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Abstract—Extracting planar graph from network topologies is
of great importance for efficient protocol design in wireless ad
hoc and sensor networks. Previous techniques of planar topology
extraction are often based on ideal assumptions, such as UDG
communication model and accurate node location measurements.
To make these protocols work effectively in practice, we need
extract a planar topology in a location-free and distributed
manner with small stretch factor. Current location-free methods
cannot provide any guarantee on the stretch factor of the con-
structed planar topologies. In this work, we present a fine-grained
and location-free network planarization method. Compared with
existing location-free planarization approaches, our method can
extract a high-quality planar graph, called TPS (Topological
Planar Simplification), from the communication graph using local
connectivity information. TPS is proved to be a planar graph
and has a constant stretch factor for a large class of network
instances. We evaluate our design through extensive simulations
and compare with the state-of-the-art approaches. The simulation
results show that our method produces planar graphs with a
small constant stretch factor, often less than 1.5.

I. INTRODUCTION

Nodes in wireless ad hoc and sensor networks are in-

herently placed in a geometric environment and can only

communicate with nodes within a certain geometry neighbor-

hood. The inherent geometry properties have been exploited

to design a number of efficient protocols for wireless net-

works, such as geographic routing, topology discovery etc.

Extracting a planar topology from the communication graph

while preserving the intrinsic network distances is crucial for

the successful execution of many protocols. As an example,

in geometric routing (a.k.a geographic routing) protocols,

such as GFG [1], GPSR [2], and macroscopic geographic

greedy routing [3], the faces of planar communication graph

are used to perform perimeter routing, which guarantees

packet delivery and greatly reduces the protocol complexity.

In network localization schemes, planarized network topol-

ogy helps to design efficient localization algorithms [4]. In

topology discovery schemes [5, 6], boundary cycles, special

planar substructures of network communication graph, are

extracted to locate communication holes, which contributes to

the detection of faulty nodes and improves the load balancing

and resilience of routing.

The most prominent approaches for addressing network

planarization problem utilize the geometry locations of nodes

[7–11]. In particular, the majority of those location-based al-

gorithms [7–9] are designed under communication models of

unit disk graph (UDG), and a few ones [10, 11] make an effort

to construct planar graphs in quasi unit disk graph (quasi-

UDG) and extended graphs. However, using the geometry

locations limits the applicability of those methods because

acquiring location information is often practically difficult and

expensive for large-scale networks. It is usually costly to equip

every node with GPS devices to get accurate location mea-

surement. For range-based and range-free localization meth-

ods, the problem often is computationally NP-hard. Those

localization algorithms usually output probabilistic results as

they suffer from error accumulation, and flip ambiguity [12]

etc. It is thus important to relax the assumption on location

measurements to enhance the applicability of algorithms that

require planar topology in resource-limited wireless networks.

Recently, location-free planarization has received consid-

erable attentions. Funke et al. [13] propose a distributed

method to find a provable planar graph, called combinatorial

Delaunay map (CDM). Zhang et al. [14] formalize network

planarization as the NP-hard bipartite planarization problem,

and propose a layer-by-layer planarization method. Current

location-free solutions [13, 14] shed light on the challenging

issue of location-free planarization. They, however, mainly

focus on the objective of planarization with little considera-

tion for the quality of constructed planar topology. Spanner

property (or distortion) is widely recognized as an important

metric to measure the quality of a planar subgraph [8]. A

subgraph has a constant stretch factor (or spanning ratio,

dilation ratio), if for any pair of distinct nodes, the distance

in the subgraph is at most a constant times of the distance

between them in the original graph. Existing location-free

algorithms [13, 14] cannot provide any guarantee on the

stretch factor of constructed planar topology. Zhang’s method

requires that network regions are of square-like shape. In an

arbitrary network region with feature-rich shapes or holes, a

large portion of the network cannot be planarized properly

by their method and the constructed structure could have

arbitrarily large stretch factor. Comparatively Funke’s method

does not put any conditions on the original shape of the

network deployment region. Funke’s method, however, out-

puts a well-connected CDM only when each Voronoi tile of

CDM has a large diameter: their theoretical result requires

the diameter be at least 290 (in hop-number metric), although



their simulation results show that their method still works

when the diameter of each Voronoi tile is at least 5. Under

such circumstances vertices of CDM are indeed a sparse

sampling of the network, which in turn results in a large

stretch factor of the constructed topology. If we force vertices

of CDM to be a dense sampling of the network, CDM will be

disconnected into many components. In this design, we make

the first attempt towards location-free planarization such that

the constructed structure has a small stretch factor for most

inputs. We construct a high-quality virtual planar backbone of

the network, called a topological planar simplification (TPS),

whose quality is greatly superior to CDM, as illustrated in

Section V, e.g. Figure 3 (a)-(d).

The main contributions of this work are as follows. We

propose a practical distributed algorithm that merely uses

the connectivity information to extract a provable planar

topology. We do not assume UDG model or use any location,

angular, or distance information. Our method first performs

a dense sampling from the original network and constructs a

simplified structure that is a spanner, but maybe not planar. We

then locate those edges causing non-planarity of the simplified

structure, prune and modify the simplified structure to obtain a

TPS while keeping the stretch factor of the modified structure

as small as possible. We prove that the constructed TPS

is a planar substructure for all possible inputs. We further

show that, for the most instances, all the edges causing non-

planarity of the simplified structure can be successfully elim-

inated by our method using local connectivity information,

which makes our TPS have a constant stretch factor. We evalu-

ate the performance of our method by extensive simulations.

