construct a truthful payment scheme for heterogeneous multicast, one naive approach seems to be combining
the algorithm of [14] with a truthful payment scheme for homogeneous multicast. More specifically, for each distinct
bandwidth demand rate in the rounded-up instance, a homogeneous multicast tree is constructed and the payment
for each selected link is determined. The union of these multicast trees, after the clean-up process described in [14],
is the final heterogeneous multicast tree, with the payment of each link set to be the maximum of its payments in
all homogeneous multicast trees computed. Although this appreachtdking the union of partial outcomes and
using the maximum payment of each agent over all partial outcomes as its final payment) works for binary selection
problems (see [24, 10] for more details), for differentiated multicast the resulting payment scheme is no longer truthful,
as demonstrated by the example in Figure 1. Figure 1.a shows the original néhworktaining two receivers, and
r9, With bandwidth demand$, = 1 anddy = 10 respectively. For bandwidth demand ratdinks sv; andv,r; are
selected, and for bandwidth demand ritelinks sv, andwvyr, are selected. The final heterogeneous tree is shown in
Figure 1.b (no clean-up process is necessary). The paymenti®max{29,2-10} = 29, while its costisl-10 = 10,
giving a utility of 19. However, ifsv; reportsa; = 3 instead (see Figure 1.c), its payment is €dll(as it no longer
needs to relay for, with bandwidth ratel0), and yet its cost is only, giving an utility of 28. The reason why this
approach does not work for DiffServ multicast is that the cost of a link here is no long a fixed number: it depends on the
outcome of the game. Thus, although a link may not be able to change the payment it would get from the mechanism
by lying its cost coefficient, it could reduce its final cost it will incur through lying. As a consequence, it still increases
its utility by lying.

In this section, instead of simply presenting a truthful payment scheme for a specific tree construction method,
such as Algorithm 3, we study how to design a truthful payment scheme for any given service differentiated multicast
tree. In Subsection 3.1, we fist give a necessary and sufficient condition for the existence of a truthful payment scheme
when given a multicast tree construction method. In the meanwhile, we also present a truthful payment scheme if it
exists. We then apply this general framework to the DiffServ multicast tree constructed by Algorithm 3 and design a
truthful payment scheme.
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Fig. 1. The naive mechanism is not strategyproof.

3.1 General Framework

From the definition of the truthfulness, we can fix the gréphihe receiver sek and bandwidth demand Thus, for
our notational convenience, we used, a) = {b1(A4,a), -+ ,bn(A,a)} to denote the bandwidth reservation vector
computed by an algorithmd, whereb; (A, a) is the bandwidth reserved at lirk.

We assume that thig (A, a) is piecewise continuousith respect to any variable;, i.e., a finite number of piece-
wise linear functions. The only possible types of discontinuities for a piecewise continuous function are removable and
step discontinuities. In the following we give a definition that is critical to the presentation of our general framework.

Definition 1 (Monotone Non-increase Property (MNP)).An algorithm A is said to satisfy thenonotone non-
increase propertif for every linke; and two of its possible coefficients < ai,, bi(A, al'a;,) > bi(A, al’a;,).

Now we are ready to present the necessary and sufficient condition for the existence of truthful payment scheme
given an algorithm4 that computes the bandwidth reservation. This theorem is similar to the forklore for the binary
demand games.

Theorem 1. For a given algorithmA, there exists a payment scheffesuch that the mechanisid = (A, P) is
truthful if and only if. A satisfies MNP.

PROOF First, we prove that if there exists a strategyproof mechadism (A, P) then A satisfies MNP. We consider
two coefficients profilei|‘a;, andal|’a;, wherea;, < a;,.

Consider the case when lirdg actually has coefficieni;, . RemembefP is strategyproof, thus if linlk; lies its
coefficient toa,,, its utility should not increase. Thus, we have

Pi(A,al'a;,) — a;, - bi(A al'a;,) > Pi(A,al'ai,) — ai, - bi( A, al"as,).
Now consider the case when limk has actual cost;,. Similarly, we have
Pi(A, al'ai,) — ai, - bi(A, al'as,) > Pi(A,al'a;,) — ai, - bi( A, al'a;,)
Combining the above two inequalities, we obtain
ai, - [bi(A, al'a;,) — bi(A, al'as,)] > Pi(A, alas,) — Pi(A, al'ai,) > as, - [b;i(A, al'a;,) — bi(A,al'a;,)] (1)

Thus, we havé; (A, a|’a;,) > b;(A, al'a;,) asa;, < a;,. This proves thatd satisfies MNP.

To prove that if. A satisfies MNP then there exists a strategyproof payr#gmnwe prove it by construction. For
a link e;, we first fix a_; and user to denote cost vectar|z if no confusion is caused. From the assumption that
A satisfies MNP, functiom; (A, x) is non-increasing. Recall thaf(A, x) is a piecewise continuous function. We let
1 < z9--- < T, be the points at which; (A, ) is not continuous, and introduce a dummy paipt;; = co. We
define a functions; () such that, for, < =z < zp41,

Tpi1 m Tjt1
o) =obda)+ [ wAndrs > [ wAdy

® j=p+1
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Fig. 2. Bandwidth allocation functiob;(DMT, a| z).

