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Abstract—For today’s computer users, the mouse plays such
an important role that it dominates the interaction interface
in personal computer for nearly half a century since it was
invented. However, the mouse is gradually unfit for the demand
of modern 3D display techniques, e.g. 3D-projection or -screen,
for the reason that the relevant interactions are confined in a
surface. Although some new methods such as computer vision
based techniques attempt to bridge the human-computer barrier,
they suffer from many limitations such as ambiguity in multi-
targets and dependence on light. This paper presents a battery-
free device called Tagball for 3D human-computer interaction via
RFID tags. Tagball devises a control ball, on which N passive tags
are attached, for users to generate two basic kinds of interactive
commands: translation and rotation. Instead of locating N tags
independently, we model the ball as a whole in a more cooperative
way under the circumstance that their geometric relationships
are known in advance. In addition, we consider the phase values
measured by M RF antennas for these N tags as observations
of the ball state. Our key innovations are the studies on motion
behaviors of a group of tags by using Extended Kalman Filter,
and the implementation based on purely Commercial Off-The-
Shelf (COTS) RFID products. The systematical evaluation shows
that Tagball traces the ball translation to 1.5cm and identifies
ball orientation to 1.8◦ in 3D space.

Keywords—RFID, Tagball, Interaction Peripheral, Extended
Kalman Filter

I. INTRODUCTION

Radio-frequency identification (RFID) technique has been
increasingly used in everyday scenarios, ranging from ware-
house inventory to tracking [1]. The reason for this widespread
deployment is the simplicity of tags, which enables very low
cost at high volumes. A tag has small microchips and an
antenna on board. The readers can collect the IDs of tags
via RF signals,without keeping them in sight or within reach.
The initial motivation of RFID is to automatically identify
objects, but its potential applications have been widely studied
in various areas in recent years. In this paper, we are going to
discuss its application in human-computer interaction.

The mouse which was invented by Douglas Engelbart in
1963, dominates the interaction interface in personal computer
for nearly half a century.It is a pointing device that detects two-
dimensional motion relative to a surface and plays an important
role for today’s computer user in 2D world. However, the
mouse is gradually unfit for the demand of modern 3D display
techniques, such as 3D-projection or -screen. For example, a
user has to move the mouse along a big circle to perform a
simple rotation action.

There is growing interest in the development of new
approaches and technologies for bridging the human-computer
barrier and facilitating natural human computer interaction in
3D world. They can be grouped into three categories: (i) Com-
puter vision based systems, such as Kinect, Wii, LeapMotion,
make use of depth sensors or infrared cameras to allow a
user to interact with computers. These methods look fantastic
and are close to human habit, but they almost inherit every
shortcoming from the computer vision, such as dependence
on light, dead corner, high computation cost, and ambiguity
in multi-targets. (ii) Sensor based systems, like using data
glove or smart phone, are not designed for improvement on
interaction with personal computers. (iii) device-free systems
[2], [3] appear attractive but are confined in body-level.

Advances in semiconductor technology in recent years
promote the rapid development of RFID technique. Nowadays
RFID reader is becoming a common module integrated with a
variety of consumer electronics e.g. smartphone, tablet, topset,
etc. In this paper, we leverage passive RFID tags to design a
novel human interaction device called Tagball to extend the
function of mouse. The overall design idea is very simple:
a group of tags are attached on a control ball with known
geometric relationships. Like using mouse, a user translates or
rotates the ball to adjust the visual field, browse graphic model,
or even control the remote telemedicine devices. The Tagball,
devoted to 3D interaction, overcomes mouse’s shortcomings
while retaining its simplicity and usability. It does not contain
any additional sensing components, thereby, its cost is less
than 1 US dollar 1. Importantly, it is battery free so that the
user does not need to worry about battery exhaustion.

Our goal is to design and build a system that traces the
ball state (referring to its position and orientation) through
N tags, which are attached on the ball. The naive method
is to localize these N tags independently by using M RF
antennas, then to calculate the ball state through their positions.
Even though pinpointing or tracking individual tag has been
widely studied [4]–[7] in recent years, this naive method
is infeasible in our scenario for three reasons. First, phase
measurements are not accurate; instead they contain random
errors, following a Gaussian distribution [6].What’s worse,
Doppler effect occurring in the mobile tags further aggravates
the problem. Second, the ball should be designed with smaller
size to offer a user-friendly device, while it is hard to obtain
positions of tags with dense deployment in a small space.
Third, it is known that water is a killer factor that hinders the

1Suppose RF reader has been integrated at the end machine.
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UHF signal propagation. Water-rich human palm may obstruct
the reading of parts of tags.