Simulations results validate that our method is effective to

produce planar substructures with very small stretch factors,

and robust to the network communication models. Hence,

our design achieves a fine-grained location-free planarization.

TPS has several desired features, e.g. efficient distributed

construction, reflecting the topological and geometric struc-

ture of network well. As a high-quality planar graph, TPS

greatly improves the performance of many applications built

upon CDM graphs, e.g. recent geometric routing protocols

[3, 15], can be beneficial to various applications, such as

network localization [16] and segmentation [17], and topology

discovery [5, 6].

The remainder of this paper is organized as follows. We

discuss related work in Section II, and introduce the problem

formulation in Section III. Section IV presents the algorithm

of topological planar simplification. We present the evaluation

in Section V, and conclude this work in Section VI.

II. RELATED WORK

We can classify existing works on network planarization

into two categories: location-based and location-free. For

location-based planarization, most efforts mainly focus on

finding planar structures for geometric UDGs, which is widely

used in topology control for wireless ad hoc networks. Some

(not completed) well known structures includes Gabriel graph

v1
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l1

l2 l3

(a) G (b) CDM of G (c) TPS of G

Fig. 1: A simple example for CDM graph

(GG), relative neighborhood graph (RNG), local minimum

spanning trees (LMST), restricted Delaunay graph (RDG) [7],

localized Delaunay graph (LDel) [8], etc. There also exists

some location-based works seeking planar graphs in quasi-

UDG and extended graphs, such as CLDP [10], GridGraph

[10] etc. See good surveys by Wang [18] for more location-

based methods. We here pay more attention on location-free

methods [13, 14] as our work is in this category.

We use a simple example in Figure 1 to explain the main

idea of Funke et al.’s method [13]. Given a connectivity graph

in Figure 1 (a), in the first step, Funke et al.’s method selects

some nodes as landmarks, denoted by squares, and other

nodes are affiliated with the landmark that is closet to them

in terms of in hop count. Thus, the communication graph is

partitioned into disjoint subsets, called Voronoi tilings. In the

example, each tile includes two nodes li and vi, for i from 1
to 3. The first step itself is not new, which has been proposed

and used in previous works [19, 20]. Our method also uses

a similar first step. The key observation and contribution of

Funke et al.’s method are the following rules to construct

CDM graph: Each landmark li is a vertex of CDM; An edge

(li, lj) can be added into CDM if the following two rules are

satisfied: (1) there exists a path in the graph from li to lj
consisting of a sequence of nodes associated with li followed

by a sequence of nodes associated with lj ; (2) the one-hop

neighbors of the path contains only nodes associated with

landmark li or lj . CDM is guaranteed to be planar in ρ-quasi-

UDG with ρ ≥ 1/
√

2. Funke et al.’s method, however, aims

at approximating global network skeletons and considers little

on the quality of CDM in terms of the important planarization

metric of stretch factor. In this example, CDM only contains

three isolated vertices shown in Figure 1 (b). In general CDM

is often disconnected to cause large distortions when tile sizes

are relatively small, as explained in Section V. Comparatively,

our method targets not only planarization but also exploring

effective new techniques to construct planar graph TPS in a

fine-grained manner. Figure 1 (c) shows the TPS found by

our method for this example.

Zhang and Jiang et al. [14] planarize a square-shaped

network under realistic models with non-uniform transmission

ranges. The main idea of their method is to build two specific

shortest path trees and label network nodes in layers, then

planarizes the network covered by the two trees in a layer-

by-layer manner through formulating it as NP-hard bipartite

planarization problem. Main shortages of their method are in

two aspects. First, the method mainly works in regular square-

shaped network, and is hard to be extended into arbitrary net-

work regions, such as, with irregular outer boundary, complex



inner holes. This is because in complex network regions the

built shortest path trees would only cover a (maybe small)

portion of the network, even overlap onto each other to cause

faults. Consequently, the found planar graph will inevitably

have a large distortion, as explained in Section V-A. Second,

layer-by-layer bipartite planarization technique cannot provide

any guarantee about the distortion even when the built shortest

path trees can cover the whole network. Moreover, solving

bipartite planarization problem essentially requires the global-

scale connectivity information. They present some centralized

FPT (Fixed Parameter Tractable) algorithms for the NP-

Hard problem, which inevitably incurs high complexity of

communication and computing. It remains unknown how to

perform their algorithms in an efficient distributed manner.

III. PROBLEM FORMULATION

We present network assumptions and formulate the problem

of topological planar simplification. We consider a collection

of nodes deployed over a plane region. The nodes are only

capable of communicating with other nodes in its proximity.

We assume that the coordinates of nodes are unavailable,

in the sense that nodes can determine neither distance nor

orientation. This makes our approach robust to situations in

which geometry information is missing or only partially avail-

able. We extract planar network topology in a connectivity

graph G, where vertices and edges identify the nodes and

communication links, respectively.

