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Abstract—We consider a wireless ad hoc network consisting ofn points
randomly distributed in a two-dimensional plane. We show that, with high
probability, we can locally find a path for any pair of nodes such that the
length of the path is no more than a constant factor of the minimum. By as-
suming each node knows its position, the method decides where to forward
the message purely based on the positions of current node, its neighbors,
and the positions of the source and the target. Our method is based on a
novel structure called localized Delaunay triangulation [1] and an efficient
localized routing method [2] that guarantees that the distance traveled by
the packets is no more than a small constant factor of the minimum when
the Delaunay triangulation of wireless nodes are known.

Our experiments show that the delivery rates of existing localized rout-
ing protocols are increased when localized Delaunay triangulation is used
instead of several previously proposed topologies, and the localized rout-
ing protocol based on Delaunay triangulation works well in practice. We
also conducted extensive simulations of another localized routing proto-
col, FACE method [3]. The path found by this protocol is also reasonably
good compared with previous one although it cannot guarantee a constant
approximation on the length of the path traveled theoretically.

I. INTRODUCTION

One of the central challenges in the design of ad hoc networks is
the development of dynamic routing protocols that can efficiently find
routes between two communication nodes. In recent years, a variety
of routing protocols [4], [5], [6], [7], [8], [9] targeted specifically for
ad hoc environment have been developed.

Several researchers proposed a set of routing protocols, namely the
localized routing, which select the next node to forward the packets
based on the information in the packet header, and the position of its
local neighbors. Bose and Morin [2] showed that several localized
routing protocols guarantee to deliver the packets if the underlying
network topology is the Delaunay triangulation of all wireless nodes.
They also gave a localized routing protocol based on the Delaunay
triangulation such that the total distance traveled by the packet is no
more than a small constant factor of the distance between the source
and the destination. However, it is expensive to construct the Delaunay
triangulation in a distributed manner, and routing based on it might not
be possible since the Delaunay triangulation can contain links longer
than the transmission radius of the wireless devices. Then, several
researchers proposed to use some planar topologies that can be con-
structed efficiently in a distributed manner. Bose et al.[3] and Karp et
al. [10] proposed to use the Gabriel graph [11]. Routing according to
the right hand rule, which guarantees delivery in planar graphs [2], is
used when simple greedy-based routing heuristics fail.

Using Gabriel graph although can guarantee the delivery of the
packets with the help of the right-hand rule, however, the distance trav-
eled by the packet could be much larger than the minimum required
[12], [13], [14], [15]. In other words, Gabriel graph is not a good ap-
proximation of the unit disk graph in terms of the pair-wise distance
between wireless nodes. This is true even when the points are ran-
domly and uniformly distributed in a unit square [12]. Formally, given
a graphH , a spanning subgraph G ofH is a t-spanner if the length of
the shortest path connecting any two nodes inG is no more than t times

the length of the shortest path connecting them in H . In [1], Li et al.
designed a localized algorithm that constructs a planar t-spanner for
the unit-disk graph UDG(V ), such that some of the localized routing
protocols can be applied on it. They obtained a value of approximately
2.5 for the constant t. They called the constructed graph planarized
local Delaunay triangulation [1], denoted by PLDel .

Applying the routing methods proposed in [3], [10] on the pla-
narized localized Delaunay graph PLDel , a better performance is ex-
pected because the localized Delaunay triangulation is denser com-
pared to the Gabriel graph, but still with O(n) edges. However, these
two methods do not guarantee that the ratio between the distance trav-
eled by the packets to the minimum possible. The method proposed
by Bose and Morrin [2] does guarantee this distance ratio, but that
needs the construction of the Delaunay triangulation, which cannot be
constructed and updated efficiently in a distributed manner.