Instead of viewing N tags independently, we consider
these tags as a whole in a more cooperative way under the
circumstance that their geometric relationships are already
known. To deal with the challenges above, we model the ball
as a perfect rigid body and parameterize its state by using
Roll-Pitch-Yaw Φ(φx, φy, φz) plus the position O(x0, y0, z0).
Correspondingly, the phase measurements measured by M
antennas are viewed as the observations of the ball state.
This approach is attractive in many aspects. (i) it does not
make any assumption about each tag’s motion, which makes
it is capable of handling variable number of moving tags.
(ii) it puts a constraint on availability of phase measurement
through the tags’ geometric relationships. (iii) there are many
sophisticated filter techniques. They use a series of observa-
tions which contain noise and other inaccuracies over time
to produce a statistically optimal estimation system state. We
design three main components converting the RF signals to
interactive commands. First, the initial ball sate is estimated
by using a correlation method, which is further converted
into an optimization problem (see Section IV). Second, we
combine the spatial- and time-domain positioning information
by utilizing a dynamic model of Extend Kalman Filter for
the ball (see Section V), which cannot be solved via using
any single positioning method. At last, we use a backward
recursion to smooth the states (see Section VI). In summary,
our work makes three key contributions:

• First, to the best of our knowledge, Tagball is the
first system that studies motion behaviors of a group of tags
with known geometric relationships. It offers a novel way of
human-computer interaction in 3D space, which overcomes the
mouse’s limitations while inheriting its simplicity and usability.

• Second, we view the ball as a whole and the phase
measurements as the state observations. Then the technique of
Extended Kalman Filter is introduced to trace the ball state,
allowing part of tags not to be read and tolerating inaccurate
phase measurements.

• Third, Tagball is designed and implemented purely based
on COTS RFID products, which makes the fast adoption and
deployment possible. The systematical evaluation shows that it
traces the ball location to 1.5cm and identifies ball orientation
to 1.8◦.

The rest of this paper is organized as follows. Section II
reviews the related work. The system model and architecture
are presented in Section III. We present the details of Tagball
design in Section IV, Section V and Section VI. A poof-of-
concept prototype of Tagball is implemented and evaluated in
Section VII. Finally we make the conclusion in Section VIII.

II. RELATED WORK

This section reviews the related work including the novel
interactive devices and RFID based localization.

A. Novel interactive device

There are many novel interactive devices, which can be
classified into four categories:

Computer vision based methods: Another works leverage
various cameras to capture and recognize the human’s gesture.
Typically, the Microsoft Kinect is one of the pioneers who use
computer vision technique to recognize user’s joints, motion
and gestures. LeapMotion is another developing motion sens-
ing technology invented in 2010. It is designed to track user’s
fingers (or items such as a pen) which cross to the observed
area. These methods almost inherit every shortcoming from the
computer vision. Different from the imaging or infrared based
solutions mentioned above, Tagball is an RF-based device,
which does not require all tags in line-of-sight. What’s more,
since tags have unique IDs, easily-extensible to allow a large
number of users to interact with the system simultaneously
without causing confusion.

Sensor based methods: These works [8], [9] equip a
data glove with various kinds of sensors. This glove has the
capability of recording hand movements, positioning hand
and its orientation as well as finger movements. The main
advantage of data glove is its high sensitivity which is suit-
able for particular area, like telemedicine and film-making.
Nevertheless, it cannot be applied in personal computer in a
short span of time due to its high cost. By holding the phone
like a pen, the user is able to write short message or draw
simple diagrams in the air [10]. [11] identifies the location
of screen taps on smartphones and tablets from accelerometer
and gyroscope readings. Most of these methods are used for
improvement the interaction with smart phones instead of PC.

Device-free methods: [2] uses the human body as an
antenna to sense whole-body gestures. [3] is a novel gesture
recognition system that leverages wireless signals to enable
whole-home sensing and the recognition of human gestures.
[12] designs a gesture-recognition system that can operate
on a range of computing devices including those with no
batteries. SoundWave [13] utilizes the speaker and microphone
already embedded in most commodity devices to sense in-air
gestures around the PC. Device-free methods appear attractive
and relevant to us. However, their control is body-level and
they cannot be used for accurate and fine-grained gestures.

RF based methods: [14] presents a system that traces
the trajectory of RF source. The system enables a virtual
touch screen based on RF signals. However, it only works on
a surface. Instead, our system totally supports rotations and
translations in 3D space.

B. RFID based localization

There is a growing interest in using phase information to
locate tags. These methods can be divided into two groups,
AoA (Angle of Arrival) and SAR (synthetic aperture Radar).
AoA locates the tag by measuring the phase difference between
the received signals at different antennas [15], [16]. The major
challenge for these methods is how to deal with NLOS. State-
of-the-art systems use SAR for object localization and terrain
imaging with the help of antenna array [4], [6]. PinIt [4]
utilizes the multipath profile to find the nearest reference tags.
[5] extends this technique to robot object manipulation. Our
system is inspired by the recent work [4]–[6], which study
the RFID based localization or trajectory tracking with high
precision. A key difference between their work and ours is that
we focus on studying the behaviors of a group of tags instead
of the behaviors of individuals in a small space.
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TABLE I: Terms used in the description of Tagball

Term Definition

W and B The world coordinate system and ball coordinate system expressing two kinds of locations.

M and N The total numbers of reader antennas and tags.

O(x0, y0, z0) The origin of ball coordinate system (center of ball) expressed in world coordinate system.

Φ(φx, φy, φz) The orientation of the ball in ball coordinate system.

S = [O Φ]T The ball state including its position and orientation.

T1, · · ·TN The N passive tags deployed on the ball.

T1(x
w
1 , yw

1 , zw
1 )T · · ·TN (xw

N , yw
N , zw

N )T The locations of T1, · · · , TN expressed in world coordinate system.