Connectivity graph is far from a general graph in spite of

missing location information, and has its inherent geometry

properties. The quasi-UDG, generalized UDG model, can

reflect the proximity and radio irregularity, and better captures

the characteristics of wireless networks than UDG, so that

it is widely used to model wireless ad hoc and sensor

networks [11, 13]. A graph H = (V, E) is a ρ-quasi-UDG

with parameter 0 < ρ ≤ 1 if there exists an embedding

ε : V → R
2, which maps the vertices of H into the Euclidean

plane, such that for any two points u and v in H , 1) if the

Euclidean distance |ε(u)ε(v)| ≤ ρ, then (u, v) is an edge in

H; 2) if |ε(u)ε(v)| > 1, then (u, v) is not an edge; 3) and

if ρ < |ε(u)ε(v)| ≤ 1, (u, v) can be or not an edge in H .

An embedding ε is called a realization of H . This study uses

combinatorial quasi-UDG, where only a collection of vertices

and the neighbors of each node are known, differing with

geometric quasi-UDG, where a realization is also given. A

1/
√

2-quasi-UDG has an important ‘link-crossing’ property.

That is, given a 1/
√

2-quasi-UDG graph H , if two edges

(u, v) and (x, y) in H cross in a valid realization of H , there

exist at three edges between nodes u, v, x, y in H .

Spanner property is widely recognized as an important

metric to measure the quality of a planar structure [8]. Given

two vertex sets X , Y of a graph H , we write dH(X, Y )
as the minimum distance between any one vertex of X and

any one vertex of Y on H . A general definition for graph

spanner is defined as follows [21]. An (α, β)-spanner of H
is a subgraph H ′ such that dH′(u, v) ≤ αdH(u, v) + β, for

any two vertices u, v in H . If α = 1, the spanner is called

an additive β-spanner. If β = 0, this definition reverts to

the usual definition of a multiplicative α-spanner, and α is

the stretch factor. Unfortunately, it is theoretically infeasible

to construct a planar multiplicative spanner with constant

stretch factor in ρ-quasi-UDG for any 0 < ρ < 1. (The

two properties of planarity and spanner are conflict such that

preserving planarity would make the subgraph have a large

distortion.) To circumvent this impossibility result, we adopt

the general spanner definition. Although the planar (α, β)-
spanner of quasi-UDGs is still lack of enough studies, we

can determinately know the existence of a planar (α, β)-
spanner with bounded constant α and β for quasi-UDGs

when parameter ρ ≥ 1/
√

2. This study focuses on extracting

a virtual planar backbone, topological planar simplification

(TPS), from the network such that a planar (α, β)-spanner

can be efficiently constructed from a TPS. We formally define

topological planar simplification as follows.

Definition 1: (Topological Planar Simplification) Given a

connectivity graph G = (V, E), a topological planar simpli-
fication of G is a planar graph G′ = (V ′, E′), where V ′ is a

subset of V , and each edge (u, v) ∈ E′ corresponds to a path p
connecting u and v in G. G′ is called as a (α, β)-topological
planar simplification of G, if there exists two constants α
and β such that dG′(u, v) < α · dG(u, v) for u, v ∈ V ′, and

dG(v, V ′) ≤ β for any v ∈ V .

Please note that we do not force a TPS have to be a

subgraph of network connectivity graph G, which makes it

more flexible and robust to construct a TPS. By default, the

spanner mentioned in the rest refers to its general definition.

IV. TOPOLOGICAL PLANAR SIMPLIFICATION ALGORITHM

Before describing the details of this design, we present the

overview of topological planar simplification algorithm. The

main idea is first to generate a constant spanner from the

connectivity graph, called restricted witness graph (RWG).

RWG is a good structure for spanner, but can be not planar.

We prune and modify RWG to obtain a TPS while keeping

small distortion. Our TPS protocol mainly includes three

components: (1) constructing RWG and refined underlying
representation, (2) calculating maximal conflict-free graph,

(3) performing conflict edge resolution. We use an example

shown in Figure 2 to explain this design. Given the connec-

tivity graph G of a randomly deployed network, such as the

one shown in Figure 2 (a), our algorithm aims at extracting

a TPS graph GTPS from it. The square nodes and dark-line

edges in Figure 2 (i) show one found TPS by this protocol in

this example.

In particular, in the first component, we construct a RWG

from the original connectivity graph G, as shown Figures 2 (b)

and (c). Vertices of RWG form a uniform and dense sample

of the connectivity graph G. RWG is a constant spanner

structure of original graph, but usually not a planar graph.

We need to locate the set of edges breaching the planarity of

RWG, and adjust those edges to construct a planar graph while
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Fig. 2: Topological planar simplification. (a) a random network of 0.75-quasi-UDG with 400 nodes and average degree 10.69; (b) RWG
construction, the nodes in the same tile are labeled the same flag, light lines are edges among nodes in the same tile, and dot lines show
edges between nodes in different tiles; (c) the RWG, whose vertices and edges are denoted by squares and lines, respectively; (d) refined
underlying paths, denoted by lines; (e) the subgraph induced by all nodes in the refined underlying paths; (f) conflict-relationship graph,
whose vertices and edges are dots and dark lines, respectively, the circles show a maximal independent set; (g) maximal conflict-free graph
of RWG; (h) underlying pathes of maximal conflict-free graph; (i) conflict resolution for left edges and output TPS; (j) CDM graph by
Funke’s method.