Hence, we are interested in studying the performances of several
routing protocols on localized Delaunay triangulation. We prove that
the localized Delaunay triangulation almost surely contains the De-
launay triangulation of a set n of randomly distributed wireless nodes
when the transmission range rn satisfies nπr2n ≥ 4 ln n+c(n)

n
, where

c(n) → ∞ as n goes infinity. Notice that, Gupta and Kumar [16]
showed that the unit disk graph is connected with high probability if
the transmission range rn satisfies π ·r2n ≥ ln n+c(n)

n
for any c(n) with

c(n) → ∞ as n goes infinity. When the unit disk graph is connected,
then with high probability, we can construct the Delaunay triangulation
Del(V ) by constructing the local Delaunay triangulation instead.

We study the performance of the localized routing method by some
simulations in which results show the delivery is guaranteed and the
ratio of the length traveled by packet to the minimum is small. Our
simulations show that the delivery rates of several localized routing
protocols are also increased when the localized Delaunay triangulation
is used. In our experiments, several simple local routing heuristics,
applied on the localized Delaunay triangulation, have always success-
fully delivered the packets, while other heuristics were successful in
over 90% of the random instances. Moreover, because the constructed
topology is planar, a localized routing algorithm using the right hand
rule guarantees the delivery of the packets from source node to the des-
tination when simple heuristics fail. The experiments also show that
several localized routing algorithms (notably, compass routing [17]
and greedy routing) also result in a path whose length is within a small
constant factor of the shortest path; we already know such a path exists
since the localized Delaunay triangulation is a t-spanner.

The remaining of the paper is organized as follows. In Section II, we
review some definitions, some related geometry structures, and previ-
ously known localized routing protocols for wireless networks. We
then show a fully localized routing algorithm that, with high proba-
bility, guarantees that the distance traveled by the packets is no more
than a small constant factor of the minimum in Section III. We study
the performance of the localized routing algorithm based on Delau-
nay triangulation and various routing protocols on various structures
in Section IV. Section V gives a brief conclusion of our paper.
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II. NETWORK MODEL AND PRELIMINARIES

We assume that all wireless nodes are given as a set V of n nodes
in a two dimensional space. Assume that all wireless nodes have dis-
tinctive identities and each static wireless node knows its position in-
formation, either through a low-power Global Position System (GPS)
receiver or through some other way. Most of our results actually only
requires that each node knows the relative positions of its neighbors,
which can be achieved by using the angle of arrival of the signal or the
strength of the signal. For simplicity, we also assume that all n wire-
less nodes have the same maximum transmission range, denoted by
rn. We normalize it to one unit if no confusion is caused. By a simple
broadcasting, each node u can gather the location information of all
nodes within its transmission range. Consequently, all wireless nodes
V together define a unit-disk graph UDG(V ), which has an edge uv
only if the Euclidean distance ‖uv‖ between u and v is less than one
unit. We also use G(V, rn) to denote such induced unit disk graph.
Hereafter, a broadcast means a node sends out a message which will
be received by all nodes within its transmission range.

Let �G(u, v) be the path found by a unicasting routing method �
from node u to v in a weighted graphG, and ‖�G(u, v)‖ be the length
of the path. The spanning ratio achieved by a routing method � is
defined as maxu,v ‖�G(u, v)‖/‖uv‖. Notice that the spanning ratio
achieved by a specific routing method could be much larger than the
spanning ratio of the underlying structure. Nonetheless, a structure
with a small spanning ratio is necessary for some routing method to
possibly perform well.

We also assume that there are no four nodes of V that are co-circular.
A triangulation of V is a Delaunay triangulation, denoted by Del(V ),
if the circumcircle of each of its triangles does not contain any other
nodes of V in its interior. The Voronoi region, denoted by Vor(p),
of a node p in V is the collection of two dimensional points such that
every point is closer to p than to any other node of V . The Voronoi di-
agram for V is the union of all Voronoi regions Vor(p), where p ∈ V .
The Delaunay triangulation Del(V ) is also the dual of the Voronoi
diagram: two nodes p and q are connected in Del(V ) if and only if
Vor(p) and Vor(q) share a common boundary. The boundary seg-
ment of a Voronoi region is called the Voronoi edge. The intersection
point of two Voronoi edge is called the Voronoi vertex. Each Voronoi
vertex is the circumcenter of some Delaunay triangle. It is well-known
that the Delaunay triangulation Del(V ) is a planar t-spanner of the
completed Euclidean graph [18], [19].