T1(x
b
1, y

b
1, z

b
1)

T · · ·TN (xb
N , yb

N , zb
N )T The locations of T1, · · · , TN expressed in ball coordinate system.

A1, · · · , AM The M RF antennas connected to the reader.

Aw
1 (xw

1 , yw
1 , zw

1 )T , · · · , Aw
M (xw

M , yw
M , zw

M )T The locations of A1, · · · , AM in the world coordinate systems

θm,n and θ̃m,n The theoretical and measured phase value detected by the mth RF antenna and backscattered form nth tag.

eJ(θm,n−θ̃m,n) The complex exponential signal corelated with a pair of theoretical and measure phase value.

X(t), Z(t), X̂(t), and Ẑ Process state vector, observation vector, estimated state and observation.

f(·) and h(·) Process nonlinear vector function and observation nonlinear vector function.

III. SYSTEM DESIGN

Tagball is a low-cost RFID-enabled solution on offering a
novel human-computer interaction in 3D space. In this section,
we present the system model and architecture.

A. System Model

The Tagball is composed of two simple devices, control
ball and RF receiver, which are respectively modelled as
below. For reference, all terms used in this paper are defined
in Table I.

Modeling control ball: The control ball is a common
plastic ball on which N UHF passive tags are attached, as
shown in Fig. 1-①. The ball is a perfect 3D rigid body that
all points on its surface maintain the distance related to each
other. The motion of control ball in a reference space has six
degrees of freedom. There are many ways to parameterize
the motion of rigid body. Taking the symmetry of the ball
into consideration, we choose the Roll-Pitch-Yaw expression
Φ(φx, φy, φz) where the three angles respectively indicate the
rotation of ‘roll’, ‘yaw’ and ‘pitch’. In addition to its position
O = (x0, y0, z0) (defined as the location at ball’s centeriod),
the ball state can be parameterized as follows:

S = [O Φ]T = [x0 y0 z0 φx φy φz]
T (1)

The superscript T means the matrix or vector transpose. The
ultimate goal of Tagball is to trace the changes of ball state,
which are further converted to the client commands.

Modeling coordinate system: There are two kinds of
coordinate systems that express locations, world coordinate
system W and ball coordinate system B. The system W is the
reference coordinate for points in the workspace built on the
geometric relationships among reader antennas, whose origin
is at the center of the RF antenna locations. The system B

is the coordinate that points of the ball are defined, whose
origin is at the center of the ball. We use Tw

n (xw
n , y

w
n , z

w
n )

T

and T b
n(x

b
n, y

b
n, z

b
n)

T to denote the nth tags’ coordinates in the
system W and B respectively. The tags’ locations in system B

are known in advance. Given the ball state S, the locations in
two coordinate systems can be transferred as follows.

Tw
n = R · T b

n +O (2)

where R is the rotation matrix. According to the Euler
formulation, R is calculated, using Φ, as follows.

R = RPY(Φ) , rot(z, φz)rot(y, φy)rot(x, φx)

=

[
czcy czsysx − szcx czsycx + szsx
szcy szsysx + czcx szsycx − czsx
−sy cysx cycx

]
(3)

where sx = sin(φx), cx = cos(φx), sy = sin(φy), cy =
cos(φy),sz = sin(φz), and cz = cos(φz). The operator
rot(axis, angle) denotes the rotation with the specified angle
around the specified axis. Above equation can be understood as
follows. Any rotation RPY(Φ) can be achieved by composing
three elemental rotations with z, y, and x axis. Totally, Eqn. 2
means the tag firstly rotates along the three axes in the ball
coordinate system and then moves as the ball’s translation to
position O. Motion dynamics [17] indicates the relationships
of rotation and translation between two consecutive time which
can be expressed as:

O(t+ 1) = O(t) + ∆O(t) (4)

R(t+ 1) = R(t) ·∆R(t) (5)

where ∆R is the incremental rotation matrix produced by the
rotational motion between time t and t + 1, and ∆O is the
translational vector within that time period. If the rotational
and translational velocities are constants, ∆O(t) and ∆R(t)
are also constants.

Modelling RF receiver: The RF receiver, connected to
the client computer through wired network shown in Fig. 1-②,
constitutes of a UHF reader with M reader antennas (M ≥ 3).
For brevity, we use Aw

m to indicate the mth antenna as well
as its coordinate in system W. The locations of all antennas
are supposed to be known in advance. The passive tags have
no battery and harvest energy from the reader’s signals. They
employ the backscatter communications to modulate their
information to reader. The signal traverses a double distance
back and forth between the reader and tag. The total phase
rotation measured by the mth antenna about nth tag equals:

θ(Aw
m, Tw

n ) =

(
4π

λ
× |Aw

mTw
n |

)
mod 2π (6)

where λ, | · | and mod are the wavelength, Euclidean distance
and mod operation. The phase is a periodic function with
period 2π radians which repeats every λ

2 in the distance. Note
that we need to perform a set of calibration experiments at first



4
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Preprocessing Tracing ball state 

(1) Predicating state

(2) Predicating observation

X̂(t+ 1|t) = f(X̂(t|t))

Ẑ(t+ 1|t) = h(X̂(t+ 1|t))

(3) Calculating observation residual

V̂ (t+ 1) = Z(t+ 1)− Ẑ(t+ 1|t)

(4) Updating state

X̂(t+ 1|t+ 1) = X̂(t+ 1|t) +G(t)V̂ (t+ 1)
New phase measurements 

Calculating tags' displacement

RTSI Smoother

User interface

Estimating initial ball state

Moved

Not moved

Control ball

RF receiver
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5
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Θ̃(t)

{∆d1,1(t),∆d1,2(t), · · · ,∆dM,N (t)}

O(t),Φ(t)

Tags

UI Commands

X̂
s(t) = X̂(t) +G(t)[X̂s(t+ 1)− X̂(t)]

Fig. 1: System architecture

to correct the measured phase value for each pair of antenna
and tag to eliminate the additional phase shift caused by the
hardware’s characteristics in practice [6].

