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Abstract—We study distributed link scheduling for throughput
maximization in wireless networks. The majority of results on
link scheduling assume binary interference models for simplicity.
While the physical interference model reflects the physical reality
more precisely, the problem becomes notoriously harder under
the physical interference model. There have been just a few
existing results on centralized link scheduling under the physical
interference model, though distributed schedulings are more
practical. In this paper, by leveraging the partition and shifting
strategies and the pick-and-compare scheme, we present the
first distributed link scheduling algorithm that can achieve a
constant fraction of the optimal capacity region subject to
physical interference constraints in the linear power setting for
multihop wireless networks.

I. INTRODUCTION

As a fundamental problem in wireless networks, link
scheduling is crucial for improving networking performances
through maximizing throughput and fairness. It has recently
regained much interest from networking research community
because of wide deployment of multihop wireless networks,
e.g., wireless sensor networks for monitoring environment
[1] [2] through collection of sensing data [3]. Generally,
link scheduling involves determination of which links should
transmit at what times, what modulation and coding schemes
to use, and at what transmission power levels should commu-
nication take place. Despite of its great significance in wireless
networks, developing an efficient scheduling algorithm is
extremely difficult due to the intrinsically complex interference
among simultaneously transmitting links in the network.

The link scheduling problem has been studied in several
visions with different optimization objectives, e.g., maximum
throughput scheduling, minimum length scheduling. Our study
only focuses on the maximum throughput scheduling in mul-
tihop wireless networks. Nevertheless, a common primary
issue here is to find a set of conflict-free links with regard
to the interference models. Thus, interference models matter
significantly in link scheduling algorithm design and analysis.

Despite of the numerous significant results [4], [5], [6], [7],
[8] to address this problem, most results assume simple binary
interference models where a set of links are conflict-free if
they are pairwise conflict-free. The predetermined interference
relationships can be represented by conflict graphs, and we can
leverage classic graph-theoretical tools for solutions. However,
in actual wireless communication, interference constraints

among concurrent transmissions are not local and pairwise,
but global and additive. The determination of a transmission
shall consider the cumulative interference from all possible
concurrent transmissions, which is often depicted by the
physical interference model. However, the simplification of
binary interference models from physical reality renders the
corresponding results no longer hold in reality. Moreover, the
global and additive nature of the interference drives previous
traditional techniques based on conflict graphs inapplicable
or trivial. Consequently, design and analysis of scheduling
algorithms under the physical interference model becomes
especially challenging.

Some recent results [9], [10], [11], [12], [13], [14], [15],
[16], [17] have addressed a few challenges related to the
scheduling problem under the physical interference model.
To the best of our knowledge, however, these results, for
throughput maximization or other optimization objectives such
as a minimum length schedule [10], just focus on centralized
implementation. Though results [18], [19] consider distributed
implementation of centralized algorithms, unfortunately they
fail to provide an exact theoretical guarantee for the achievable
performance. Distributed or even localized scheduling under
the physical interference model is thus demanding and chal-
lenging. One of the main challenges lies in the contradiction
that only local information is available to compute a schedule
with globally coupled interference constraint.

We tackle these challenges of practical distributed schedul-
ing for throughput maximization under the realistic physical
model in this paper. For the primary challenge of decoupling
the global interference constraints, on observing that distance
dominates the interference, we partition the links into disjoint
local link sets with a certain distance away from each other.
In this way, the interference from all the other local link
sets will be bounded by a constant so that independent
scheduling inside each local link set is possible. Thus we can
use the partition and shifting strategies to realize an effective
distributed implementation. Furthermore, we novelly combine
them into the pick-and-compare scheme so that we can prove
that our algorithm obtains theoretical capacity guarantee .

We summarize our main contributions as follows. We
successfully decouple the global interference constraints. We
design a method that will produce disjoint independent sets
of links, where the distance between any tow sets of links



is at least a constant. We show that disjoint local link sets
will result in a global independent link scheduling under the
linear power setting. We then prove that our distributed link
scheduling algorithm under the linear power setting achieves
a capacity region that is at least a constant factor of optimum.

The remainder of the paper is organized as follows. In
section II, we define the exact system models for the problem
we study. In section III, we describe the solution for decou-
pling the global interference constraints, and the proposed
distributed scheduling algorithm with theoretical proof based
on it. We conclude this paper in section IV.