For convenience, let disk(u, v) be the closed disk with diameter uv,
disk(u, v, w) be the circumcircle defined by the triangle �uvw, and
B(u, r) be the circle centered at u with radius r. Let x(v) and y(v) be
the value of the x-coordinate and y-coordinate of a node v respectively.

The following structures were defined for a point set, but here we
consider them for UDG. The relative neighborhood graph, denoted by
RNG(V ), consists of all edges uv such that ‖uv‖ ≤ 1 and there is
no point w ∈ V in B(u, ‖uv‖) ∩ B(v, ‖uv‖). See [20]. The Gabriel
graph, denoted by GG(V ), consists of all edges uv such that ‖uv‖ ≤
1 and disk(u, v) does not contain any node from V . See [11]. Bose et
al. [12] showed that the length stretch factor of RNG(V ) is at most
n − 1 and the length stretch factor of GG(V ) is at most 4π

√
2n−4
3

.
It was shown in [12] that the spanning ratio of Gabriel graph on a
uniformly random n points set in a square is almost surely at least
O(

√
log n/ log logn).

Let Nk(u) be the set of nodes of V that are within k hops distance
of u in the unit-disk graph UDG(V ). A node v ∈ Nk(u) is called
the k-neighbor of the node u. A distributed algorithm is a localized
algorithm if it uses only the information of all k-local nodes of each
node plus the information of a constant number of additional nodes. A
graphG can be constructed locally in the ad hoc wireless environment

if each wireless node u can compute the edges of G incident on u by
using only the location information of all its k-local nodes.

Assume a packet is currently at node u, and the destination node
is t. Several localized routing algorithms that just use the local in-
formation of u to route packets (i.e., find the next node v of u) were
developed. Kranakis et al. [17] proposed to use the compass routing,
which basically finds the next relay node v such that the angle ∠vut
is the smallest among all neighbors of u in a given topology. Lin et
al. [21], Bose et al. [3], and Karp et al. [10] proposed similar greedy
routing methods, in which node u forwards the packet to its neighbor v
in a given topology which is closest to t. Recently, Bose et al.[22], [2],
[3] proposed several localized routing algorithms that route a packet
from a source node s to a destination node t.

When the underlying network topology is a planar graph, the right
hand rule is often used to guarantee the packet delivery after simple lo-
calized routing heuristics fail [3], [21], [10]. Morin proved the follow-
ing results in [23]. The greedy routing guarantees the delivery of the
packets if the Delaunay triangulation is used as the underlying struc-
ture. The compass routing guarantees the delivery of the packets if the
regular triangulation is used as the underlying structure. Delaunay tri-
angulation is a special regular triangulation. There are triangulations
(not Delaunay) that defeat these two schemes. The greedy-compass
routing works for all triangulations, i.e., it guarantees the delivery of
the packets as long as there is a triangulation used as the underlying
structure. They proved this by showing that the distance from the se-
lected forwarding node v to the destination node t is less than the dis-
tance from current node u to t. However, the same proof cannot be
carried over when the network topology is Yao graph, Gabriel graph,
relative neighborhood graph, and the localized Delaunay triangulation.

Although some of the localized routing protocols guarantee the de-
livery of the packet if some special geometry structures are used, none
of these guarantees the ratio of the distance traveled by the packets
over the minimum possible. Bose and Morrin [2] proposed a method
to bound this ratio using the Delaunay triangulation. Notice that con-
structing Delaunay triangulation in a distributed manner is communi-
cation expensive.

III. LOCALIZED ROUTING WORKS

A. Routing Based on Delaunay

Bose and Morrin [2] have proposed a method to route the pack-
ets using the Delaunay triangulation. Their routing strategy is based
on a remarkable proof by Dobkin, Friedman and Supowit [18] that
the Delaunay triangulation is a spanner. However, there are plenty of
technique details left to be discussed. In this section, we present a
completed localized routing method using the Delaunay triangulation.