To avoid the reader collisions, the antennas are alternatively
scheduled in exclusive time-slots. After the tth round ends,
the reader outputs M × N phase measurements. Formally,

we use the Θ̃(t) = {θ̃1,1(t), · · · , θ̃M,N (t)} to denote these

measurements at time t where θ̃m,n(t) is the phase value

measured by the mth antenna for the nth tag. If the reading
of the nth tag is missed, its value is labeled null using term
⊥. Since our algorithm does not require all tags being read,
the process of null value is ignored. We sometimes omit the
time parameter for brevity and think that the value is inferred
at time t by default.

B. System Architecture

Fig. 1 shows the system architecture. Tagball devises three
main components that convert the raw RF signals to UI
commands, which can be represented as follow:

• Preprocessing: Tagball repeatedly reads the tags to
measure the phase values. If the ball is detected as being
stationary, its initial state is estimated by using a correlation
method. Otherwise, the tag’s displacements are calculated and
fed into the next component (see Section IV).

• Tracing ball state: The technique of Extended Kalman
Filter (EKF) is introduced to trace the ball state. The main task
in this component is to define the transition and observation
functions and to determine the corresponding parameters (see
Section V).

• Smoothing ball state:The EKF only computes causal
state estimates that conditioned on the previous and current
observations, not on the ones obtained with a time window.
The states are smoothed by using a backward recursion (see
Section VI).

We describe these three components in detail in the fol-
lowing sections.

IV. PREPROCESSING

The section introduces the two tasks in preprocessing: 1)
estimating initial ball state; 2) calculating tag displacements.

A. Estimating Initial Ball State

To achieve the fast state tracing, Tagball initiates a process
to estimate the ball state at the beginning or every time when
the control ball stops moving 2. Given M×N measured phase

values, Θ̃ = {θ̃1,1, · · · , θ̃M,N}, our task here is to find an

appropriate ball state S that produces Θ̃.

Assuming a state S, we can calculate all tags’ locations
with Eqn. 2 and then obtain their theoretical phase values Θ =
{θ1,1, · · · , θM,N} with Eqn. 6. Being similar to the augmented
hologram proposed in [6]3, we define a correlation function to
exhibit the likelihood how the assumed ball state S is likely
to be the ground truth, as below.

Cov(Θ̃,Θ) = |
M∑

m=1

N∑

n=1

2F (|θm,n−θ̃m,n|; 0, 0.1)e
J(θm,n−θ̃m,n)|

where F (x;µ, σ) = 1
σ
√
2π

∫∞
x

exp
(
− (t−µ)2

2σ2

)
dt. The term J

denotes the imaginary number and the term eJθ represents a
complex exponential signal. The F (x;µ, σ), the cumulative
probability function of Gaussian distribution N (µ, σ), is used
to augment the signal amplitude whose measured value is close
to theoretical one. A key point here is that all measured phase
values are viewed as originating from the positions related
to a same ball state. If the state S is correct, the theoretical
phase value will equal to the measured one. The vector of the

signal eJ(θm,n−θ̃m,n) will reach its maximum as θm,n − θ̃m,n

approaches 0. All observations from different pairs of antenna
and tag constructively add up for each other. Otherwise, when

S is not the correct state, θm,n − θ̃m,n will take a ‘random’

value in [0, 2π]. Different signal eJ(θm,n−θ̃m,n) will cancel each
other, as a result the final superimposing of these values at a
low level.

Thus, we can convert the estimation issue to an optimiza-
tion problem that finds an optimal ball state S to achieve the

maximum likelihood given Θ̃, formalized as follows:

max
S

Cov(Θ, Θ̃) (7)

2The control ball is considered to stop moving as majority of tags’ phase
changes follow within a small threshold.

3We do no use the differential augmented hologram because the phase value
has been calibrated.
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The range of ball state is discretized in practice. It appears a
large state space (6 dimensions) is needed to traverse to seek
the optimized state. In fact, a very coarse initial state estimation
is sufficient here, because our tracing algorithm can rapidly
converge to the correct value.

B. Calculating Tag Displacement

The nowaday COTS RFID readers have a highly efficient
anti-collision algorithm which interrogate a tag every 33ms
on average. Following the existing works [6] and [18], we
also assume that the displacement that a tag takes every two
consecutive reads is lower than λ/2 ≈ 0.16m. Thus, we
have a speed limitation that motion speed must be lower than
≈ 5.33m/s, This constraint is acceptable for the majority of
normal interactive tasks and can be relaxed when using more
efficient anti-collision protocols. Based on Eqn. 6, the phase
difference, ∆θ = θ(t) − θ(t − 1), for a pair of reader and
tag between time t and t− 1, relates to the difference in their
distances, ∆d = d(t)− d(t− 1), as follows.