II. MODELS AND ASSUMPTIONS

A. Network Communication Model

We model a wireless network by a graph G(V,E), where
V denotes the set of nodes and E denotes the set of links.
Each directed link l = (u, v) ∈ E represents a communication
request from a sender u to a receiver v. Let ∥l∥ or ∥uv∥ denote
the length of link l. We assume each node knows its own
location.

B. Interference model

Under the physical interference model, a feasible schedule
is defined as a set of activated links such that, SINRuv

∆
=

pu·η·∥uv∥−κ∑
w∈Tu

pw·η·∥wv∥−κ+ξ
≥ σ, where ξ denotes the ambient

noise, σ denotes certain threshold, and Tu denotes the set
of simultaneous transmitters with u. We assume path gain
η · ∥uv∥−κ ≤ 1, where the constant κ > 2 is path-loss
exponent, and η is the reference loss factor.

We also assume all links having a length less than the
maximum transmission radius κ

√
ηP
σξ .

, transmit under the linear
power setting, where a sender u transmits to a receiver v al-
ways at the power puv = c ·∥uv∥β ≤ P. c > 0 and 0 < β ≤ κ
are both constants, and P is the maximum transmission power.
The distance between u and v satisfies r ≤ ∥uv∥ ≤ R, where
r and R respectively denotes the shortest link length and the
longest link length. We suppose that r and R are known by
each node.

C. Traffic models and scheduling

We also share the same traffic models with [17] [20] where
we consider time-slotted wireless systems, and single-hop
flows with stationary stochastic packet arrival process at an
average arrival rate λl. The capacity region, defined as the set
of arrival rate vectors

−→
λ = {λ1, λ2, ..., λ|E|} under which the

system is stable(i.e., all queues are kept finite)., is a major
benchmark of throughput performance for link scheduling
algorithm . A throughput-optimal scheduling algorithm can
achieve the optimal capacity region, while a sub-optimal
scheduling policy can just achieves a fraction of the optimal
capacity region. The fractionally guaranteed capacity region is
depicted by efficiency ratio γ [5].

Since a suboptimal scheduling policy with efficiency ratio
γ [5] must find a γ-approximation scheduling at every time
slot t to achieve γ times of the optimal capacity region, it

remains difficult to be satisfied in a decentralized scheme. The
following called the pick-and-compare is proposed so that we
just need to find a γ-approximation scheduling with a certain
constant positive probability.

Proposition 1: ( [8]) Given any γ ∈ (0, 1], suppose that an
algorithm has a probability at least δ > 0 of generating an
independent set X (t) of links with weight at least γ times the
weight of the optimal. Then, capacity γ ·Λ can be achieved by
switching links to the new independent set when its weight is
larger than the previous one(otherwise, previous set of links
will be kept for scheduling). The algorithm should generate
the new scheduling S(t) from the old scheduling S(t − 1)
and current queue length Q(t).

In the rest of the paper we look for solutions to generate
distributed link schedulings, weight of which has a constant
approximation ratio to the optimal weight with a certain
constant probability at least.

III. THE ALGORITHM

In this section, we focus on the design of our algorithm.
We firstly demonstrate the basic ideas before involved in the
details of implementation.

A. Basic idea

The basis of our idea is to create a set of disjoint local
link sets in which the scheduling can be done independently
without violating the global interference constraint. The de-
coupling of the global interference constraint is based on
the fact that distance dominates the interference between two
distinct links. That is, if a transmitting link is placed a certain
distance away from all the other transmitting links, the total
interference it receives may get bounded. We prove later that
this assumption holds actually. Based on this, then we employ
the partition strategies to divide the network graph into disjoint
local areas such that each local area is separated away by
a certain distance to enable independent local computation
of schedulings inside every local area. Links lying outside
local areas will keep silent to ensure separation of local areas.
As links lying outside local areas cannot remain unscheduled
all the time or it will induce network instability, we use the
shifting strategy to change partitions at every time slot to
make sure that every backlogged link will be scheduled. These
locally computed scheduling link sets compose a new global
schedule X (t) at every time slot t.