In Figure 2,x;(z) corresponds to the area of the shaded region. Given an algadthmd coefficients vectar,
Algorithm 2 defines the payment based on algorithm

Algorithm 2 Payment Scheme based.dn
Input: Algorithm A and coefficient vectos.
Output: The payment schenie.
1: for each linki do
2:  Fixa—;. The paymenttais P;(A, a) = k;(a;).
3: end for

Thus, we only need to prove the payment scheme computed by Algorithm 2 is truthful. See Lemma 3 in the
appendix for the proof of this statement. This finishes the proof of the theorem.

If we specify that if a linke; has0 bandwidth reservation then it should receivgayment (which is called
normalizedpayment scheme), then we have the following theorem. See appendix for the proof of the theorem.

Theorem 2. Given an algorithmA4 satisfying MNP, the payment scheme defined by Algorithm 2 anilg@ormalized
truthful scheme.

We then summarize the general framework to design a truthful payment sdAgmeh thatd = (A, P) is
truthful, for a given output algorithrd that constructs a differentiated multicast tree and outputs the bandwidth
allocation for differentiated multicast.

1. Check whether the bandwidth allocation of algoritbhsatisfies MNP. If not then return, else continue.
2. Find the bandwidth reservatidiiA, a).
3. Design the payment according to Algorithm 2.

3.2 Design Truthful Mechanism

First of all, we would like to see whether we could design a payment scheme based on the methods presented before,
especially the first constant-factor approximation method presented by Chetridafl14]. Let T, 15, ---, Ty, bek

different Steiner trees constructed by their methodifalifferent demand values. For each tfEg we can define a
strategyproof mechanism based on the criteria characterized in [10, 9], I le¢ the payment to link based on tre&;

andb, ; be the bandwidth reservation on linlbased orY;. For the union of these trees, it is unclear how a payrifent

could be defined such that mechaniét\[;df=1 T;,P) is truthful. Notice that when all trees are zero-one demand games,

we can simply pay each link the maximum payment it could get from thesparated trees. However, here these trees

are not zero-one demanded: a link has a bandwidth reservation. The profit ofeadiitk final paymenp, received

minus its cost:. - b., whereb, is its final bandwidth reservation. Here it is possible that theftdeas the maximum



payment, ; to link e, while the valué, could be different frond. ;. Thus, simply taking maximum payment will not
guarantee strategyproof here. Further more, even if we can define a strategyproof mechanism f@fggtﬁyﬁt is
still not clear how to extend it to a strategyproof mechanism for the output computed by “clean-up”.

Thus, in this paper, we take a different approach by redesigning some new DiffServ multicast tree construction
methods. Before we present our algorithm, we give some notations that will be used later. Given a Getwirtdrk
edge cost vector and receiver seR, we usel™" (R, c) to denote the minimum weight Steiner tree wheiie the
cost vector of the links in the network. For a receiverRetith bandwidth demand vectar= {d;,ds,--- ,di}, we
denote the multicast tree with the minimal weight that spRres7°P* and the corresponding bandwidth allocation
vector asB°Pt. Given a subse$ C R, for notational simplicity, we us&°r(S) to denote the subtree #?* induced
by S if no confusion is caused.

Remember that the cost function of a liakis f;(x) = a;x. Given a networlkG, a receiver seR, a cost coefficient
vectora and a bandwidth demand vectdy the following algorithm shows how to find a DiffServ multicast tree
DMT(a,d) and its corresponding bandwidth allocatiBrwith low weight. We also call this algorith M T if no
confusion is caused.

Algorithm 3 Construct Differentiated Multicast Tree

Input: A network G with coefficient vector, a source node, a set of receiver® and a bandwidth demand vectar
Output: Atree DM T (a,d) spanning the receivers and a bandwidth allocation vegtor

: Sort all receivers according to their bandwidth demands. Without loss of generality, we can assume that the feceivers
{ri,r2, -+ ,rx} are sorted in a descending order of their bandwidth demands.

. Initialize the tre€T” to empty, set = 1, and label all links in the tree&/HITE.

: repeat

:  Letr; be the first receiver in the receiver det

2

3

4.

5:  Find the maximal index such thatd, > 4
6:

7

8

[EnY

2
Set the cost of eacWHITE link asc¢; = a; - d; and eactBLACK link asc¢; = 0.

Let Ry = {rj,--- ,rx} and find the spanning tré& = LST(R:, c¢) using any Steiner tree heuristic, such as Algorithm 1.
. RemoveR; from R and mark all links in tred} asBLACK.
9. SetT' =TT
10: Sett=t+1.
11: until the receiver seR is empty.
12: for each linke; in treeT" do
13:  Find the maximal bandwidth demandeafs downstream receivers, say.
14: e, allocates a bandwidt®; = d;.
15: end for
16: Output tre€l’ and bandwidth vectoB.

The major difference of this method compared with the method presented by Cleaidkdt 4] is that we directly
construct a tree. Instead of rounding the demands up to the nearest pdyeveflivide the demands into several
segments such that, in each segment, the ratio of the maximum demand over the minimum demand . &¥/enost
also have the following theorein

Theorem 3. Algorithm 3 constructs a tree whose weight is at mesgi, times the weight of the minimal cost DiffServ
multicast tre€l™oPt,

With the general framework, we would like to design a truthful payment scheme based on Algorithm 3. However,
the following lemma shows that there is no such truthful payment.