∆θ =
4π

λ
∆d+ 2kπ (8)

where k is an integer. After simple transformation, we get
∆d = λ

4π (∆θ − 2kπ) Due to the speed constraint, the value
of k should be selected from {−1, 0, 1}. In detail, according
to the value of ∆θ in a particular instance, we have

∆d =





λ
4π∆θ, |∆θ| ≤ π, k = 0
λ
4π (∆θ + 2π), ∆θ > π, k = −1
λ
4π (∆θ − 2π), ∆θ < −π, k = 1

(9)

In this way, we can estimate the motion displacements
∆dm,n(t) for each pair of antenna Am and tag Tn after the

tth round schedule ends. These calculated displacements will
be fed into the next component as the observations of ball’s
motion state.

V. TRACING BALL STATE

Although we propose an approach to estimate ball state
in previous section, it is not appropriate for real-time and
accurate tracing due to huge computation. Instead, we consider
the control ball as a rigid body and trace its motion state by
using the Extended Kalman filter (EKF). This section firstly
presents the background of EKF and then introduces how EKF
is applied in our scenario.

A. Extended Kalman Filter

Despite the existence of more sophisticated filters, Kalman
filtering has been used successfully in different predication
applications or state determination of a system. Following the
common practice, we adopt the Extended Kalman Filter (EKF)
here.

The EKF addresses the general problem of estimating the
state X of a non-linear discrete-time controlled process that is
governed by the stochastic difference equation:

X(t+ 1) = f(X(t)) +W (t) (10)

with an observation Z that is

Z(t+ 1) = h(X(t+ 1)) + V (t+ 1) (11)

The random variables W (t) and V (t) represent the process
and measurement noise (respectively). They are assumed to be
independent from each other with Gaussian distributions. i.e.
W (t) ∼ N (0, Q(t)) and V (t) ∼ N (0, R(t)). The f(·), called
transition function, in the Eqn. 10 relates the state at current
time step t to the next t+1, in the absence of a process noise
and without control-input model. The h(·), called observation
function, represents how to obtain observations from a state.

The EKF maintains two state estimates, X̂(t|t) of state

X(t) and X̂(t + 1|t) of state X(t + 1), as well as two error
covariance matrix of above estimates, P (t|t) and P (t + 1|t),
given observations Z(t),Z(t − 1), · · · ,Z(1). As Fig. 1-④
shows, the EKF is an iterative algorithm, where each iteration

involves the four steps. Knowing X̂(t|t) and P (t|t) currently,
we have a new observation Z(t+1) on the next round and the
iteration performs the following steps.

(1) State predication: X̂(t+ 1|t) = f(X̂(t|t))
(2) Observation prediction: Ẑ(t+ 1|t) = h(X̂(t+ 1|t))
(3) Observation residual: V̂ (t+ 1) = Z(t+ 1)− Ẑ(t+ 1|t)
(4) State update:X̂(t+ 1|t+ 1) = X̂(t+ 1|t) +G(t)V̂ (t+ 1)

where G(t) is called Kalman Gain (defined later). The basic
idea of state update is to use estimated covariance and residual
covariance to determine how much we trust on state estimation
and how much we trust on the observation residual.

The Kalman Gain and error covariance can be estimated
as follows.

(1) State predication covariance:
P (t+ 1|t) = F (t)P (t|t)F (t)T +Q(t)

(2) Observation predication covariance:
S(t+ 1) = H(t+ 1)P (t+ 1|t)H(t+ 1)T +R(t+ 1)

(3) Update Kalman Gain:
G(t+ 1) = P (t+ 1|t)H(t+ 1)TS(t+ 1)−1

(4) Update state covariance:
P (t+1|t+1) = P (t+1|t)−G(t+1)S(t+1)G(t+1)T

where the state transition and observation matrices, F (t) and
H(t), are defined as the following Jacobians:

F (t) =
∂f

∂x
|X̂(t|t) and H(t+ 1) =

∂h

∂x
|X̂(t+1|t)

It should be noted that the state and measurement models,
i.e. the function f(·) and h(·) in Eqn. 10 will vary from one
problem to another, and they have to be derived separately for
each individual problem. Next two parts discuss the details of
the problem how to trace the ball states.

B. Modeling Stochastic Process

Motion state: Following the most popular model for kine-
matic state, we adopt the Continuous White Noise Acceleration
(CWNA) model [19] to build the control ball’s motion state.
CWNA assumes the object moves at a constant velocity in
the absence of a continuous white acceleration noise, viewing
the inputs(i.e. human control) as random variables. Combining
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Eqn. 4 and Eqn. 5, we have four motion equations:

O(t+ 1) = O(t) + ∆O(t) (12)

R(t+ 1) = R(t) ·∆R(t) (13)

∆O(t+ 1) = ∆O(t) (14)

∆R(t+ 1) = ∆R(t) (15)

The four equations above directly determine the ball’s state.
Both R(t) and ∆R(t) are matrices with nine elements, which
cannot be in a state vector. However, the R(t) are governed by
φx(t), φy(t) and φz(t) in roll-pitch-yaw expression. Likewise,
∆R is governed by ∆φx(t), ∆φy(t) and ∆φz(t). Thus, we
define ball’s motion state in form of Eqn. 10 as follows:

X(t) = [O(t) Φ(t) ∆O(t) ∆Φ(t)]T (16)

where ∆O = (∆x0 ∆y0 ∆z0) and ∆Φ = (∆φx ∆φy ∆φz).
Apparently, the ball’s state is a part of its motion state.