To discuss the localized routing algorithm, we need a quick review
of the proof by Dobkin, Friedman and Supowit [18]. They proved
that the Delaunay triangulation is a t-spanner by constructing a path
Πdfs(u, v) in Del(V ) with length no more 1+

√
5

2
π‖uv‖. The con-

structed path consists of at most two parts: one is some direct DT
paths, the other is some shortcut subpaths.

Given two nodes u and v, let b0 = u, b1, b2, · · · , bm−1, bm = v be
the nodes corresponding to the sequence of Voronoi regions traversed
by walking from u to v along the segment uv. See Figure 1 (a) for an
illustration. If a Voronoi edge or a Voronoi vertex happens to lie on the
segment uv, then choose the Voronoi region lying above uv. Assume
that the line uv is the x-axis. The sequence of nodes bi, 0 ≤ i ≤ m,
defines a path from u to v. In general, they [18] refer to the path
constructed this way between some nodes u and v as the direct DT
path from u to v. If the direct DT path connecting u and v is lying
entirely above or entirely below the segment uv, it is called one-sided.
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(a) Direct Delaunay path (b) Next neighbor

Fig. 1. (a) The direct DT path ub1b2b3b4v between u and v shown by thickest
lines. The tunnel T (u, v) is shown by shaded lines. The thin lines represent the
Voronoi diagram. (b) Find the next neighbor of node bi in the direct DT path
or the neighbor of x in the shortcut path.

Define the tunnel, denoted by T (u, v), of segment uv as the set of
triangles in the Delaunay triangulation, whose interior intersects the
segment uv. The triangles illustrated in Figure 1 (a) is the tunnel
T (u, v) defined for nodes u and v.

The path constructed by Dobkin et al. uses the direct DT path as
long as it is above the x-axis. Assume that the path constructed so
far has brought us to some node bi such that y(bi) ≥ 0, bi �= v,
and y(bi+1) < 0. Let j be the least integer larger than i such that
y(bj) ≥ 0. Notice that here j exists because y(bm) = 0 by assuming
that uv is the x-axis. Then the path constructed by Dobkin et al. uses
either the direct DT path from bi to bj or takes a shortcut, which is
the upper boundary of the tunnel T (u, v) that connects bi and bj . See
[18] for more detail about the condition when to choose the direct DT
path from bi to bj and when to choose the shortcut path from bi to
bj . Let xi, xj be the x-coordinates of bi and bj respectively. Let
cdfs = (1 +

√
5)π/2. It was proved in [18] that either the length of

the direct DT path from bi to bj is at most cdfs(xj−xi) or the length of
the shortcut between bi and bj is at most cdfs(xj − xi). For example,
in Figure 1 (a), node b2 is below the axis uv. Thus, node u either takes
path ub2b3 or path uxb3 to node b3. Path ub2b3 is the direct DT path,
which is below the axis. Path uxb3 is the shortcut path from u to b3.

Routing the packets along the direct DT path is a localized routing
method, but it is not competitive on its own for all Delaunay triangula-
tions. Bose and Morin [2] presented an example such that the distance
traveled in this approach could be arbitrarily larger than the minimum.
The routing strategy by Bose and Morin uses the direct DT path as
long as it is above the x-axis. When the direct DT path lead us to an
edge bibi+1 that intersects uv, it either continues to use the direct DT
path or the shortcut to node bj . The difficulty occurs as the strategy
does not know prior which of these two paths is shorter. Their solution
is to simulate exploring both paths in a parallel manner whenever the
first one reaches node bj . However, many technique details need to
be filled so it can be implemented. Basically, we have to answer the
following questions: (1) how to find the neighbor in the direct DT path
locally, (2) how to find the neighbor in the shortcut path locally, and
(3) how to determine whether node bj is reached. We call this routing
method Delaunay triangulation based routing, denoted by DTR.