keeping the distortion as small as possible. Without location

information, it become difficult to accurately determine those

edges leading to non-planarity of RWG. This design exploits

the fact that the communication graph is not an arbitrary

graph but having its intrinsic geometric structure derived from

the underlying deployment domain. Specifically, we extract

a subgraph from original graph as the refined underlying

representation of RWG, and each edge of RWG corresponds

to a underlying path in original graph, as illustrated in

Figures 2 (d). In the second component, from the refined

underlying representation of RWG, we extract a high-quality

planar subgraph from RWG by combining the techniques

of topological graph theory and the proximity properties of

quasi-UDG. Specifically, we make a rule to determine the

potential crossing underlying paths, and utilize those potential

crossings of underlying paths to build a conflict-relationship

graph for the RWG, shown in Figure 2 (f). Based on this

conflict-relationship graph, we extract a maximal conflict-free

graph from the RWG, shown in Figure 2 (g). The conflict-

free subgraph of RWG is guaranteed to be a planar graph.

This is because that underlying representation of conflict-free

subgraph, shown in Figure 2 (h), can indeed be regarded

as a planar drawing for the conflict-free subgraph through

proper transformations. In the third component, for the left

edges in RWG, we perform conflict resolution on them and

manage to find a constant-distortion TPS graph, as shown

in Figure 2 (i). Figure 2 (j) shows the CDM graph in the

same network for comparison. All these procedures in TPS

protocol are performed in a distributed manner using localized

connectivity.

A. Constructing RWG and Refined Underlying Representation

1) Definition and Construction of RWG:
We first introduce the definition of restricted witness graph

(RWG), then explain its spanner property and construction.

The vertex and edge set of a graph H are referred to as V (H)
and E(H), respectively. Let X be a vertex (or edge) set in a

graph H , we use H[X] to denote the vertex-induced (or edge-

induced) subgraph by X . The diameter D(H) of a graph G
is the largest distance between any two vertices in H . RWG

is inspired by the witness complex [19]. Witness complex

becomes popular in wireless network since a special case

of witness complexes, combinatorial Delaunay triangulation

(CDT), is used as a tool for landmark-based routing [20].

Witness complex (or CDT), however, can generally have an

arbitrary stretch factor since its tile size is not bounded. This

motivates us to define restricted witness graph to achieve

bounded stretch factor.

Definition 2: (Restricted Witness Graph) Given a graph G,

and two positive constants δ and λ, a (δ, λ)-restricted witness
graph GR is defined on G as follows: (1) each vertex vi

of GR corresponds to a vertex subset Vi of V (G) such that

D(G[Vi]) ≤ δ and
⋃

vi∈V (GR) Vi = V (G); (2) an edge (vi, vj)
of GR exists if and only if dG(Vi, Vj) ≤ λ.

The RWG in Definition 2 is defined in a very general

manner. We here present a practical construction for a specific

RWG used in this work, which likes a tile-bounded CDT. We

select a well-separated landmark set and partition network into



proper tiles. We select a k-hops maximal independent set as

landmarks set, denoted as L. Note that throughout this paper

we fix k to be small constant 2 to achieve the dense network

sampling. A node subset of a graph is a k-hops maximal

independent set (kMIS) if it meets the following two condi-

tions: (1) the pairwise distances of the nodes in the subset

are all greater than k; (2) any extra node adding to the set

will break the first condition. A kMIS can easily be computed

by a greedy algorithm, which iteratively selects a node into

kMIS and removes its k-hop neighborhood from the graph. A

simple distributed implementation is straightforward. We then

partition the graph nodes into disjoint subsets with respect to

the set of landmarks selected as above. Now each node is

affiliated with a landmark, which is the one in the landmark

set nearest to the node and has smallest ID. Figure 2 (b)

illustrates the above operations. Nodes in the same tiles are

connected by lines and labeled with the same marks. Dotted

lines show the edges that witness the adjacency between

tiles. The edges of RWG are further obtained according to

whether nodes among two tiles share a common edge, as

shown in Figure 2 (c) where square landmarks are connected

by bold lines to indicate the RWG. Apparently, the above

construction achieves a (2k, 1)-RWG. Note that no ties are

permitted in the initial construction of RWG, that is, two tiles

not sharing nodes, which is different with CDT [19, 20]. This

is because non-ties construction can eliminate some delicate

edge crossing in RWG. After constructing RWG, we add all

the vertices of the RWG into TPS GTPS as its initial vertices.

In the rest of this paper, by default we use GR to denote the

built RWG.

We analyze the characteristics of a general RWG in Defini-

tion 2. RWG is a good structure for building constant spanner,

as shown in Theorem 1. Moreover, the subgraph (or tile)

corresponding to each vertex of RWG has a small diameter,

which makes RWG easy to build and maintain with using

local connectivity. Note that RWG does not restrict that each

node in a tile must be closest to the landmark in its tile as

CDT, which potentially makes it more flexible to construct

RWG than CDT. The built RWG, however, is often not planar

in most practical instances, e.g. the one shown in Figures 2 (c).

Non-planarity of RWG can be understood and explained

similarly as for that of CDT, since tile-bounded CDT is a

polite instance of RWG. (When the subgraph induced by

each tile in a CDT has a δ-bounded diameter, the CDT is

a (δ, 1)-RWG.) Geometric Delaunay triangulation is a planar

graph because its dual Voronoi is a plane partition and the

degeneracy case of 4 points on a circle can be considered as

an extremely rare or easily handled event using coordinate

information. Nevertheless, the above two points are different

in discrete graph settings. A partition of graph vertices does

not imply a plane partition. There often exist nodes on borders

of tiles that are roughly equally distant from more than three

landmarks, which make critical edges between adjacent tiles

appear violating the planarity of CDT.