Transition function: In order to find the transition function
f(·) in Eqn. 10, we need to express Φ(t+1) in terms of Φ(t)
and ∆Φ(t). Combining Eqn. 3 and Eqn. 13, we have

RPY(Φ(t+ 1)) = RPY(Φ(t)) · RPY(∆Φ(t)) (17)

Let RPY−1 be inverse operator of RPY, which means that
RPY−1 takes a rotation matrix as the operand and returns
its roll-pitch-yaw angles, whereas RPY takes roll-pitch-yaw
angles as operands and returns the corresponding rotation
matrix. Applying RPY−1 on both sides of Eqn. 17 yields

Φ(t+ 1) = RPY−1 (RPY(Φ(t)) · RPY(∆Φ(t))) (18)

In summary, the transition function f(X(t)) can be written as
the following piecewise function:

f(X(t)) =


















O(t+ 1) = O(t) + ∆O(t)

Φ(t+ 1) = RPY−1 (RPY(Φ(t)) · RPY(∆Φ(t)))

∆O(t+ 1) = ∆O(t)

∆Φ(t+ 1) = ∆Φ(t)

(19)

The last thing is the explicit expression of RPY−1.
From Eqn. 3, since φy(t) is in [−π/2, π/2],the sign
of R[1, 1](t) is same with cos(φz(t)) and the sign of
R[2, 1](t)is same with sin(φz(t)). Then we have φz(t) =
atan2(R[2, 1](t),R[1, 1](t)). Similarly,we have φx(t) =
atan2(R[3, 2](t),R[3, 3](t)). As φy(t) is from −π/2 to
π/2,we can infer it with an atan function easily.

RPY
−1(R(t)) =











φz(t) = atan2 (R[2, 1](t),R[1, 1](t))

φy(t) = atan
(

−R[3, 1](t), (R2[2, 1](t) +R
2[1, 1](t))1/2

)

φx(t) = atan2 (R[3, 2](t),R[3, 3](t))
(20)

where atan(·) and atan2(·) are two types of arc-tangent func-
tions. The R[i, j] means the term of matrix R (referring to
Eqn. 3) at the ith row and jth column.

C. Modeling Observations

Observation vector: Upon receiving a new round of
readings, we calculate all tags’ displacements happened be-
tween last and current round by using Eqn. 9. There is a
relationship between these displacements and our unknown

motion state. The observation model, which is a description
of this relationship, is derived in sequel. Let ∆dm,n be the
displacement of tag Tn with regards to antenna An. We have
the observation vector corresponding to Eqn. 11 as follows

Z(t) = [∆d1,1(t) ∆d1,2(t) · · · ∆dM,N (t)]T (21)

The cardinality of observation usually equals M × N . We
adopt the tags’ displacements for observations instead of their
absolute positions because the displacement ∆d is derived
from the phase difference ∆θ, which brings about two obvious
benefits. First, the phase difference can eliminate the device
diversity. Second, the similar impacts taken by the Doppler
effect during a short interval are subtracted by phase difference.

Observation function: At time t, we have the state esti-
mate

X̂(t|t) = [Ô(t|t) Φ̂(t|t) ∆Ô(t|t) ∆Φ̂(t|t)]T

Since we know the transition function, X̂(t+1|t) = f(X̂(t|t)),
which is expressed in Eqn. 19, we can predicate the ball’s
motion state in the next time t+1 using Eqn. 19. Meanwhile,
we have the predicted rotation matrix

R̂(t+ 1|t) = RPY(Φ̂(t+ 1|t)) (22)

Therefore, the predicted locations in world coordinate system
for tag Tn at time t and t+ 1, base on Eqn. 2, are given by

T̂w
n (t|t) = R̂(t|t)T b

n + Ô(t|t)

T̂w
n (t+ 1|t) = R̂(t+ 1|t)T b

n + Ô(t+ 1|t)
(23)

where T b
n is the actual coordinate in coordinate system B. Then

the tag displacement can be obtained

∆d̂m,n = |Aw
mT̂w

n (t+ 1|t)| − |Aw
n T̂

w
n (t|t)| (24)

where Aw
m is the mth antenna’s location. Then the observation

function h(·) corresponding to Eqn. 11 is given by

h(X̂(t+ 1|t)) = [∆d̂1,1, · · · ,∆d̂M,N ]T (25)

Through the observation function, we can infer a predicated

observation Ẑ(t+1|t) = h(X̂(t+1|t)) based on the predicated

state X̂. By comparing the measured value Z (shown in

Eqn. 21) and the predicated Ẑ (Eqn. 25), the observation
residual is calculated, which will be used for state update in
the last step of EKF. If the phase value measured by the mth

antenna for the nth tag is missed,we delete the corresponding

items in Z(t),Ẑ(t+ 1|t)and R(t) and the EKF still works.