Lemma 1. Algorithm 3 does not satisfy MNP.

PROOF We prove it by presenting an example here. A netw@rlhas three receivers,, o, r3 with bandwidth
demandi; = d; = 1 andd; = 2. The coefficient of the link is described in Figure 3 (a). When we apply Algorithm

8 Although there is a subtle difference between the algorithm presented here and the one in [14], the proof is not as obvious as that
one. The proof is omitted here due to space limit.
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Fig. 3. The spanning tree constructed by Algorithm 3.

3 to networkG, we obtain a tree shown in Figure 3 (b). Let ageiie link vov3. The bandwidth allocation of link

es = vou3 IS 2. Consider the scenario when the coefficient of kinlkchanges froni.1 to 0.9 while other coefficients

remain the same. The new spanning tree topology constructed by Algorithm 3 is shown in Figure 3 (c). The bandwidth
allocation ofe; becomesl, which decreases by half compared with the bandwidth reservation with coefficlent

This finishes our proof.

From Theorem 1 and Lemma 1, we have the following theorem directly.
Theorem 4. There is no truthful mechanisi based on Algorithm 3.

In light of the negative result in Theorem 4, we would like to design another algorithm for constructing the differ-
entiated service multicast tree that satisfies MNP and, in the meanwhile, has a weight that is not too large compared
with the optimal. With a little modification of the Algorithm 3, we present a new method to construct the multicast
tree in Algorithm 4. The trees constructed by Algorithm 3 and Algorithm 4 are the same, and the only difference is
on the bandwidth allocation. In Algorithm 3, the bandwidth of a link is set to the maximum bandwidth demand of its
downstream receivers. In Algorithm 4, the bandwidth of a link is set to a bandwidth greater than the bandwidth set in
Algorithm 3. In order to distinguish these two algorithms, we Ds& 7' to denote the tree constructed by Algorithm
4. We can show that our new algorithm achieves the same approximation ratio as Algorithm 3.

Theorem 5. Algorithm 4 satisfies MNP and it constructs a tree whose weight is at &tistes the weight of the
minimal cost differentiated service tréd&?!(a, d).

PROOF The proof of8-approximation ratio is similar to the proof of Theorem 3 and is thus omitted here. We focus
on the proof that Algorithm 4 satisfies MNP. Given a link if it does not appear in the treBMT(a,d) then
bi(DMT,a) = 0. Otherwise, ife; € T; — Ui;ll Ty, i.e, in iterationj, the link ¢; is added to the spanning tree
DMT (a,d) for the first time, them; (DMT', a) = R***. Whene; has a smaller coefficient, we show by cases that
it will have a larger bandwidth reservation.

Case 1:; is added to the spanning trée\/ T'(a, d) no later than iteratiop. Without loss of generality, we assume
thate; is added taDMT(a,d) in iterationj’ < j. Remember that the partition & does not depend on coefficient
vectora, thusb;(DMT, a|'a) = R} > RP™ = b;(DMT, a).

Case 2:¢; is not added to the spanning trée\/T'(a, d) before iteration;. In this case, every link's label does
not change in the beginning of iteratign For Algorithm 1, it has been proven in [10] that if any link originally in
LST(R, c) reduces its cost from; to ¢}, then it is still in LST (R, c|’c;). Thus, the resulting spanning trég still has
the linke; in it, which means thali;(DMT, a|'a;) = R keeps the same.

This proves thab;(DMT, a) does not decrease whepdecreases. Thus, Algorithm 4 satisfies MNP.

From Theorem 1 and Theorem 5, we know that there exists a truthful payment for Algorithm 4. In order to find the
truthful payment for Algorithm 4, we should find the bandwidth allocation funaiidd M T', a|*z) for every linkey,
first. Recall that for every link;, the bandwidth could only be a real value that is equdlg™ for some indexj. Let

o} < xf < --- < 2% be the points at which, (DMT, a|*z) is not continuous, then the bandwidth allocation function
by(DMT, al*x) should be a constant, sgj in (2%, %, ) as shown in the Figure 2. In order to find the values of



Algorithm 4 Construct Multicast Tree with MNP

Input: A network G with coefficient vector, a source node, a set of receiver® and a bandwidth demand vectar
Output: A tree topology!” that spanning the receivers and a bandwidth allocation végtor

Letr; be the first receiver in the receiver det
Find the maximal index such thati, > %J

9:  Setthe cost of eacWHITE link e; asc; = a¢ - d; and eactBLACK link as0.

10: LetR; = {r;, - ,r} and find the spanning tré& = LST'(R;, c¢) using Algorithm 1.
11: RemoveR; from R and mark all links in tred’; asBLACK.

12: SetI' =TT:.

13: for each linkey in T; do

1: Sort all receivers according to their bandwidth demands in an descending ordBr=sdy'1, 2, - , 7% }-
2: Initialize the tre€l” to empty and index = 1.

3: for each linke; do

4: Label it aswHITE and setB; = 0.