For simplicity, let v1 = u, v2, · · · , vk−1, vk = v be the k vertices
of all bi’s that is on or above the segment uv.

Firstly, we study how to find the neighbor of a node bi in the direct
DT path locally. Since the Voronoi region of a vertex is always a con-
vex region, line segment uv only intersects at most two Voronoi edges
of a Voronoi region. In other words, the direct DT path is uniquely and
well defined. Assume that the current vertex bi wants to find its next
neighbor in the direct DT path. Then node bi can compute Vor(bi) lo-
cally since it knows all Delaunay edges incident on bi and the Voronoi
diagram is a dual of the Delaunay triangulation. Then node bi+1 is the
node that (1) shares the Voronoi edge of Vor(bi) that is intersected by

uv, and (2) has larger x-coordinate than node bi. See Figure 1 (b).
Secondly, we show how to find the next neighbor of a node x in the

shortcut path locally. Remember that the shortcut path is the boundary
segments of T (u, v), which connects two consecutive vertices vi and
vi+1, of tunnel T (u, v). Vertex x first sorts all Delaunay edges inci-
dent on x in count-clockwise order. Then x finds the incident neighbor
vertex w such that xw does not intersect the segment uv, but the pre-
vious Delaunay edge intersects uv. See Figure 1 (b) for an illustration.
Here node w is the next node on the short-cut path.

Thirdly, we reach the node bj if the following conditions hold:
(1) the Voronoi diagram of the current node intersects uv, (2) the y-
coordinate is not negative, and (3) if we are exploring the shortcut
path, then the Voronoi Diagram of the previous visited node does not
intersect uv; if we are exploring the direct shortcut path, then the y-
coordinate of the previous visited node is negative. In Figure 1 (b),
node w will be that node bj .

The routing algorithm works as following. Let v0 = u and i =
0. Let node vi+1 be the node returned by EXPLORE(vi). If vi+1 is
not node v, then increase i by one and continue EXPLORE(vi). The
following is the detailed description of the algorithm EXPLORE(vi).

Algorithm 1: EXPLORE(vi)
Let p0 be the next neighbor of vi in the direct DT path, and q0 be
the next neighbor of vi in the shortcut path. Let j = 0 and l0 =
min(‖vip0‖, ‖viq0‖). Repeat the following exploring until a node,
which is on the direct DT path and is above the segment uv, is reached.
We denote such node by vi+1. If ‖vip0‖ ≤ ‖viq0‖, we explore the
direct DT path first. Otherwise, we have to explore the shortcut path
first.

1) EXPLORE DIRECT DT PATH: Route the packet along the direct
DT path from node vi until reaching node vi+1 or reaching a
node, say pj+1, such that the distance traveled from p0 to pj+1

is larger than 2lj for the first time.
If node vi+1 is reached, return vi+1 and quit. Otherwise, set
j = j + 1 and lj be the distance traveled from p0 to pj+1, and
then return to node vi.

2) EXPLORE SHORTCUT PATH: Route the packet along the short-
cut path from node vi until reaching node vi+1 or reaching a
node, say qj+1, such that the distance traveled from q0 to qj+1

is larger than 2lj for the first time.
If node vi+1 is reached, return vi+1 and quit. Otherwise, set
j = j + 1 and lj be the distance traveled from q0 to qj+1, and
then return to node vi.

Notice that, originally, Bose and Morin [2] always start exploring
the shortcut path first. However, this may lead to a long traveling dis-
tance when the first edge of the shortcut path is much longer than the
direct DT path. Morin [23] proved the following theorem.