VI. SMOOTHING BALL STATE

The EKF only computes the estimates conditioned on
previous and current measurements instead of the measure-
ments over a time window w. Tagball employs the Rauch-
Tung-Striebel (RTS) smoother to smooth the changes. After
receiving a set of observations Z(t),Z(t − 1), · · · ,Z(t − w),
we are going to compute the estimate of the whole trajectory
with minimum mean square error, which is conditioned on all
the measurements

X̂
s(t) = E[X(t)|Z(t),Z(t− 1), · · · ,Z(t− w)] (26)

where w is the smoothing window size. The estimate can be
computed with the RTSI smoother. The smoothed sate estimate
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Fig. 2: System implementation

and its covariance can be computed by using the following
backward recursion for these states during the time window.

X̂(t|t− 1) = F (t− 1)X̂(t− 1|t− 1)

P (t|t− 1) = F (t− 1)P (t− 1)F (t− 1)T +W (t− 1)

G(t− 1) = P (t− 1|t− 1)F (t− 1)T [P (t|t− 1)]−1

X̂
s(t− 1) = X̂(t− 1|t− 1) +G(t− 1)[X̂s(t)− X̂(t|t− 1)]

P
s(t− 1) = P(t− 1) +G(t− 1)[Ps(t)−P(t|t− 1)]GT (t− 1)

(27)

the recursion starts from the filter results at the current time
step X̂

s(t) = X̂(t|t), P s(t) = P (t|t). When the data set is
limited and the assumed initial position differs significantly
from the ground truth, it is possible that the basis estimation
does not converge close enough to the true bias during one run
of the filter and the smoother. Then it is possible to iteratively
run the filter and smoother back and forth until the change in
the bias between consecutive iterations is below a threshold.

VII. IMPLEMENTATION AND EVALUATION

This section presents the implementation of our prototype
and the evaluation with various actions and parameters.

A. Implementation and Setup

We build a prototype of Tagball using COTS reader and
tags with standard communication protocol, as shown in Fig. 2.

• Control ball: It is inconvenient to attach tags on a
spherical surface. While implementing, we attach the tags on
a cube whose edge length is 6.5cm and embed the cube inside
a plastic ball (its radius equals 6cm), as illustrated in Fig. 2.
Each side of the cube has two passive tags modeled Square
from Alien company. Totally, 12 tags are attached. In addition,
we add 8 paddings between the ball and cube to stabilize the
tags’ geometric relationships. Before evaluation, we perform a
set of calibration experiments to eliminate the device diversity
[6] for each pair of antenna and tags.

• RF receiver: We employ an ImpinJ Speedway modelled
R420 reader, which supports four directional antennas at most,
being compatible with EPC Gen2 standard. The reader works
in the 920 ∼ 926 MHz band with frequency hopping. The
reader communicates a host through the wireless network
(TCP/IP). An average read-out speed of the reader is around
400 times per second (100 read-outs per second from each
reader antenna). The four antennas with circular polarization,
manufactured by Yeon technology are connected to reader,

(a) 3D desktop (b) Desktop menu

Fig. 3: Three dimensional desktop

providing ≥ 8dBic gain in two directions. The size of each
antenna equals 225mm× 225mm× 40mm.The four antennas
are deployed at the corners of a square with a side length of
1.2m and kept 2m above the floor.

• Software: We adopt Low Level Reader Protocol (LLRP)
to communicate with the reader. ImpinJ reader extends this
protocol to support the phase report. We adjust the configu-
ration of reader to immediately report reading whenever tag
is detected. The client code is coded in C# programming
language. Based on Tagball system, we develop an application
called 3D desktop. The screen shot of 3D desktop is shown
in Fig. 3. A user can select, copy, delete, and rearrange
the objects on the desktop. He also can adjust the field of
view through the rotation operations. This application has two
implementation parts. One part is run at the client and connect
to the Tagball system and the other part is implemented using
Tree.js (a JavaScript 3D Library which makes WebGL). Two
parts communicate to each other with WebService.

• Ground truth: The LeapMotion [20] is a recent novel
interaction device used to capture the fingers’ motion, which
is able to achieve an accuracy of 0.001mm. Thus, we use
LeapMotion to capture the ground truth. We place the device
under the control ball and let volunteer keep palms facing up.

B. Translation Accuracy

We firstly present the translation accuracy with other 7 lo-
calization or tracking methods. We repeat the experiments over
100 measurements. To focus on how much the reconstructed
translation shape deviates from the actual shape, we let the
control ball move along a piecewise linear curve, and calculate
the segment-by-segment length difference between the shifted
reconstructed translation and the ground truth. Note that each
segment of the trajectory has a random length and direction.
Fig. 4 shows the translation errors for 8 methods.

• RSS: The difference between the RSSs of a pair of tags
is used as an indicator for their spatial distance in past work
[21]. The RSS scheme has an error distance of 60cm, suffering
from the high variation in behavior across tags, like the antenna
gain and tag’s orientation.

• PinIt: In PinIt [4], a SAR is created through a mobile
antenna to extract the multipath profile for each tag. Its
intuition is that the tags locating in similar environment have
similar multipath profiles. PinIt achieves a mean error distance
of 20cm around.