In light of the pick-and-compare scheme, we choose a more
weighted schedule, denoted as S(t), between a new generated
schedule X (t) and the last-time schedule S(t−1) using Q(t).
Meanwhile, by Proposition 1, if we guarantee that Pr(S(t) ·
Q(t) ≥ γS∗(t) · Q(t)) ≥ δ for some constant γ > 0, δ > 0,
the queue length vector Q(t) will eventually converge to a
stable state if arrival rates vector inside supported region. Then
we can get a constant approximation ratio scheduling policy
for the optimal.

B. Detailed description

In this section we describe our solutions detailedly.



TABLE I
SUMMARY OF NOTATIONS

J side length of sub-square Lij link set of sub-square(i, j) Yij link set of super-subSquare(i, j)
K side length of super-subSquare Xij(t) new scheduling for Lij at t Sij(t) scheduling for Yij at t
Zi local link set OPT ∗

ij(t) local optimal MWISL for Lij S∗(t) global optimal MWISL at t
R longest link length S∗

ij intersection of Lij and S∗(t) S(t) global scheduling at time slot (t)
d side length of cell ∥uv∥ link length rS(l) relative interference l get from link set S

aS(l) affectness l get from link set S Q(t) queue length vector W (S) weight of link set S
IlS interference link l suffered from link set S Ilmax the maximum interference l can bear Imax the minimum of Ilmax

Fig. 1. Partition(K, at, bt). Here the
gray area is the local area the link set
of which participate in computing the
new schedule; the links in the white
area keep silent.

We first give a brief description of the partition and shifting
strategies [20], as illustrated in Fig. 1. We partition the plane
into cells with size d × d where d = R, using horizontal
lines x = i and vertical lines y = j for all integers i and
j. A vertical strip with index i is {(x, y)|i < x ≤ i+ 1}.
Similarly, we define the horizontal strip j. Let cell(i, j) denote
the intersection area of a vertical strip i and horizontal strip
j. A super-subSquare(i, j) is the set of cells: {cell(x, y)|x ∈
[i∗K+at, (i+1)∗K+at), y ∈ [j∗K+bt, (j+1)∗K+bt)}, and
a sub-square(i, j) inside it is the set of cells:{cell(x, y)|x ∈
[i∗K+at+M, (i+1)∗K+at−M), y ∈ [j∗K+bt+M, (j+
1) ∗K + bt −M)}. The corresponding link set Yij (or Lij)
consists of links with both ends inside super-subSquare(i, j)
(or sub-square(i, j)). Let K = 2M + J , 0 ≤ at, bt < K.
at, bt are adjustable variables, referred to as the horizontal
and vertical shifting respectively. M is a constant distance to
keep independence of link scheduling of local areas, which we
will formally define later in Lemma 2. We define the above
process as Partition(K, at, bt). By adjusting at, bt separately,
we can get K2 different partitions for a plane totally.

Then at each time slot nodes cooperate to compute a
distributed scheduling. Since every node knows the locality
from which it will collect information, it then participates the
corresponding local computation, and at last it sends (if it
is a coordinator which is closest to the center of the super-
subSquare) or receives (if not) the results. The coordinator
computes a new local scheduling link set by enumeration
in time nΛij(t) where nij(t) is the number of nodes in sub-
square(i, j), because the size of interference-free links for a
sub-square(i, j) is bounded by a constant which we will prove
later in Lemma 1. A detailed description is as follows.

Step 1: At time slot 0, every node first decides in which
cell it resides by a partition using (a0, b0) = (0, 0); then
it participates in the computation of the corresponding local
scheduling Xij(0). Let the solution S(0) of time slot 0 be the
union of the local solutions Xij(0) from all sub-squares.

Step m+1: For any time-slot t, t > 0, every node decides
in which cell it resides by a partition starting from (at, bt). For
better illustration we let at = t mod K, and bt = (bt + 1)

mod K if at = 0, bt keeps unchanged otherwise. Each
node then participates in computing the new local scheduling,
denoted as Xij(t), for its sub-square(i, j) using the weight
Q(t). Let Sij(t−1) be the set of links from S(t−1)(the global
solution at time slot t−1) falling in the super-subSquare(i, j)
instead of sub-square(i, j). If Sij(t−1) ·Q(t) > Xij(t) ·Q(t),
let Sij(t) = Sij(t − 1), else Sij(t) = Xij(t), the global
solution is the union of Sij(t) from all super-subSquares.
C. Theoretical analysis and proof

We then prove that our algorithm is correct and has a
constant approximation ratio to the optimal capacity region.