Theorem 1: A (2δ+λ, 2δ)-spanner of G can be constructed

from a (δ, λ)-restricted witness graph of G.

It is not difficult to show the correctness of Theorem 1. We

skip the proof due to the space limitation.

2) Refined Underlying Representation:
We next define and construct a minimal connectivity

subgraph to represent the RWG, called refined underlying
representation, as follows.

Definition 3: (Refined Underlying Representation) A re-
fined underlying representation (L, P ) in G for RWG GR is

a collection of landmark nodes L and paths P . L represents

the underlying nodes one-to-one corresponding to vertices

of GR, and P denotes underlying paths one-to-one corre-

sponding to edges of GR. Each underlying path pe ∈ P of

e = (li, lj) ∈ E(GR) is defined as one path in G that connects

landmark li and lj and consists only of nodes associated with

landmark li and lj .

A refined underlying representation for RWG GR ap-

parently exists, and can be easily found by using local

connectivity. For example, a landmark node only needs to

gather the connectivity within 2 hops and interacts with

neighboring landmarks to construct related underlying pathes

locally. Figure 2 (d) shows a refined underlying representation

of RWG in Figure 2 (c). In practice, there are many candidate

underlying paths for an edge of GR. In our construction,

we randomly select one shortest path to make as few as

possible nodes used in the representation, so as to reduce

the communication complexity. The construction of refined

underlying representation for RWG is an important step to

identify edge crossing in RWG and reduce the complexity of

planarizing RWG. This point will be explained in the later.

B. Calculating Maximal Conflict-Free Graph

From Figure 2 (d), we can observe that some underlying

paths are crossing or overlapped. In this component, with the

help of underlying paths, we locate the potential crossing

edges in RWG, and further extract a large planar subgraph

from RWG, called maximal conflict-free graph, as show in

Figure 2 (g). The following are important concepts defined in

this component.

Definition 4: (Contiguous) Given two underlying paths p1

and p2 in G of two edges in GR, p1 and p2 are contiguous if

their distance dG(p1, p2) ≤ 1.

Definition 5: (Edge Conflict) Two edges e and f in GR are

of conflict in respect to (L, P ) if their endpoints do not share

one underlying node in L and their underlying paths pe and

pf in P are contiguous, otherwise, e and f are conflict-free
in respect to (L, P ).

Definition 6: (Maximal Conflict-Free Graph) A conflict-
free graph is a subgraph of RWG GR such that any two

edges in the graph are conflict-free in respect to one refined

underlying representation. A conflict-free graph of GR is

maximal if it is not a proper subgraph of any other conflict-

free graphs in GR.

In particular, we define contiguous paths in Definition 4 to

capture all possible crossings among underlying paths. One



important observation in this work is that two contiguous

underlying paths often corresponds non-crossing edges in

RWG, which implies that it is over-pessimistic to simply use

contiguous underlying paths to decide a pair of crossing edges

in RWG. Through an in-depth analysis of underlying paths

and topological properties of planar graph, we introduce the

definitions about conflict among edges of RWG in Defini-

tion 5. We build a conflict-relationship graph for RWG, shown

in Figure 2 (f), and construct a maximal conflict-free graph

defined in Definition 6 form RWG, shown in Figure 2 (g).

Finally we prove the planarity of a maximal conflict-free

graph, whose main idea is to construct a planar drawing for

the maximal conflict-free graph by proper transformation on

its underlying representation, as shown in Figure 2 (h).

We now present the distributed implementation of con-

structing a maximal conflict-free graph GF . Each underlying

path in Figure 2 (d) can determine which underlying paths

are contiguous with itself using only local connectivity. Fig-

ure 2 (e) shows the subgraph of original network graph G
induced nodes in underlying paths in Figure 2 (d). The conflict

relationship of two edges in GR is determined. Hence, the

conflict-relationship graph Gcr can be constructed from GR,

as shown in Figure 2 (f). One vertex of Gcr identifies an edge

in GR, and one edge of Gcr represents the conflict relationship

of two edges in GR, Finally, we build a maximal independent

set VMIS for Gcr, denoted by circle nodes in Figure 2 (f).

We obtain an edge set EMIS in GR that corresponds to VMIS

in Gcr, and add edges EMIS into GF . As a result, GF is a

maximal conflict-free graph in GR. Please note that GF is

maximal instead of maximum. After finding GF , we add the

edges of GF into GTPS .

We next show the planarity of a conflict-free graph in

Theorem 2, whose proof are omitted here. The basic idea of

the proof is to show that a planar drawing of a conflict-free

graph can be constructed from its geometric realization.

Theorem 2: A conflict-free graph is planar for any quasi-

UDGs with ρ ≤ 1/
√

2.

C. Performing Conflict Edge Resolution

In this component, we dispose the left edges that cannot

be selected into the maximal conflict-free graph, EL =
E(GR)\E(GTPS). For these edges, each one conflicts with

at least one edge in the maximal conflict-free graph in current

underlying representation. Beside those edges really causing

intersection, some conflict edges may be created due to

the improper selection of underlying representation. As an

example, in Figure 2 (f) the conflict between edges (17, 8)
and (23, 15) corresponds to real edge crossing, while the fake

conflict between edges (13, 17) and (23, 15) can be removed

in other underlying representations. In this section, we present

edge conflict resolution techniques for left edges due to both

unfavorable underlying representations and real intersections.