5: end for

6: repeat

7

8:

14: if B, = 0then
15: SetBy = dj.
16: end if
17:  end for

18: Seti=1i+ 1.
19: until the receiver seR is empty.
20: OutputT asDMT andB.

these discontinuous points, we first need to compute the truthful payment for standard Steiner tree problem. Please
refer for [10] for more details. We usdc_;, R) to denote the payment computed for a lipkbased on a Steiner tree
heuristic and study how to find the bandwidth allocation function for Algorithm 4. Algorithm 5 shows how we can
find the bandwidth-allocation function.

With the bandwidth allocation functidn. (A, a|*), we give our truthful payment scheme by following the general
framework illustrated by Algorithm 6. The proof of the correctness of these algorithms are either straightforward or
omitted here due to space limit.

3.3 Performance Improvement and Special Case

In essence, Algorithm 4 converts the original instance of the differentiated multicast problem to a “rounded-up” one,
with bandwidth demand vector forming a geometric sequence of 2atda@cording to the result of Charikaat al.
[14], the approximation ratio o of Algorithm 4 can be improved (while still using Algorithm 1 for computing
approximately optimal Steiner trees) if the “randomized bucketing” technique is used. Specifically, a puimber
picked randomly with a uniform distribution in the ranffe1], and the (non-zero) bandwidth demands of all nodes
are rounded up to the nearest?. (Note that the ratio of the geometric sequence isstead of2.) The expected
approximation ratio ig - 2 ~ 5.437.

Here we argue that we can also convert the mechanism described above for differentiated multicast to a randomized
one with an expected approximation ratioso437, while maintaining strategyproofness. First of all, it is easy to see
that using a “start point” ot? for some fixedy and replacing the ratio df by e for the geometric sequence (of
rounded up bandwidth demands) should not affect strategyproofness. Furthermore, the randomized process also does
not encourage untruthfulness of the links: if for any fixed start pginthe links find no incentive to lie, nor will they
find incentives to lie when such start point is randomly selected.

Charikaret al.[14] also proposed a de-randomized process to replace the above random selection of stéit point
with the cost of an increased time complexity. For each distinct bandwidth deshatie same algorithm is invoked
with y; = Ind; — |Ind;]. Itis claimed that there is at least opesuch that the solution fay = y; has a cost no more
than the expected cost of the solution for a randomly pigketherefore, we can simply pick the best solution (with
the minimum cost) among all solutions computed using diffeget similar technique is used for the case with only
two non-zero rates for bandwidth demands [13], improving the approximation bOLgﬁd20= 2.667. The common
characteristic of the two algorithms is to compute multiple differentiated multicast trees using different methods (or
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Algorithm 5 Bandwidth Allocation Function for Algorithm 4

Input: A network G with link cost vectore, a source node and a receiver st with demand vectod.
Output: The bandwidth allocation function for Algorithm 4.

1: Apply Algorithm 4. Let? be the number of iterations in Algorithm 4.

2: for every linke, in DMT(a,d) do

3:  Seter = oo and apply Algorithm 4 again.

4:  Atthe beginning of each iteratiai compute the value; (a_r, R;).
5. Initialize the listX* =, Y* = @, up = 0, andgq = 0.

6: fori=1tofldo

7: if 7i(a—x, R;) > up then
8

: qg=q+1.
9: Setx’; = 7i(a_k, Rs) andyf; = R;"®*.
10: Add z} to setX* andy} to Y.
11: end if
12:  end for

13:  Setzf=0andz?t! = .
14: fori=1toqg+ 1do

15: Setby (A, a|*z) = yF forzf_, <z < zF.
16: end for
17: end for

Algorithm 6 Payment Scheme for Algorithm 4

Input: A network G with link cost vectore, a source node and a receiver sek with demand vectod.
Output: A payment scheme for Algorithm 4.
1: Compute the multicast treB M T by applying Algorithm 4.
2: Compute the bandwidth allocation function for trB&/T" by applying Algorithm 5.
3: for each linke, do
if ex isintreeDMT then

Findi such thate¥ < aj < z¥,,. Then the payment By (a) = Z‘jﬁ:rll yb (@ —ah) + (aF —aw) -yl
else

4
5
6
7: Pr(a) =0.
8
9:

end if
end for
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same method but with different parameters), and pick the one with the smallest cost. Although this apm@oach (
taking the best output of several outcomes and using the some combination of the payments for these separated games
as its final payment) works for binary selection problems under certain conditions [25, 24], a problem arises when it
comes to determining the payments to the links for DiffServ multicast.