Given a network G(V,E), supposing ∪Zi is a set of disjoint
local link sets inside for scheduling, where Zi ∈ E and Zi ∩
Zj = ϕ if i ̸= j, for any link l ∈ Zi, if l is activated, then

Il,l∈Zi = Ilin + Ilout

where Il,l∈Zi denotes cumulative interference from all other
activated links in the network, I lin denotes the total interference
from simultaneously transmitting links inside Zi, I lout denotes
the total interference from transmissions outside.

Therefore, we can do independent scheduling inside Zi

without consideration of I lout from concurrent transmissions
outside Zi, if I lout gets bounded by a constant, i.e.,

Ilin ≤ (1− ε) · Ilmax, Ilout ≤ ε · Imax, 0 < ε < 1, l ∈ Zi.
Imax is the maximum interference that the longest links

in E can tolerant during a successful transmission and I l
max

represents the maximum interference that l can tolerant during
a successful transmission.

We will give a formal statement that I lout is indeed bounded
by εImax in Lemma 2. However, to cooperate proof of Lemma
2, we shall claim the following Lemma 1 in advance.

Lemma 1: In the linear power setting, the number of
interference-free links for a local link set Zi inside a square
with a side length JR is bounded by a constant. Let OPTi
refer to the optimal MWISL for Zi. That is,

|OPTi| ≤
(
√
2JR)κ

(1− ε)

[
1

σ
− ξ · ∥l∗∥β−κ

cη

]
+ 1.

Proof: The proof is available in Appendix A.
We let |OPTi|ub denote an upper bound of the size of the

local optimal MWISL for Zi, then we have,
Lemma 2: In a given network G(V,E) under the physical

interference model in the linear power setting, if the Euclidean
distance between any two disjoint local link sets is at least
M × R, then activated links in each local link set suffer a
bounded cumulative interference from all other activated link
sets, i.e., for each activated link l in local link set Zi,

Ilout ≤ ε · Imax, 0 < ε < 1,

where M is a constant, satisfying M ≥
[

2πcηRβ−κ·|OPTi|ub
(κ−2)εImax

] 1
κ

.



Proof: The proof is available in Appendix B.
To analyze the theoretical performance of our method, we

first review the following definitions.
Definition 2: (affectness [14]) The relative interference of

link lw on lv is the increase caused by lw in the inverse of the
SINR at lv , namely rlw(lv) = I lvlw/Plv . For convenience, define
rlv (lv) = 0. Let cv = σ

1−σξ/Plv
be a constant that indicates

the extent to which the ambient noise approaches the required
signal at receiver tv . The affectness of link lv caused by a set
S of links, is the sum of relative interference of the links in S
on lv , scaled by cv , or aS(lv) = cv ·

∑
lw∈S

rlw (lv).

Definition 3: (p-signal set [14]) We define a p-signal set to
be one where the affectness of any link is at most 1/p. Clearly,
any ISL is a 1-signal set.

Lemma 3: ( [14]) There is a polynomial-time protocol that
takes a p-signal set and refines into a p′-signal set, for p′ > p,
increasing the number of slots by a factor of at most 4(p

′

p )
2.

Next in Lemma 4 we exposit a constant approximation
relationship between each locally computed scheduling link
set and its counterpart of the global optimal scheduling set.

Lemma 4: The weight of Xij(t) has a constant approxima-
tion ratio to the weight of the intersection set by the local link
set Lij and the global optimal MWISL S∗(t).

Proof: Normally any ISL is a 1-signal set. Nevertheless,
in order to keep independence of sub-squares, the locally
computed ISL should be a p-signal set, where p is bigger
than 1. Thus the affectness of a locally computed ISL for sub-
square must satisfy that,

aSij (lv) = cv ·
∑

lw∈Sij

rlw (lv) ≤
σ

1− σξ/Plv

·(1−ε)·
Imax
lv

Plv

≤ 1−ε.