For those fake conflicts, we calculate new underlying paths to

separate the conflicts. For real crossing conflicts, we deal with

them such that stretch factor is as small as possible while the

planarity is preserved.

We introduce the problem of edge conflict resolution from

a simple scenario. Suppose one edge e in EL conflicts with

only one edge f in GTPS regarding the current underlying

representation (L, P ). If we find another underlying path for

e to replace its original underlying path in P , the current

underlying representation is updated into (L, P ′). For the

new underlying representation (L, P ′), if e does not conflict

with f any more and still remains not to conflict with other

edges, then clearly edge e can be added into GTPS , and a

bigger conflict-free graph is found. However, if we cannot

find such good underlying path for e, the following two cases

may appear: (1) a new underlying path for e causes new

conflicts with other edges, or (2) the underlying path for

f also needs to be modified to make e and f be conflict-

free, further the modified underlying path for f can also

cause new conflicts. For these cases, we wonder whether the

edge e still can be added into GTPS without destroying its

planarity. The problem becomes more complex if edge e are

conflict with multiple edges in GTPS , since it becomes more

difficult (or less possibility) to find an alternate path for e
to eliminate all the multiple conflicts simultaneously. Ideally,

it is greatly desirable if we only need to test each pair of

conflict edges independently, instead of tackling all conflict

edges as a whole. That is, we can add e into GTPS safely

if for each edge f in GTPS conflicting with e, we can find

a pair of underlying paths for f and e to make f and e be

conflict-free. We affirmatively answer the above question by

Lemma 1. If a simple condition is satisfied, called separable-
conflict testing, we can decouple the whole conflict testing

into pair testing while preserving the planarity.

We next present the definition about separable-conflict

testing. We first introduce some necessary terms in graph

theory and define the concept of cycle-homotopy paths, shown

Definition 7. A cycle C is a subgraph of H if it is connected

and each vertex in C has degree two. All the cycles of a

graph form the cycle space of the graph if the addition of

two simple cycles is defined as the symmetric difference of

the two sets of edges in cycles. A cycle basis of a graph is

a family of cycles which can span all cycles of the graph.

Please refer to [22] for more conceptions on cycle basis.

We can concatenate two paths with the same endpoints to

obtain the concatenation cycle. We here only consider simple
concatenation cycle, which is composed of the symmetric

difference of edges in the two paths. The concatenation cycle

of two paths sharing endpoints is either a simple cycle or a

union of edge-disjoint simple cycles. For an edge e in RWG

GR, we use U(e) to denote the set of all underlying paths of

e in G.

Definition 7: (Cycle-Homotopy Paths) Given two paths p1

and p2 with the same endpoints in G and a positive integer

�0, we say p1 and p2 are of �0-cycle homotopy in G, denoted

by p1 � p2, if the concatenation cycle of p1 and p2 admits a

cycle basis in G such that each cycle in the basis has length

at most �0.



Note that this work sets �0 be small constant 4, i.e. �0 = 4.

Definition 8: (Separable-Conflict Testing) Given two con-

flict edges e1 and e2 in GR, p1, p
′
1 ∈ U(e1) and p2, p

′
2 ∈

U(e2), let p1 and p2 be contiguous, and p′1 and p′2 be not

contiguous. If p1 � p′1 and p2 � p′2, we say p1 and p2 are

separable paths, and e1 and e2 are separable-conflict.
In the example in Figure 2, we perform the separable-

conflict testing for the left two edges (14, 10) and (23, 15).
The testing result shows that edge (14, 10) (and resp. (23, 15))
is not separable-conflict with edge (24, 25) (and resp. (17, 8)).
Thus, the left edges (14, 10) and (23, 15) cannot be added into

the current TPS GTPS . It is worth noting that in this example

(23, 15) is separable-conflict with both (13, 17) and (2, 8);
thus if (23, 15) is selected into GTPS in the previous step

of maximal conflict-free graph instead of (13, 17), (2, 8), and

(17, 8); then (13, 17) and (2, 8) will be added into GTPS in

this step; this explains the effectiveness of separable-conflict

testing on identifying real crossings.

After separable conflict resolution, the left edges mainly the

ones causing real crossing. This means that adding each one of

them into TPS GTPS has the risk of destroying the planarity.

This, however, is also profitable since it also means that these

edges can be connected with its separable-conflict edges in

the network locally. For them, we apply a simple principle of

lazy adding. That is, our method locally tests whether these

edges can be expressed (replaced with) by a path with small

bounded constant μ in current TPS. If so, these edges can be

deleted safely, because not adding them still makes the stretch

ratio of TPS be bounded within a small constant dependent

on μ. Till now, if all the left edges are disposed, our method

finishes and outputs a planar graph of constant stretch factor,

as described in Theorem 5.

In the example in Figure 2, the final two edges (14, 10) and

(23, 15) can both be replaced with path of two hops in the

TPS, such as paths 23-8-15 or 23-1-15 for (23, 15). Thus our

methods finish and output the final TPS, shown in Figure 2 (i).

