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Abstract:

Given a complex of vertices, constraining segments (and planar straight-
line constraining facets in 3D) and an a-Lipschitz control spacing function
f() over the domain, an algorithm presented herein can generate a conform-
ing mesh of Delaunay triangles (tetrahedra in 3D) whose circumradius-to-
shortest-edge ratios are no greater than v/2 (2 in 3D). The triangle (tetra-
hedron) size is within a constant factor of f(). An implementation in 2D
demonstrates that the algorithm generates excellent mesh.

Keywords: unstructured mesh generation, delaunay refinement, control
spacing, mesh conformity.

1 Introduction

Simplex mesh generation has many applications, including numerical meth-
ods such as the finite element method, computer graphics and geographic
information system. To ensure accurate result, the simplices of the mesh
must be well-shaped, in the sense that they have small aspect ratios, i.e.,
the smallest angles are bounded from below [1, 15]. To get accurate nu-
merical simulation, we also expect to have small element size. On the other
hand, we prefer to have larger element size due to the time complexity of
the simulation. Hence elements should have properly chosen size and shape
that adapt to the complex geometry and solution accuracy.

A control spacing function specifies the desired element size at each
point of the domain. Several heuristics and algorithms had been developed
to generate a mesh whose element sizes conform well to a given control
spacing function. Splitting the longest edge, or subdividing the simplices
are the most used heuristics. Shimada [14] used the particle simulation to
find a good mesh vertices set, then constructed the final mesh by Delaunay
triangulation. There are no any theoretical quality guarantees given by
above algorithms. The algorithm by Miller et al [11] uses the maximal
independent set of a large random sampled points set as the mesh vertices,
then triangulate them using the Delaunay method. Li et al [9] recently
had proposed a new method, called biting, which uses the advancing front



method to construct a tight sphere packing. It generates a mesh with
radius-edge ratio about 1 [9] inside the domain.

Mesh generation algorithms based on Delaunay refinement are effec-
tive both in theory and in practice. Paul Chew [4] developed the first
Delaunay refinement algorithm for a PSLG (2D) domain. Chew’s algo-
rithm generates a uniform mesh whose angles are bounded between 30°
and 120°. Chew [5] has also proposed two dimensional Delaunay refine-
ment algorithms that produce meshes of well shaped triangles whose sizes
are no more than the spacing defined on circumcenters. Jim Ruppert’s al-
gorithm [12] generates a well shaped mesh with provable nice gradation on
mesh elements size. Shewchuk [13] built upon the algorithmic and analyti-
cal framework of Ruppert to design a new tetrahedral Delaunay refinement
algorithm. It generates meshes whose tetrahedra have radius-edge ratios
(defined shortly) no greater than a bound B > 2.

Herein, I build upon the algorithmic framework of Ruppert[12] and
Shewchuk [13] to design a new Delaunay refinement algorithm. This al-
gorithm generates meshes whose simplex elements have radius-edge ratio
no greater than 2 in 3D and /2 in 2D. And the nearest neighbor value,
edge length function (defined shortly) of any mesh vertex are within a small
constant factor of the given control spacing. My algorithm is distinguished
from those of Ruppert and Shewchuk by the ability to handle a given con-
trol spacing with the guarantee of good conforming to the control spacing.
It is also easy to transform classic Delaunay refinement program to imple-
ment our algorithm. The main theoretical deficiency of the algorithm is
its assumption that the given control spacing is bounded from above by a
constant factor of the nearest neighbor function defined by the Delaunay-
refinement-conforming mesh M, (defined shortly). Notice that it is rare
that this assumption can not be satisfied in practice as showed in Section
5.

2 Preliminary

Well-shaped and well-conformed mesh: The aspect ratio of a simplex
is often defined as the ratio of radius of the circumsphere to the radius
of the inscribed sphere. But unfortunately, it is hard to generate mesh
with small aspect ratio in 3D. An alternative is to use the radius-edge
ratio measurement as defined in [10, 11]. It is the ratio of a simplex’s
circumradius over the length of its shortest edge, which is the metric that
is naturally optimized by Delaunay refinement algorithms [12, 13]. One
would like this ratio to be as small as possible. Notice that in 3D, sliver
is the only element with small radius-edge ratio but large aspect ratio.