In the network shown in Figure 4 (a), receivgrhas bandwidth demant{ = 1 unit and receivers,, r3, r4 has
bandwidth demands = 4. Let R; = {r1} and Ry = {r9, 13,74}, ¢ be the cost vector shown in Figure Figure 4 (a).
If we change the cost of edge; from 1.5 + € to 1.5 — e while keep all other links’ cost unchanged, the cost vector
is denoted ag’. Figure 4 shows that the trdeST' (R, ¢) and LST(R, ') is the same. We havwe(LST(R,c),b) =
w(LST(R,),b') = 5.5 - dy = 22. Figure 4 (c) shows the treBST(R;,c) U LST (R, c) and its weight isl.5 -
di+ (5+¢€)-dy = 21.5 + 4e < w(LST(R,¢),b) for smalle. Thus, whensv; has costl.5 + ¢, it has bandwidth
reservationi; = 4. Consider the cost vectef, Figure 4 (c) shows the tréeST (R, ') U LST(Rs, ¢’) and its weight
iS1.5-dy + (6 + 3€) - do = 25.5 — 12¢ > w(LST(R,’),b) for smalle. Thus, whensv; has costl.5 — ¢, it has
bandwidth reservatiofi. This shows that the tree output by the algorithm in [13] violates the MNP property, which
implies that is not such truthful payment.

r, Iy ry I, I3 ry I, r; Iy r; I3 Iy

(a) Original networkG (b) TreeLST (R, c)(LST(R,c")) (c) TreeLST (R1,c) U L>ST(R17 c) (d) TreeLST(R1,c) U LST(R1, ).

Fig. 4. An example to show that simply choose the best solution may not work.

4 Payment Sharing

4.1 Preliminaries of Sharing Scheme

In this section, we assume that each receiver is willing to pay whatever a share of total payment/cost computed as long
as it isfair under some definitions. If the relay links are cooperative in declaring their truthful cestthe costs of
relay links are publically known, we essentially will study how to share the costs of the multicast tree among receivers
fairly. If the relay links are selfish, then we have to share the payments to these relay links. For fair cost sharing, most
of the literatures [18—20] used tlual Link Split DownstrearfELSD) sharing scheme to charge receivers:cbst
of each link is sharedquallyamong all its downstream receivers. However, if we simply use the ELSD as our charging
scheme to share the payment, it usually is not reasonable in common sense.
Consider a set/ of n players. For a subs&t C U of players, letC(S) be thecost* of providing service taS.
Here C'(S) could be the minimum cost, denoted BPT(S), or the cost computed by some algorith4n denoted
by A(S). We always assume that the cost functi@fns) is cohesivei.e., for any two disjoint subset§; and Ss,
C(S1 USy) < C(S1) + C(S2). A cost sharing scheme is simply a functiégi, S) with £(i,S) = 0 fori ¢ S,
for every setS C U of players. An obvious criterion is that the sharing method shoulthiboeWhile the definition
of budget-balance is straightforward, defining fairness is more subtle: many fairness concepts were proposed in the
literature, such asore and bargaining set[26]. We call a charging schenmgreasonableor fair if it satisfies the
following criteria.
1. Budget Balance(BB): The payment to all relay agents should be shared by all receiversP(R,a) =
> r.er$(i, R). When budget-balance cannot be met, we relax itoudget-balanced. For all receiver
B-C(R) < > ,cré(i,R) < C(R), for some given parametgt < 1. Equivalently, if we divide the shares
by 5, we would require that the total cost shares of all receivers are at least the cost of providing the service, but
do not exceed; of that.

4 Here the cost is generic. It could be the payment to the links here.
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2. No Positive Transfer(NPT): Any receiver;’s sharing should not be negative. In other words, we don’t pay the
receiver to receive.
3. fairness under core(Core): For any subsef C R, ), 4£(4,5) < OPT(S). In other words, the cost shares
paid by any subset of players should not exceed the minimum cost of providing the service to them alone, hence
they have no incentives to secede.
4. Cross-monotonicity (CM): For any two subsetS C T andi € S, £(¢,S5) > £(¢,T). In other words, the cost
share of a player should not go up if more players require the service. This is also gadipdlation monotone
When each receiver has a maximum payment it is willing to pay to receive the multicast service, several other
properties could also be required. Lgtbe the willing payment by receives to receive the multicast service. Let
be the vector of the willing payments of all receivers. Some common requirements are
1. Voluntary Participation (VP): z; — £.(¢,.5) > 0 for any.S C R. Users are always free to not receive the
transmission and not be charged, which would result in an individual welfare of zero; the network can't force a
user to be worse off than this baseline option.
2. Consumer Sovereignty(CS): If the bids of all other players are fixed, for every plajehere exists a threshold
7; such that player is guaranteed to get the service when its bid is at least
3. Group Strategyproof (GS): No group of receivers can increase their welfare by lying about their utilities
In this paper, we will study the payment sharing that satisfies a subset or all of the above properties. Notice that
the definition of “reasonable” can be changed due to different requirements. For example, a common criterion for
multicast charging scheme is to maximizetwork welfareselect a subset of receivers such that the network welfare
is maximized. Here, the network welfare is defined as the total valuations of all selected receivers minus the cost of
the network providing service. Then instead of sharing the payment (or costs) among all receivers, we can only share
it among the selected receivers.
It was proved in [18] that a cost-sharing mechanism satisfies BB and GS if it satisfies the BB and cross-monotone
(CM) property. They also [18] offered a characterization of a whole class of budget-balanced and group strategyproof
mechanisms.

4.2 Payment Sharing for DiffServ Multicast

In this paper, we assume that each receiver’s willing payment is infinity. We obtain the following negative result for
multicast with tree construction method (illustrated by Algorithm 4) and payment scheme (illustrated by Algorithm
6).

Theorem 6. There is no payment-sharing mechanism satisfies both BB and CM for differentiated multicast if we use
tree construction method illustrated by Algorithm 4 and payment scheme illustrated by Algorithm 6.