Theorem 1: The distance traveled by the above routing strategy is
9cdfs-competitive.
PROOF. Assume that the EXPLORE algorithm starts from node bi and
ends with node bj . It was proved in [18] that either the length of the
direct DT path from bi to bj is at most cdfs(xj − xi) or the length of
the shortcut between bi and bj is at most cdfs(xj − xi). We only have
to show that the actual distance traveled by the EXPLORE algorithm is
at most9 times the distance between bi and bj , denoted by L. Notice
that, lj ≤ 2j l0 and the distance from p0 to pj is traveled back and
forth. The total distance traveled by exploring the direct DT path is
at most

∑k
j=0 2lj ≤ ∑k

j=0 2 · 2j l0 ≤ 4L, where k is the maximum
integer such that lk < L. Similarly, the total distance traveled by
exploring the shortcut path is at most 4L. At last, it travels distance L
when node bj is reached. Thus, total traveled distance is at most 9L.
The theorem follows from L ≤ cdfs(xj − xi).
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B. Construct Delaunay Locally

Although the above method works perfectly if the Delaunay trian-
gulation of the set of nodes is known in advance, it is communication-
intensive to construct the Delaunay triangulation in a distributed man-
ner in the worst case. We will show that the Delaunay triangulation
can be constructed using some localized approach with high probabil-
ity when the nodes are randomly distributed and the transmission range
is larger than some threshold (with high probability we can do so when
the network is connected). Gupta and Kumar [16] showed that the unit
disk graph is connected with high probability if the transmission range
rn satisfies π · r2n ≥ ln n+c(n)

n
for any c(n) with c(n) → ∞ as n goes

infinity. Our construction is based on the local Delaunay triangulation
by showing that all edges in the Delaunay triangulation is no more
than the transmission radius with high probability when the nodes are
randomly and uniformly distributed.

We assume that the wireless nodes are randomly and uniformly dis-
tributed in a unit area disk. It was proved in several papers [16], [24]
that the random point process bears the same stochastic property as the
homogeneous Poisson point process. The standard probabilistic model
of homogeneous Poisson process is characterized by the property that
the number of nodes in a region is a random variable depending only
on the area (or volume in higher dimensions) of the region and the den-
sity of the process. Let λ be the density. The probability that there are

exactly k nodes appearing in any region Ψ of area A is (λA)k

k!
· e−λA.

Here after, we let Pn be a homogeneous Poisson process of intensity
n on the unit area disk. We will consider the homogeneous Poisson
point process instead of the random point process in our proof.

Let D be the variable denoting the length of the longest edge pq of
the Delaunay triangulation of all wireless nodes generated by a homo-
geneous Poisson process with density n. Consider any edge e with
length ' contained in some triangle �pqs. Then the circumcircle of
triangle �pqs has area at least π'2/4. This circumcircle must contain
no other nodes inside from the property of the Delaunay triangulation.
The probability, denoted by p1, that this circumcircle is empty of nodes

is (nπ�2/4)0

0!
· e−nπ�2/4 = e−nπ�2/4. The probability that the longest

edge of the Delaunay triangulation T is dn satisfies

Pr(D ≥ dn) = Pr(∪e∈T e ≥ dn)

≤
∑

e∈T

Pr(e ≥ dn) ≤ 3n · e−nπd2
n/4

Notice that, there are at most 3n edges in the Delaunay triangulation of
n two-dimensional nodes. By solving the inequality 3n · e−nπd2

n/4 ≤
1
β

, we know that, with probability at most 1
β

, the longest edge of the

Delaunay triangulation has length dn, where πd2n ≥ 4 ln n+ln β+ln 3
n

.
In other words, with probability at least 1− 1

β
, the longest edge of the

Delaunay triangulation has length dn, where

πd2n ≤ 4
lnn+ lnβ + ln 3

n
.

Penrose [25] showed that the longest edge of the minimum spanning
tree of homogeneous Poisson point process Pn is at most Mn with

probability e−e−α

, where nπM2
n ≤ lnn + α. In other words, if the

transmission radius rn satisfies

πr2n ≥ lnn+ α

n
,

then the induced graph G(V, rn) is connected with probability at least

e−e−α

when n goes infinity. By substituting eα = γ, we know that,
with probability at least 1− 1

γ
, the induced unit disk graph is connected

if the transmission range rn of every node satisfies that

πr2n ≥ lnn+ ln γ

n
.