Recently, new methods [2, 7, 8] had been proposed to theoretically remove
the slivers inside. Based on the radius-edge ratio quality measure, we say
a mesh M is p-well-shaped if the maximum radius-edge ratio over all of its
elements is at most p.

The spacing function f() can be derived from the geometry condition
such as local feature size [12], or from an a priori error analysis, or an a
posteriori error analysis based on an initial numerical simulation. Generally,
f() is the combination of all above. Given a mesh M, we capture the size
of the elements that contain a point & € 2 as follows. For point x € ,
elp(z) is the length of the longest edges of all mesh elements that contain
x; nny(x) is the distance of x to the second nearest mesh vertex in M.
Notice that x is the closest one if itself is mesh vertex.

In the ideal mesh M, the spacing function derived at any vertex of
M should be within a constant factor of f(). The smaller the constant,
the better the mesh conforms to f(). Thus, we define the conformity of
the mesh as following to capture how well the mesh conforms to the given
control spacing f().

nn(X) f(w))
f(Z) * nn(X)

Definition 2.1 [Conformity] For mesh vertez z, c(x) = min(
is the conformity of x to spacing function f().

Delaunay refinement: The main ingredient of Chew’s [3, 6], Ruppert’s
[12], and Shewchuk’s [13] Delaunay refinement algorithm is the insertion of
a vertex at the circumcenter of a triangle or tetrahedron with poor quality.
The following concepts are used in classic Delaunay refinement to protect
the domain boundary. The diametric sphere of a subsegment is the smallest
sphere that encloses it. A subsegment is said to be encroached if its diamet-
ric sphere contains a vertex other than its endpoints [12]. Any encroached
subsegment is split into two subsegments by inserting its midpoint; see Fig-
ure 1 (c). The equatorial sphere of a triangular subfacet is the smallest
sphere that passes through the three vertices of the subfacet. A subfacet
is encroached if a noncoplanar vertex lies inside or on its equatorial sphere
[13]. Each encroached subfacet is normally split by inserting its circumcen-
ter; see Figure 1 (b). However, if the new vertex would encroach upon
any subsegment, it is not inserted; instead, all the subsegments it would
encroach upon are split.

Notice that a subsegment/subfacet may be encroached by a point p
whether or not p actually appears in the mesh. Encroached subsegments
are given priority over encroached subfacets, which have priority over skinny
tetrahedra. These encroachment rules are intended to recover missing seg-
ments and facets, and to ensure that all vertex insertions are valid. The
first time the mesh reaches this state (all subsegments/subfacets are not



encroached), we call the mesh the-Delaunay-refinement-conforming mesh,
denoted by M.. We assume that there is a positive constant D such that
for any mesh vertex € M., nnu,(x) > Df(x), where nna, (x) is the
nearest neighbor function defined by mesh M..

3 Algorithm Outline

As in Delaunay refinement algorithm, we have to apply some criteria to
measure the elements quality of the mesh. Notice, given a control spacing
f0), a mesh element is good if both the radius-edge ratio is bounded from
above and the conformity of its vertices is bounded from below. We use the
following definition to distinguish the good elements from the bad elements
in our algorithm.

Definition 3.1 (B-Bad Element) Assume f() is a-Lipschitz, a simplex
is B-bad element if % > B, where aB < 1 and c is the element’s cir-

cumcenter. The ratio % is called the radius-center-spacing ratio.

For later convenience, hereafter, let R be the circumradius; L be the
longest edge length; [ be the shortest edge length of an element. Then
we give the formal description of our functional Delaunay refinement FDR
method as follows.

Algorithm: FUNCTIONAL-DELAUNAY-REFINEMENT(B)

1. [Boundary Edge Encroach] Split any encroached boundary sub-
segment by adding its midpoint;

2. [Boundary Face Encroach] Split any encroached boundary sub-
facet by adding its circumcenter. However, if the new point would
encroach subsegments, apply rule 1 to these subsegments instead;

3. [Remove Bad Element] Split any B-bad element simplex by
adding its circumcenter. However, if the circumcenter would encroach
any subsegment or subfacet, then apply rules 1 and/or 2 instead.