PrROOF Recall that the standard Steiner tree heuristic LST and its coupled payment scheme is a special case of
tree construction algorithm 4 and payment scheme 6 when the bandwidth demand is homogeneous. Thus, in order
to prove the above theorem, we prove that there is no payment-sharing mechanism satisfies both BB and CM for
multicast with homogeneous bandwidth demand if we use tree construction algorithm 1 and payment scheme 4. We
prove this by presenting a counter example. In a netwrkhe bandwidth demand isand the costs of links are

shown in Figure 5. The tre&ST(r1,¢) is shown in Figure 5 and the paymeR{r,,c) = 2.6. We assumef is

the payment-sharing scheme satisfying BB and GS. From the characterization of the payment-sharing satisfying BB
and GS, we obtairf;(r1,¢) = P(r1,¢) = 2.6. The treeLST(r2, ¢) is shown in Figure 5 and the total payment
P(ra,c) = 1.4+ 1.5 = 2.9. Similarly, we havef;(rs, ¢) = 2.9. The treeLST'(r1 Urs, ¢) is shown in Figure 5 and the

total paymen®(r1 Urs, ¢) = f1(r1Urs, )+ fa(r1Urs, ¢) = 6.5. Remember that;(R+ ) < fi(R) foralli,j € P,

thUSfl (7“1 Ura, C) <h (Tl, C) = 2.6 andfg(rl Urs, C) < fg(?“l, C) =2.9. Therefore,fl (7“1 Urs, C) +f2(7“1 Urg, C) =

6.5 < 2.9+ 2.6 = 5.5, which is a contradiction. This finishes our proof.

With the negative result from Theorem 6, we have to relax the requirement of BB for the payment sharing scheme
if cross-monotone is needed. Given a payment sharing scheme, if the total charge from the receivers istankesst
of the total payment to the links, then we call this payment achieykbudget-balance. If it is both-budget-balance
and in the core, then it is callggicore. We first present the following result about theore payment sharing scheme.

Lemma 2. There is ng3-core payment sharing scheme fore= 2(1/n) if Steiner tree heuristic LST is used.
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i\ﬁo V3

(a) The networlG (b) The treeL ST (71, ¢) (c) The TreeLST (r2,¢)  (d) The treeLST'(r1 Ura,c)
and the costs and the payments and the payments and the payments

Fig. 5. A counter example.

oV3
| 25
\\‘\1 ///,//
Cn 8 Vg
4 G h
(a) The treel. ST (71, ¢) (b) The TreeLST(r2,c) (c) The treeLST'(r1 Urz,c)
and the payments and the payments and the payments

Fig. 6. A bad example.

ProOOF We briefly show it by the example shown in Figure 6. The receiyeendgs have demand. There are: — 1
nodes between nodes andvy: vs, vg, - - -, Vnrq. Every linkv;v; 11, fori > 5 has cost = % The payment to each
link is shown in Figure 6. lf;; andg. play along, we havé(qi, {¢1}) < 2.6 and&(q2, {g2}) < 2.9. If ¢; andqg, are
receivers, we havé(qi, {q1,¢2}) + £(q2, {q1,¢2}) < 5.5 from the CM property. On the other hand, notice that the
total payment to links by providing service ¢o andg, areC(g1 U g2) = 5+ n - (0.5 +¢€) = 6 4+ 0.5n. Thus, if a
payment sharing schemefiscore we should havg = 2(1/n).

Currently, we are able to design a payment sharing scheme tljg:\{dere for any strategyproof payment schemes
for DiffServ multicast. The detailed methods are omitted here due to space limit.

4.3 Cost Sharing for DiffServ Multicast

In this subsection, we study how to share the cost of DiffServ multicast among the set of receivers fairly. For the cost
sharing scheme, we first compute tHePT cost sharingthen divide by% wherer is the number of the receivers. The
algorithm is summarized as following.

Although Algorithm 7 use the structure LCPT, but the actual multicast routing tree is still constructed by Algorithm
4. Regarding the cost sharing scheme 7, we have the following theorem. The proof of this theorem is similar to [9] and
thus is omitted.

Theorem 7. The cost sharing scheme 7 is cross-monotonic gndhudget balance, where is the number of the
receivers.

When the DiffServ multicast tree is actually constructed based on LCPT, then the above cost-sharing scheme is
budget-balanced and in the core.

Theorem 8. The cost sharing scheme 7 is cross-monotonic, budget-balanced, and in the core if the DiffServ multicast
tree is actually constructed based on LCPT.
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Algorithm 7 Cost Sharing Scheme for DiffServ Multicast
Input: A networkG = (V, E), cost coefficients vectar, receiver seR?, and the demand vectdr
Output: A cost sharing method that is fair.

1: Set the cost; = a; for each linke;.

2: Find the shortest path between source nodad each receivet, € R.

3: Union all these pathes to form a tree called Least Cost Path Tree (LCPT).