• BackPos: BackPos [22] introduces the technique of
hyperbolic positioning into RFID localization without the need
of reference tags. It obtains a mean error distance of 40cm with
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Fig. 9: Impact of antenna number

a standard deviation of 20cm. It sacrifices the area of feasible
region to obtain the feature of being anchor-free.

• Tagoram: Tagoram [6] discusses two cases. TMG1
means the controllable case in which the track function is
known in advance. Using the technique of differential aug-
mented hologram, Tagoram is able to achieve a median error
distance of 1.4cm. TMG2 is the uncontrollable case where the
track function is unknown, in which it obtains a median error
distance of 12cm.

• RF-IDraw: Like BackPos, RF-IDraw also employs the
technique of hyperbolic positioning to localize the tag’s tra-
jectories, but it focuses on resolving the problem of multi-
resolution. RF-IDraw can be used for users to interact with
computing devices by gesturing or writing their commands in
the air. It can track the trajectory shape of the user’s writing
with a median accuracy of 3.7cm.

• Butterfly: [18] presents RFID-based insect tracking
system that equips a butterfly with a passive tag. It also utilizes
the EKF to resolve the ambiguity of the phase measurements
and obtain location accuracy of 3.2cm.

• Tagball: Fig. 5 shows the detailed CDF of translation
accuracy for Tagball. The median errors are 0.7cm, 0.7cm,
0.5cm and 1.5cm along x-axis, y-axis, z-axis and combined
dimension. Its 90th percentile errors are 2.2cm, 2.0cm, 1.4cm
and 3cm, respectively. There is little difference among differ-
ent dimensions. Hence, TagBall outperforms the translation
accuracy over RSS, PinIt, BackPos, TMG2, RF-IDraw and
Butterfly by over 41×, 13×, 30×, 8×, 2.4× and 2.1×.

Summary: Despite the high precision of TMG1, it cannot
be used in our scenario because the user behavior is totally
unpredictable. Except TMG1, Tagball achieves the best accu-
racy among these methods. RF-IDraw has the idea similar to
ours. But RF-IDraw considers the tag’s trajectory as a series
of isolated points instead of a continuous process, without

considering of motion contexts. the major difference between
Butterfly and Tagball is that the latter takes the behaviors
of group tags into consideration and provides the additional
rotation inspection, while the former only focuses on the
behavior of individual tags.

C. Rotation Accuracy

Second, we investigate the rotation accuracy. In order to
determine the rotation of an object, at least two tags need
to be attached and read on the object. We place the control
ball at a fixed position and rotate it with random angles. We
calculate the rotation difference between the inferred and the
ground truth. For baseline, we compare the results with the
RF-Compass.

• RF-Compass: RF-Compass [5] is an application of PinIt
[4] in robot object manipulation, which is designed to navigate
a robot equipped with RFIDs toward the object. Through the
spatial partitioning, it can identify the orientation of the object
so that the robot may pick the object up. RF-Compass can
achieve a a median of rotation error of 3.3◦.

• Tagball: Fig. 6 shows the CDF of rotation accuracy
identified by Tagball. It has a median rotation error of about
1.8o and 90th percentile error is 6.3◦, outperforming the
accuracy over RF-Compass by 1.8×.

Being different from the RF-Compass which locates each
tag firstly and then infer the object’s orientation, Tagball
considers the orientation (or rotation) as one dimension of the
ball state without knowing each tag’s location.

D. Impacts of Parameters

Last, we consider other factors that may take impacts on
the accuracy.

• Impact of initial state: The estimated initial ball state
has influence on the convergence rate of EKF. We place control
ball around the ground truth with various distance r, and
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then observe the influence of the estimated error. Fig. 7 plots
the CDF of converge steps needed by EKF to obtain a high
precision. We observe that the EKF can fast converge when
the error is very small. The accuracy and run-time of initial
ball state estimating is relevant to the scope and granularity
of searched state space. To reduce the initialization time,we
suggest the user set the ball in a specified orientation state
at first. As a coarse initial state estimate is sufficient, the
orientation state need not be very accurate so that the user
need not rotate the ball very carefully. And we think the initial
step does not cause inconvenience.

• Impact of distance: We deploy the four antennas at the
four corners of a square respectively. The control ball performs
actions inside the square. In order to check the impacts of
distance between the reader and control ball, we adjust the
side length of the square with 1.2m, 2m, 3m, 4m and 5m
respectively. Fig. 8 shows the accuracy with varying distance.
There is little difference among these distances, indicating that
the tracing accuracy is irrelevant to the distance.

• Impact of antenna number: The advantage of mod-
elling the control ball as a whole and viewing the phase mea-
surements as observations, is that our system is not restrained
by the number of antennas. We change the number from 1 to
4 and see its impact on the accuracy. The results are shown
in Fig. 9, the accuracy extremely improves as the number
increases. Especially, the median accuracy is 6cm even when
we use two antennas. This feature benefits from the statistical
characteristics of EKF.

VIII. CONCLUSION

This paper presents an RFID-based interaction device for
human-computer device in 3D space. Tagball bridges the
human-computer barrier, facilitating natural human-computer
interaction in 3D world. Our key innovations are studies on
motion behaviors of a group of tags by using Extended Kalman
Filter, and the implementation based on purely COTS RFID
products. In the future, we will further improve the speed by
reducing the collision among reader and tags [23]–[25].
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