In this work we fix the length μ of alternate path to be a

small constant 3, μ = 3. This is based on the observation that

in a non-separable conflict that are caused by real crossing,

let e = {u, v} be one edge in a non-separable conflict, we

can mostly find an alternate path of at most three hops to

connect u and v in RWG due to the link-crossing property of

quasi-UDG and manner of constructing RWG. Our extensive

simulations also verify that μ = 3 is enough to eliminate all

left edges in randomly generated networks. If unfortunately

there exists an edge cannot find an alternate path bounded in

a constant, more methods for non-separable conflicts can be

carried out. We discuss the techniques for those special cases

in Section IV-D.

We analyze the performance and prove and correctness of

our algorithm. The main results are shown in Theorem 3,

Theorem 4, and Theorem 5. We first present Lemma 1 to

show the separable-conflict testing preserves the planarity.

Following Lemma 1, we have Theorem 3. The proof of

Lemma 1 is omitted here.

Lemma 1: A subgraph G′
R of GR is planar if any two edges

in G′
R are conflict-free or separable-conflict with each other.

Theorem 3: TPS is guaranteed to ba a planar graph.

We next present Theorem 4 to compare TPS with CDM

analytically, whose proof is omitted here. Funke et al. [13]

indicate a combinatorial Delaunay map (CDM) can faithfully

reflects the topology of the network sketching, and prove a

CDM has good connectivity when built from large tiles. We

next show a CDM is indeed a subgraph of TPS, thus TPS

has provably superior performance than CDM and inherits all

good properties of CDM for large tiles.

Theorem 4: TPS is a supergraph of CDM.

We then prove the distortion of the constructed graph by

this design. If all the left edges are disposed through perform-

ing conflict edge resolution, our constructed planar graph is

guaranteed to be (2μk +1, 2k)-TPS, as shown in Theorem 5,

whose proof directly follows Theorem 1, Theorem 2 and

Theorem 3.

Theorem 5: A (2μk+1, 2k)-TPS is obtained after success-

fully performing conflict edge resolution.

D. Discussion

We discuss to handle more complicated conflict resolution.

We here present a simple resolution for isolated non-separable

pair. The two edges that are not separable-conflict edges

are called as a non-separable pair. A non-separable pair is

isolated, if the four endpoints of non-separable pair are not

the endpoints of other non-separable pair. For an isolated non-

separable pair, we can locally aggregate four tiles associated

with the pair into a super tile. This makes the RWG GR

be modified and isolated non-separable pair be eliminated.

Clearly, in such a built super tile, a new landmark can

be elected while its distance to other nodes in the super

tile at most k′ = 3k + 1 hops. Hence, after successfully

eliminating isolated non-separable pair, a (2μk′ + 1, 2k′)-
topological planar simplification is achieved. Eliminating iso-

lated non-separable pair only use local connectivity. This

mostly is effective enough since our randomly constructed

RWG makes crossing edges always appear scatteredly. Our

extensive simulations also verify this point. Our method can

successfully find TPS without failure cases when building

RWG by randomly selected landmarks, thus are practically

effective. Conceptually, it is possible to artificially construct a

RWG instance to make the non-separable crossing hinged into

a large components of network scale by elaborate deployment

and selection of nodes. For such ill cases, isolated pair conflict

resolution is not available to guarantee the planarity. Indeed,

it becomes impossible to solve such ill cases using only local

connectivity information. If forcing to find planar spanner

for such an ill RWG graph, we have to collect connectivity

information of network scale. It is too cost for large networks.

It is more feasible and efficient to perform our method

on such an artificially ill RWG as follows. We can locate

the part of ill network regions where large hinged crossing

components happens. We repartition this ill part of networks



(a) TPS, k = 3 (b) TPS, k = 2 (c) CDM, k = 3 (d) CDM, k = 2 (e) ZJC

Fig. 3: (a)-(d) compare TPS and CDM with varying tile size k. Average node degree of the network is 8.51. (e) shows the results of ZJC
including two trees rooted at two square nodes and base path [14] denoted by the bold line.

by randomly selected landmarks, and build a new substituted

RWG. The new RWG can make ill scenarios disappear with

high probability. As a result, we can successfully planarize the

ill network regions in a divide-and-conquer and convergent

manner.

V. EVALUATION

We conduct extensive simulations to evaluate the effective-

ness of this approach. By varying the tile sizes, node density,

communication models and deployment region, we evaluate

TPS with regard to stretch factor and robustness of planarity.

We compare this design with two state-of-the-art approaches:

CDM graph proposed by Funke and Milosavljevic (denoted

as CDM) [13], and robust planarization proposed by Zhang,

Jiang and Chen (denoted as ZJC) [14]. They are currently

two best distributed methods using solely node connectivity

to achieve network planarization.

A. Qualitative Evaluation

We first present qualitative simulations to visually demon-

strate the quality of our approach, and explain the large

distortions of CDM and ZJC. In this set of simulations, nodes

are randomly deployed in regions of different shapes and with

varying density. By default the networks are generated under

0.8-quasi-UDG model.

We compare our TPS with the CDM with changing the

parameter k for kMIS landmarks to adjust tile sizes, k = 2, 3.

Figure 3 shows a set of results in a ‘G’-shape network.