4:

5:

for every linke; in the LCPTdo
Sorte;’s downstream receivers according to their demands in an ascending order. If two or more receivers have the same
value, the receiver with smaller ID ranks first. lety,,75,, " - } be the downstream receivers. Here, we add a

dummy receiver with demand,, = 0 to rankingo.

q(ﬁi)

6: For receivers that are not downstream receiveks dts sharing i9.
7:  Forareceivet,, who is a downstream receiver @f, its sharing is:
ar - —ds 1)
o (R, —T 2
i «(Fa) ; gle;) —xz+1 @
8: end for
9: The final sharing of receiver; is

ZejeE fz](R7 a‘)

§6.R) = ===

Based on this cost sharing scheme, we can also design a payment sharing scheme: treat the cost sharing of a
receiver simply as its shared payment. Then we can prove the following theorem.

Theorem 9. The payment sharing scheme induced from the cost sharing scheme 7 is cross- monot9h+c bindget
balanced, where is the number of the receivers ands the overpayment ratio of our DiffServ mult|cast

PrROOF First, we prove that it is cross-monotonic. It was proved in [9] ;fja(TR, a) > fﬁak(R’, a) for any receiver
r;, link e; andR € R’. Thus, we have . .
f(Ra) _ (R a)
Rl [R
for any receiver;, link e; and R € R’. Therefore£(i, R') = Zej“f]g(R - Zejeifl(R @ (i, R). This
proves that the cost sharing scheme is cross-monotonic. Following we prove that payment sharing s@g\gme is

budge balanced. In other word, for any receiveri8etve should prove thaﬂR—" <> ,.erbli, R) < P(R,a). For
the tree LCPT constructed in Algorithm 7, if we assign every lipkn LCPT a costz bl, whereb; is the maximum
demand ofe;’s downstream receivers, the cost of the tree LCPT is denote[d?&%T(R, a). Let T°P*(R,a) be the
tree with the minimal cost, thelhCP (s, r;, G)| < w(T°P*(R, a)) for anyr; € R. Thus, we have

|ILCPT(R,a)| < Y [LCP(s,r;,G)| < r-w(T(R,a))
rER
R ; _ |LCPT(R,a)| opt H H
ecall that) |, p&(i, R) = == < w(T°""(R,a)) < P(R,a), which proves one direction. For another

direction, remember thal.C PT(R, a)| > T°P*(R,a) > ”(DMg(“’d)"B) > Pg’“). Thus, we have " &(i, R) =
|LCPT(R al >

(R ) which finishes our proof.

5 Conclusion

In this paper, we studied the differentiated multicast problem in a game theoretic context, where network links are
selfish agents who would demand payments to at least cover their costs when relaying data packets, and may lie
about their actual costs in order to maximize their gains. We show that a naive conversion of the previously known
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8-approximation algorithm does not work; the mechanism is either not strategyproof, or the resulting network struc-

ture is not a tree. We then propose an alternative approximation algorithm for differentiated multicast with the same

approximation bound. We also introduced a general method to convert any differentiated multicast algorithm satisfy-

ing the Monotone Non-increase Property to a strategyproof mechanism, and applied it to the algorithm we proposed.
Finally, we showed how the payments to the links can be shared fairly among nodes demanding multicast services.
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6 Appendix

Theorem 3 Algorithm 3 constructs a tree whose weight is at n&d#ines the weight of the minimal cost differentiated
service treg P,
PrROOFE For notational convenience, we ueand B to denote the tree and bandwidth allocation vector output
by Algorithm 3. Remember thaf; is the tree found in théth iteration by applying Algorithm 1. Without loss of
generality, we assume that there arterations in Algorithm 3.R, R, - -+ , R; is a partition of receiver sk, and
we useRM**(respectivelyRi"") to denote the maximum (respectively minimal) bandwidth demand in the receiver set
R;.
Notice that every link ir"?*( R, ) should be able to supply a bandwidth larger tigf", then
W(Th B) < 'W(Tla <ernax>)
S 2R§nax : W(Tmin(Rlv CL), <1>)
< 2RI (T (Ra), (1))
=2R"™. Y a<4RI™ >
e; ETOPt(Ry) e; ETOPt(Ry)
= 4w(T"(R1), (R"™))) < 4w(T°""(R1), B™™)
For setR., we have
W(T27 B) (T27 <Rl2“ax>)
< 2R§ﬂax' ( mm(R% )7<1>)
< 2R3 - w(T(R2), (1))
< 2RE™ . w(T°P'(R1 U R2), (1))
< 2RF™ [W(TP(Ra), (1) + (TP (R2) — T (Ra), (1))]
= 2Rr2nax . Z a; + 4 Z a; - Rénin

e;€TOPt(Ry) e €TOP(Ry)—T°P*(Ry)
<oRPm. Y a4 as - R
e;€TOP(Ry) e; €TOPt(Ry)—T°P(Ry)

= 2w(T*"" (Ra), (R"™)) + 4w (T (R2) — T (Ry), (R3"™))
< 2w(T*""(R1), B™") + 4w (T (R2) — T (R1), B™")

Similarly, for any setR; (1 < i < [) we have

w(Ti, B) < 4 Z

Topt U Topt Bopt)

Summing the inequalities farfrom 1 to [, we obtain

l l
= w(U TZ,B) < ZW(THB)
=1 =1
l
S ;42_: 2}7] UJ( opt U Topt Bopt)
—4 . [ opt U Topt Bopt) 22—19}

1
-8 Z[ opt U Topt Bopt)]

This finishes our proof.
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Lemma 3. Algorithm 2 defines a truthful payment scheme.