Therefore, by Lemma 3, any p′-signal set can be refined
into at most 4(p

′

p )
2 p-signal sets, where p′ > p. So a normal

MWISL can be refined into 4
(1−ε)2

1
(1−ε) -Signal link sets at

most. Since the 1
(1−ε) -Signal link set returned by enumeration

is most weighted, so the locally computed link scheduling sets
Xij(t) has W (Xij(t)) ≥ (1−ε)2

4 W (OPTij(t)).
Let S∗

ij(t) = S∗(t)∩Lij denote the intersection by Lij and
S∗(t), where S∗(t) is the global optimal MWISL at time slot
t. Let W (S) denote the sum weight of links in a link set S. It
is obvious that W (S∗

ij(t)) ≤ W (OPTij(t)) ≤ 4
(1−ε)2

W (Xij(t)).
Thus it proves the lemma.
Theorem 1: S(t) = ∪Sij(t) computed by our algorithm is

an independent link set under the physical interference model
in the linear power setting. The weight of S(t), W (S(t)), is
a constant approximation of the weight of the global optimal
MWISL with probability at least 1/K2.

Proof: We prove the theorem in two phases. We first
prove that S(t) = ∪Sij(t) is an independent set. We then
prove the approximation bound S(t) achieves.

For any link l ∈ S(t), assuming l ∈ Sij(t), the total inter-
ference l suffers from all the other simultaneously transmitting
links in S(t) is denoted by I lS(t).

At time slot 0, every local activated link set Sij(0) = Xij(0)
is kept 2M cells away from each other, so S(0) is an
independent set by Lemma 2.

At time slot 1, either Sij(0) or Xij(1) is chosen to be a
part of S(1). For those super-subSquares whose Sij(1) =
Si′j′(0) ∩ Yij(0), their distance is kept at least 2M cells
away. For those super-subSquares whose Sij(1) = Xij(1),
their distance is also kept at least 2M cells away. And he
distance between the two kinds of link set is at least 2M − 1
cells away. So S(1) is an independent set.

At some time slot t∗, t∗ > 1, for some super-subSquares,
Sij(t

∗) consists of disjoint subsets from several different
Si′j′(t

∗ − 1) which fall into Yij(t∗), i.e., Sij(t
∗) = S(t∗ − 1)∩

Yij(t
∗) =

∪
i′j′

{Si′j′(t
∗ − 1) ∩ Yij(t

∗)}. We then let Φij
i′j′(t

∗) =

Si′j′(t
∗ − 1) ∩ Yij(t∗) for brevity. Since each Si′j′(t

∗ − 1) is
kept at least M cells away from each other, so is each Φij

i′j′ .
Clearly, S(t∗) can be divided into two separated subsets,

one formed by some subsets of S(t∗ − 1), the other formed
by newly computed Xij(t

∗), i.e.,

S(t∗) =
∪
ij

Sij(t
∗) =

∪
pq

∪
i′j′

Φpq
i′j′(t

∗)

∪
∪
mn,

mn̸=pq

Xmn(t
∗)


.

Since
∪
pq

∪
i′j′

Φpq
i′j′(t

∗) is a subset of S(t∗−1), it is composed

by disjoint subsets with a mutual distance of M cells at least.
The distance between any distinct Xmn(t

∗) is no less than 2M
cells. Then we consider the distance between a disjoint subset
of

∪
pq

∪
i′j′

Φpq
i′j′(t

∗) and a Xmn(t
∗). Since Xmn(t

∗) locates in

sub-square(m,n), which is M cells away from the border of
super-subSquare(m,n), the distance between a disjoint subset
of

∪
pq

∪
i′j′

Φpq
i′j′(t

∗) and a Xmn(t
∗) is still no less than M cells.

Comprehensively, S(t∗) consists of disjoint subsets which are
separated by at least M cells.

Note that a disjoint subset of S(t∗) does not equalize to a
Sij(t

∗) since a Si′j′(t
∗ − 1) may be reserved completely in

different super-subSquares at time slot t∗. Here we denote the
disjoint subset by ψi(t

∗), and S(t∗) =
∪
ψi(t

∗).
By Lemma 2, for each link l ∈ ψi(t

∗), where ψi(t
∗)

comes from
∪
pq

∪
i′j′

Φpq
i′j′(t

∗), we have IlS(t∗) ≤ Ilmax. Mean-

while, for each l ∈ ψi(t
∗), where l ∈ ψi(t

∗) comes from∪
mn,mn ̸=pq

Xmn(t
∗), it holds that IlS(t∗) ≤ Ilmax. Then for any

l ∈ S(t∗), I lS(t∗) ≤ I lmax, thus S(t∗) is an independent set.
Next we consider situations at time slot t∗ + 1. Similarly,

S(t∗ + 1) composes of disjoint subsets separated by no less
than M cells. Using the same technique as at time slot t∗, we
can get that S(t∗ + 1) is still an independent set.