Combining the above analysis, the induced network is a connected
graph with probability at least 1 − 1

n7 if πr2n ≥ 8 ln n
n

; meanwhile,
with probability at least 1 − 1

n
, the longest edge dn of the Delaunay

triangulation is at most rn. Note that to make the induced network
connected with probability 1− 1

n
, we need set the transmission radius

rn satisfies πr2n ≥ 2 ln n
n

. In other words, the required transmission
range so that local Delaunay triangulation equals the Delaunay trian-
gulation is just twice of the minimum transmission range to have a
connected network with high probability. Practically, the transmission
range is often larger than the minimum requirement to get connectivity
with high probability.

In the previous analysis, we did not consider the boundary effects.
Our simulation results will show that the Delaunay edges near the do-
main boundary is often larger than the expected value of theoretical
analysis for the domain without boundary. This is due to two reasons.
First, our theoretical analysis holds only when n is large enough. Sec-
ond, when the geometry domain in which the wireless nodes are dis-
tributed is bounded, the circumcircle of the Delaunay triangle near the
domain boundary is not fully contained in the geometry domain. Thus,
the probability that the circumcircle is empty of other nodes does not
depend on the area of the circumcircle; instead, it depends on the area
of the intersection of the circumcircle with the geometry domain. Our
theoretical analysis for this boundary effect is omitted due to space
limit.

C. Local Delaunay Triangulation

Since constructing Delaunay triangulation in a distributed manner is
communication-intensive, we will rely on some localized construction
method, more specifically, localized Delaunay triangulation [1]. For
completeness of presentation, we give a brief review of the definition
of the local Delaunay triangulation.

A triangle �uvw satisfies k-localized Delaunay property if (1) the
interior of disk(u, v, w) does not contain any node of V that is a k-
neighbor of u, v, or w; (2) all edges of the triangle �uvw have length
no more than one unit. Triangle �uvw is called a k-localized De-
launay triangle. The k-localized Delaunay graph over a node set V ,
denoted by LDel (k)(V ), has exactly Gabriel edges and edges of k-
localized Delaunay triangles. When it is clear from the context, we
will omit the integer k in our notation of LDel (k)(V ). Li et al. [1]
proved that LDel (k)(V ) is a planar graph for k ≥ 2, but LDel (1)(V )
may have intersecting edges.

Let UDel(V ), the unit Delaunay triangulation, be the graph ob-
tained by removing all edges of Del(V ) that are longer than one unit.
They proved that UDel(V ) is a spanner for UDG and is a subgraph of
the k-localized Delaunay graph LDel (k)(V ). They presented a local-
ized method to extract from LDel (1)(V ) a planar graph PLDel con-
taining UDel(V ) using only O(n) communications total. See [1] for
detail.. Thus, PLDel is a t-spanner of the unit-disk graph UDG(V ).
If the longest edge of the Delaunay triangulation is at most one unit,
obviously, PLDel is the Delaunay triangulation actually.

IV. EXPERIMENTS

We first study the transition phenomena of the longest edge of the
Delaunay triangulation. In our experiments, three different geometry
regions Ω: disk with radius 200m, square with side 400m, and un-
bounded region of grids (with unit 400m), are tested. The node den-
sity n is 50, 100, 200, 300, 400, and 500. For each choice of Ω and
n, 10000 sample of n points is generated, and the longest Delaunay
edge is generated for each sample. Left figures of Figure 2 illustrate
the longest Delaunay edge length Dn distribution, while the right fig-
ures illustrate its transition phenomena. The statistics for Dn is from
0 to 400 meters, using 4 meters increment. Interestingly, for square
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Fig. 2. Transition phenomena of Dn when Ω is circle, square, and unbounded.

region, varying density n does not change the distribution and transi-
tion at all statistically. The transition in the circular region is slower
than the counterpart in the unbounded region. We found Dn ≤ 130m
almost surely for circular region with n = 100.