The main idea of the algorithm is as follows. Let B(x,r) denote the
sphere centered at point  with radius r. We call sphere B(xz,3f(x)) the
protection sphere of mesh vertex . By carefully selecting B and 3, the
B-bad element definition makes sure that the above algorithm will not
introduce any overlap among all protection spheres at mesh vertices. Then
by a simple volume argument, we know that the algorithm is guaranteed
to terminate. After the algorithm terminates, the resulted mesh elements
are well shaped and well conformed, if B and 3 are selected properly.



4 Proof of Termination and Quality of FDR

In this section, we show that the algorithm is guaranteed to terminate, the
radius edge ratio of element is bounded from above and the element size
conforms well to the given function f().

For any noninput vertex v (whether inserted or rejected), let parent
p(v) be the vertex “responsible” for the insertion of v. For convenience, we
often use ¢ to denote p(v). See Figure 1. Recall that after the Delaunay-
refinement-conforming mesh is constructed, the circumcenter of B-bad ele-
ment is “responsible” or the parent of ”responsible” for all point insertions.
With each vertex v, also associate an insertion radius ry equal to the length
of the shortest edge connected to v immediately after v is introduced into
the tetrahedralization. Notice that v may not have to be inserted into the
mesh actually: if it encroaches some subfacets or subsegments, then it is
rejected.

Figure 1: Three cases of inserting points: (a) inserting the circumcenter;
(b) split an encroached boundary facet; (¢) split an encroached segment.

Proof of termination is based on the following lemma proved in [9].

Lemma 4.1 For any points  andy, the spheres B(x,8f(y)) and B(y, 5f(y))

will not overlap if ||z — y|| > 13(@5 min(f(x), f(y)).

The following theorem proves the termination guarantee, if B and (3
are selected properly.

Theorem 4.2 [Terminate Theorem] If B > W, then intro-

duced protection sphere is not overlapped with existed protection spheres.

Proof: We prove it by analyzing the three cases of inserting points to a
mesh:

1. The circumcenter ¢ of a B-bad element is inserted. See Figure 1

(a). Then from lemma 4.1, we know that if B > %, then the



protection sphere B(e, f(c)) will not intersect with any other existed

protection spheres, because nn(c) = R > Bf(c) > lfﬂa 5/ (c).

. The circumcenter v of a boundary facet 7 is inserted because the

circumcenter ¢ of a B-bad element encroaches 7. See Figure 1 (b).
Notice that re¢ > Bf(c).

If point v is contained in sphere B(c,8f(c)) then roy > grc (see

[13]) and f(v) < f(c) + ary < (2 + a)ry. Tt follows that ry >
ﬁ f(v). Recall that before ¢ is introduced (it is actually rejected),
the equatorial sphere B(v,ryp) is empty. To make sure that the pro-
tection sphere B(v,3f(v)) will not overlap with any existed protec-

tion sphere, ry > lfg 5/ (v) is a sufficient condition. Then we need

ﬁ > % Which implies that we need B > 12_‘{358.

If point v is not contained in sphere B(c,f(c)) then ry > re and
f(e) > f(v) — ary. Then we have ry > Bf(c) > Bf(v) — aBry.
It follows that ry > H% f(v). Similarly, we have to make sure that

ry > 22 f(v). Then we need —B— > 22 Which implies that we

1—af 1+aB = 1—apf
28
need B > T 305"
Combine above two subcases,
2v/2
B> ﬁ
—1-3ap

is a sufficient condition that the new inserted protection sphere will

not overlap with any existed sphere. Notice that in both subcases,
B

we have T Z mf(’v)

. The middle point v of a boundary segment is inserted because the
circumcenter ¢ of either a B-bad element or an encroached facet en-
croaches the segment. If the parent point ¢ of v is the circumcenter
of a B-bad element, then similar to previous case 2, a sufficient con-

dition is B > 12—\2%5[3' If the parent point ¢ of v is the circumcenter
of another encroached facet (but it is rejected), then from the result

of previous case, we know that re¢ > ﬁ f(c). Then again sim-

ilar to the proof O,f previous case 2, a sufficient condition to avoid
overlapping is ﬁ > %, where B' = ﬁ. It implies that