By induction we can infer that S(t) is a union of disjoint
activated subsets separated by M cells at least, thus it is an
independent. Herein we finish the first phrase of the proof.

The next is the proof of the second phrase.
Note that there are K2 different partitions for a plane totally.

So the partition(K, at, bt) has a probability at least 1/K2 to be
an optimal partition, the weight of whose corresponding S(t)
is an upper bound of that of any other partition. Observing
that each cell(i, j) appears in the ”removed” strips at most
2KM times during K2 different partitions. Let D(t) denote



the link set of the removed strips at Partition(at, bt,K). D∗(t)
represents the subset of S∗(t), links of which fall inside D(t),
i.e., D∗(t) = D(t)∩S∗(t). For an optimal partition it satisfies

that, W (D∗
i (t)) ≤ 2KM

K2 ·
K2−1∑
i=0

W (D∗
i (t)) = 2M

K
W (S∗(t)), and

W (∪S∗
ij(t)) = W (S∗(t)\D∗(t)) ≥ (1 − 2M

K
)W (S∗(t)).So by

Lemma 4, we can get (1− 2M
K

)W (S∗(t)) ≤ 4
(1−ε)2

W (∪Xij(t)).

By Proposition 1 we derive that the approximation ratio for
the optimal is 4

(1−2·MK )(1−ε)2 .
This finishes the proof.

IV. CONCLUSION

We tackle the problem of distributed link scheduling for
throughput maximization in wireless networks subject to phys-
ical interference with the linear power assignment. We suc-
cessfully address the primary challenge of global interference
constraint that hinders development of distributed scheduling
algorithms. We then utilize the graph partition and shifting
techniques to achieve distributed schedulings with a constant
approximation ratio to the optimal solution.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Suppose l∗ is the shortest link in OPTi, let l
denote any other link different from l∗ in OPTi. Assuming
l∗ = (u∗, v∗), l = (u, v), we have ∥uv∗∥ ≤

√
2JR. The relative

interference l∗ received from OPTi is shown below.

rOPTi
(l

∗
)=

∑
l∈{OPTi\{l∗}}

c · ∥l∥β · η ·
∥∥uv∗∥∥−κ

c · ∥l∗∥β · η · ∥l∗∥−κ

≥
∑

l∈{OPTi\{l∗}}
(
√

2JR)
−κ ∥l∥β

∥l∗∥β

≥
∣∣OPTi − 1

∣∣ · (
√

2JR)
−κ

.

Since l∗ ∈ OPTi, so it should satisfy the SINR constraint
that c·∥l∗∥β ·η·∥l∗∥−κ

ξ+(1−ε)Il
∗

max
≥ σ , then we have

r
max
OPTi

(l
∗
) ≤

1

1 − ε

 1

σ
−

ξ ·
∥∥l∗∥∥κ−β

cη


.

Therefore we derive |OPTi| ≤ (
√

2JR)κ

1−ε

[
1
σ
− ξ·rκ−β

cη

]
+1 .

APPENDIX B
PROOF OF LEMMA 2

Proof: For any two links l∗ and l which do not belong to
the same local link set Zi, assuming l∗ = (u∗, v∗), l = (u, v),
it always holds that ∥uv∗∥ ≥M ×R .

The total interference l∗ suffered form all concurrent trans-
mitting links located in other sub-squares is

I
l∗
out=

∑
l∈{∪Zi\Z′},l∗∈Z′

c × ∥l∥β × η ×
∥∥∥uv

∗∥∥∥−κ

≤c × η × R
β ×

∑
l∈{∪Zi\Z′},l∗∈Z′

∥uv
∗∥−κ

≤c × η × R
β ×

∫ ∞

1

2πxMR

MR
× |OPTi|ub × (xMR)

−κ
dx

=c × η × R
β−κ × 2π × |OPTi|ub × M

−κ ×
1

κ − 2

since κ is a constant greater than 2 typically.
To assure Il

∗
out ≤ ε · Imax, we derive that

M ≥
[ 2πcηRβ−κ · |OPTi|ub

(κ − 2)εImax

] 1
κ

where Imax = cηRβ−κ

σ
− ξ is a constant for a given network

G, |OPTi|ub is a constant upper bound of |OPTi|.