PROOF. Hereafter, we always fix_;, i.e., we are interested only ;. To simplify our notation, we denotg(.A, a;)
asb; (a;). Notice that wher; reveals its true coefficient;, its utility is

Tpt1 m Tj+1

@i j=p+1-%
Remember thal; (y) is non-negative. Thus;(a;) > 0, which implies that payment scheme 2 satisfies IR. To prove
that payment scheme 2 satisfies IC, we prove it by cases.
Case 1:Node: lies its cost upward t@;. In this case, we assumg, < @; < z,+1. Sincea; < a;, p < p’. The

utility of node: becomes

(@) = @) — i (@) = @) — @) = [ wdn+ > [ by +w @) - o b

Qa; j:p’+1 Zj
There are two subcases herep K p’ then
Tp+1 m Tj+1
wa)= [ nwdy+ > [ bty
ai j=p+17%i
Tpt1 Pl e ai Tl g1 mn Tt
[Ty X[ sy [ ey [ s Y [ wtay
a; j:p+1 Zj Ip/ a; j:p’+1 ZTj
p/—l Ty m Tj+1
> by(@) - [(xpr1 — @) + () (w51 —25) + (@ — 7)) +L bi(y)dy+ / bi(y)dy
j=p+1 @i J=p+17 %
Tp+1 m Tj+1
—b@) @ e+ [ b > [ bty = )
o j=p'+17 7
If p=p' then
Tp+1 m Tj+1 Tyl 41 m Tj+1
w@)= [y Yo [ war= [ by > [ by

i J=p+1° % i j=p'+1

Thus, linke; have no incentive to lie its coefficient upward.
Case 2:Link e; lies its coefficient downward ta;. In this case, we assumg, < a; < xp41. Sincea; > a;,

p > p'. The utility of nodei becomesu;(a;) = bi(as) - (a; — ai) + [7 " bi(y)dy + Y10, 4 ffj;j“ b (y)dy.
There are two subcases here als@. i p’ then o

Tp/ 41 p—1 ZTj+1 aq Tp+1 m
wla) =bilw) @ -a)+ [ nwdr X [ s [ ey [T bwdrs Y
4 j=p'+17 % Tp i j=p+1
Tprqn p_1 Tjt1 ai
< bi(ai) - (a; — a;) +/ bi(aq)dy + Z / bi(a:)dy +/ bi(ai)dy + ui(a;)
ai j=p'+1 T Zp
= bi(ai) - (a; — a;) +bi(ai) - (a; — a;) + ui(a;) = ui(a;)
If p=p'then
Ty m T
ui(as) = bilas) - (ai — ai) + / by + S / bi(y)dy
ai j=p'+17%j
—bias) (as =0+ [ Blo)dy o+ usla) < bies) (as— 0+ [ blagdy + uilar) = ui(ar)

ZTj+1
/ bi(y)dy
Zj
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This proves that nodedoes not have incentive to lie downward. Thus, the payment scheme 2 satisfies IC. Therefore,
the payment scheme 2 is truthful.

Theorem2 Given an algorithnd satisfying MNP, the payment scheme defined by Algorithm 2 istilgnormalized
truthful scheme.

PROOF Ininequality 1, substitute for a;, andxz+6 for a;, we obtain(x+6)(b;(x) —b;(z+9)) > Pi(x)—Pi(x+6) >
x(b;(x) — bi(x + 0)). Whenb;(z) is continuous at, we can seb — 0 and obtain

(z46) - d(=bi(z)) = d(=Pi(z)) = z - d(—b;(x)) ®3)

From equation 3, if: is continuous in, v), then we obtain

@) = pul) — piw) = [ wd(—bi(@)) = — [ ad(bi(x)) = —labi@)ff — [ bia)de] = 1-bi(l) —u-bi(w) + [ bi
l l

Setl = z; andu = z;41 (1 < j < ¢g), we obtain
Tjt1
Pi(x;) — Pi(wjt1) = zj - bi(zj) — zj41 - bi(@j41) +/ bi(z)dz

Assumez, < a; < Tp4+1, then summing from p + 1 to ¢ we obtain

q

Pi@pi1) = Pilwp1) = Pilwgra) = Y pilwy) = pi(wjia)

j*p+1
q %+1 q Tjy1
= Z [z - bi(zj) — 41 - bi(xj1)] Z x)dr = xpi1 - bi(Tpt1) + Z / bi(x)dx
j=p+1 =p+17%i j=p+17 %I

Let! = a; andu = zp41, we haveP;(a;) — Pi(xpt1) = ai-bi(a;) —xpt1-bi(xps1) +fo”“ b;(y)dy. Combining
the above two equations we obtain

I]+1 Tp+1
Pi(a;) = xpt1 - bi(zpt1) Z z)dr + a; - bij(a;) — zpy1 - bi(@py1) + / bi(z)dx
i= p+1 i @i
$p+1 51/’J+1
:ai'bi(ai)Jr/ y)dy + Z /
@i Jj=p+1

This finishes our proof.