43
B2 1—(34+2v2)as "

Combining both subcases, a sufficient condition is
48
(3+2v2)ap

B>
1—



Then the sufﬁcient conditions (of three cases) to avoid overlapping are
. 3 7 and B >
follows from the fact that, if

Z m Consequently, the theorem

B> 46
1—(3+2v2)ap
all sufficient conditions are satisfied. O

In other words, if the protection sphere is defined by the constant 8 =
the functional Delaunay refinement algorithm is

mln(4+(3+2B\/§)aB’ 2+[o)zD)’
guaranteed to terminate by a simple volume argument. Here we assume
that there exists € > 0 such that f(x) > efor all z. Then after the algorithm
terminates, we know that f(c) < B for all mesh simplices. The following

theorem guarantees a good radius-edge ratio for all mesh simplices.
Theorem 4.3 [Radius-Edge Ratio] If B < é, for all elements

R B
7S 26(1 — aB)’

Proof: For any point v on the circumsphere B(e, R) of tetrahedron pgrs,
we have f(v) > f(c)—aR > (1-aB)f(c). Then the length of the shortest
edgel > 26f(v) > 26(1~aB)f(c). Recall R < Bf(c). Thus § < 5552,
if B< L. m]
Assume B is selected such that yEVEIT) f)a 5 <3 +a - Then the radius-
edge ratio of mesh elements generated by functional Delaunay refinement is
at most %. It shows that the theoretic guarantee of the radius-
edge ratios of the mesh elements generated are close to 2 (by setting B
almost 0). The fact that all protection spheres do not overlap implies the
following statement about the nearest neighbor of every mesh vertex.

Theorem 4.4 [Nearest-neighbor| For every mesh vertex p,

nn(p) 2 26/(1 + aB)f(p)-

Proof: For mesh vertices p,q, the spheres B(p,3f(p)) and B(q,5f(q))
will not overlap. Then ||p — q|| > B(f(p) + f(q)). The theorem follows

from f(q) > f(p) — ellp —qll. O
Similarly, if yeve +]23 V3)aB <3 +Da -, for mesh vertex p, we have

2B
4+ (5+2V2)aB

The following theorem shows that the value el() at any mesh vertex is
also bounded from above respecting to its control spacing function.

nn(p) > f(p).



Theorem 4.5 [Edge-length] For vertez p, el(p) < 225 f(p).

Proof: For any mesh vertex p, let pgrs be a tetrahedron incident on p with

the longest edge pg. Let R be the circumradius of pgrs. Then el(p) =

|lp — q|| < 2R < 2Bf(c). Notice that f(p) > f(c) + aR > (1 + aB)f(c).

Thus we have el(p) < li% f(p). O
Notice the above Theorems 4.4 and 4.3 implies that

203 nn(p) _ el(p) 2B
1+aB =~ J() = fp) ~1+aB’

The 2D, we use constant 3 = min(m, H%) to define the pro-

and B < L, then § < 2/24398  Then the
1—aB

2v2+43aB”

tection circles. If g = m

minimal angle 6 satisfies sin(6) >

5 Experiments and Discussions

We had conducted some experiments of our algorithm on two dimensional
domain. Each of the meshes illustrated was generated by enforcing a lower
bound on the radius-center-spacing ratio, rather than the radius-edge ra-
tio. See definition 3.1. However, the implementation gives priority to
triangles with high radius-center-spacing ratio. The experiments show that
the quality of meshes generated is much better than the theoretic guaran-
tee. The angle quality and the control spacing conformity is plotted in the
following Figure 3. We observed that using different B does not change
much on the angle distribution. The protection sphere does not appear in
implementation.

Recall that we assume there is a positive constant D such that nn, () >
Df(x) for every vertex & € M,.. We show that it is reasonable in the fol-
lowing sense. First, to make it possible to generate a well-shaped and well-
conformed mesh, f() should be less than a constant factor of the local fea-
ture size [ fs(), let us say [fs(x) > - f(x). Following the result by Ruppert
[12] and Shewchuk [13], there is a constant w such that nnys, (z) > w-lfs(x),
if the input domain has no acute angles. Then we have nn s, () > wd- f(x).
In other words, D = wd satisfies our assumption.
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