Compared with TPS, CDM is rather sparse and has a large

distortion, and is disconnected into many connected branches

especially when k becomes small. We next examine the results

of ZJC in the same network, shown in Figure 3 (e). We see

that two shortest trees built by ZJC only cover a small portion

of the network, which causes large distortions among nodes

that are not covered by the trees. (Please note that two trees

locate at the same side of base path, which is also unexpected

by ZJC). By varying different shapes, we find ZJC cannot

work well in the following two scenarios: (1) the networks

with only one dominating long path, which makes the net-

works have not two orthogonal long paths. Figure 3 belongs

to such case. (2) the networks have narrow bottlenecks in the

center region, which often makes the built shortest trees only

cover a degenerate line-shape region. Due to the page limit,

we skip more results on CDM and ZJC in network fields

of various different shapes. Generally, we have the following

observations: TPS and CDM are independent with the network

shape since they only using local connectivity information,

while ZJC needs global connectivity and probes to network

shapes. Hence, we will mainly compare TPS with CDM in

the next quantitative results.

B. Quantitative Results

We then quantitatively examine the distortion and robust-

ness of TPS in random networks. We deploy 2500 nodes in

a square area by uniformly random distribution. Under each

configuration, our simulation takes 100 runs with random

network generation, and we report the average.

We have shown that the successful implementation of our

method will guarantee the stretch factor bounded in a small

constant. We here examine the practical stretch in random

networks, including the worst stretch and the average. The

worst stretch is the maximum stretch between any two nodes

in a network. In this set of simulations, we test stretch factor

by changing the densities of k-MIS landmarks, from k = 2 to

6, and fixing 0.8-quasi-UDG graph model, where the average

node degree 11.

We first measure the multiplicative stretch for any two

landmarks in a TPS graph. TPS is regarded as an edge-

weighted graph. For each edge (li, lj) in the TPS, its weight

is set to be the hop number of the shortest underlying path

for the edge. The stretch for any two landmarks li and lj in

a TPS graph is the ratio of their distance dT (li, lj) in TPS

to distance dG(li, lj) in original network. Table I shows the

results, where tmax and tavg denote the worst and average

stretch factor, respectively, and σ is the standard deviation.

The columns of α and α, β show the theoretical bound for

the stretch, presented in Theorem 5. In all these testings, our

method achieves a very small stretch factor. Specifically, the

worst and average stretch factors are bounded in 2 and 1.2,

respectively, which are much better than the theoretical bound

given by Theorem 5.

We next check the multiplicative stretch for any two nodes

in the whole network. To calculate the multiplicative stretch,

we construct a spanning graph G′ of G from a TPS. In



TABLE I: Planarization Results of TPS
Stretch for landmark nodes Stretch for nodes in the whole network Comparison with CDM

k α tmax σ tavg σ α, β tmax σ tavg σ branch σ degree σ ratio σ

2 13 1.931 0.035 1.194 0.033 13,4 7.621 0.231 1.406 0.104 36.533 2.271 0.783 0.018 4.413 0.102

3 19 1.830 0.046 1.171 0.033 19,6 8.115 0.511 1.468 0.137 2.533 0.427 1.264 0.027 2.495 0.055

4 25 1.693 0.034 1.154 0.034 25,8 8.603 1.104 1.527 0.168 1.167 0.126 1.536 0.025 1.848 0.032

5 31 1.608 0.029 1.139 0.035 31,10 9.278 1.114 1.601 0.203 1.033 0.061 1.683 0.033 1.495 0.032

6 37 1.518 0.050 1.120 0.034 37,12 9.987 1.139 1.659 0.225 1.033 0.061 1.739 0.041 1.277 0.026

particular, for any two nodes u and v in G, their distance

dG′(u, v) in G′ is composed of three parts: dG′(u, v) =
dG(u, lu) + dT (lu, lv) + dG(lv, v). lu (or lv) is the landmark

of the tile that u (or v) belongs to.

From Table I, we can see average and worst stretches are

also bounded by small values that are greatly better than our

theoretical bounds. Further, we can find that a TPS of smaller

tile size k provides a better multiplicative stretch for the whole

nodes. This is consistent with our intuition that a TPS with

small tiles achieve a dense sampling for the network and

produces a spanner with a small addictive stretch, thus can

better reflect real network distances.

We also compare TPS with CDM in the same networks.

We find that in each network configuration there always

exist some randomly generated instances where CDM is

disconnected, which makes use be not able to calculate the

average stretch factor for CDM. Hence, for CDM we check its

number of connected branches and node degrees. In Table I,

branch, degree and ratio denote the number of connected

branches, vertex degree of CDM, and the ratio of edge number

of TPS to that of CDM, respectively. From Table I, we can

see that TPS contains much more edges than CDM, and has

much better connectivity than CDM, especially for small tile

size k.

VI. CONCLUSIONS

As a crucial issue in wireless ad hoc and sensor networks,

network planarization is previously addressed either under

ideal assumptions, or in relaxed models while not provid-

ing any guarantee on the quality in terms of connectivity

and distortion. We present a practical method to perform

topological planar simplification on networks, and take the

first attempt towards extracting a provably planar topology

from the network in a fine-grained location-free manner. Our

constructed graph is proved to be a planar graph and has a

constant stretch factor for a large class of network instances.

The simulation results show that our method will produce

planar graphs with a small stretch factor, which significantly

outperforms the state-of-the-art approaches.
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