We then present our experiments of various routing methods on dif-
ferent topologies. We choose 100 nodes distributed randomly in a cir-
cular area with radius 100 meters. Each node is specified by a random
x, y coordinate, with transmission radius 30 meters. Figure 3 illus-
trates some discussed topologies. We randomly select 20% of nodes
as source; and for each source, we randomly choose 20% of nodes as
destination. The statistics are computed over 10 different node sets.
We found that LDel (2)(V ) and PLDel(V ) are almost the same as
Del(V ). The differences lye near the boundary. These two Graphs are
preferred over the Yao graph because we can apply the right hand rule
when the simple heuristic localized routing fails.

GG RNG Yao

Del LDel(2) PLDel

Fig. 3. Various planar network topologies (except Yao).

Interestingly, we found that when the underlying network topol-
ogy is Yao graph, Del(V ), LDel (2)(V ), or PLDel(V ), the compass
routing, random compass routing and the greedy routing delivered the
packets in all our experiments. Notice that it was proved that the De-
launay triangulation guarantees the delivery of the packets for these
three routing methods. We also found that the local Delaunay trian-
gulation and the planarized local Delaunay triangulation are almost

the same as the Delaunay triangulation. The only differences lye near
the domain boundary, which does not affect the localized routing too
much. Thus, as we expected, the compass routing, random compass
routing and the greedy routing delivered the packets in all our simula-
tions for Delaunay related structures. The reason they also delivered
the packets when Yao structure is used as the underlying topology
could be there is a node within the transmission range in the direc-
tion of the destination with high probability when the number of nodes
within transmission range is large enough.

TABLE I
THE DELIVERY RATE.

Yao RNG GG Del LDel(2) PLDel

NN 98.7 44.9 83.2 99.1 97.8 98.3

FN 97.5 49 81.7 92.1 97 97.6

MFR 98.5 78.5 96.6 95.2 96.6 99.7

Cmp 100 86.6 99.6 100 100 100

RCmp 100 91.7 99.9 100 100 100

Grdy 100 87.5 99.6 100 100 100

GCmp 93 95.5 99.9 100 100 100

DTR 100 100 100

Table I illustrates the delivery rates of different localized routing
protocols on various network topologies. For nearest neighbor routing
and farthest neighbor routing, we choose the angle α = π/3. In other
words, we only choose the nearest node or the farthest node within π/3
of the destination direction. The LDel (2)(V ) and PLDel(V ) graphs
are preferred over the Yao graph because we can apply the right hand
rule when previous simple heuristic localized routing fails. Both [3]
and [10] use the greedy routing on Gabriel graph and use the right
hand rule when greedy fails.

TABLE II
THE MAXIMUM SPANNING RATIO.

Yao RNG GG Del LDel(2) PLDel

NN 1.9 2.1 1.9 1.7 1.8 1.9

FN 4.2 2.8 2.7 5.2 3.4 3.1

MFR 4.8 3.2 2.4 4.5 3.9 4.1

Cmp 3.3 2.9 2.8 1.6 1.8 2.0

RCmp 2.7 3.0 2.4 1.7 2.0 1.8

Grdy 2.1 3.5 2.2 2.0 1.9 1.9

GCmp 2.8 3.2 2.6 1.7 1.8 2.0

DTR 6.4 6.4 6.5

Table II illustrates the maximum spanning ratios of ‖Π(s, t)‖/‖st‖,
where Π(s, t) is the path traversed by the packet using different lo-
calized routing protocols on various network topologies from source
s to destination t. Because the localized Delaunay triangulation is
much dense than all previous known planar network topologies such as
Gabriel graph and the relative neighborhood graph, the delivery rates
of many online routing methods are near or equal 100%. However, we
have to admit that the traveled distance by the Delaunay based routing
method DTR is larger than that by most previous methods for most
source and destination pairs, although the actual distance of the trav-
eled path is at the same level. Remember that, Delaunay based routing
method has to travel some path back and forth to explore a better path.
Nevertheless, Delaunay based routing is the only method known that
can guarantee that the total traveled distance by the packet is within a
constant factor of the minimum in any case.

We also conducted extensive simulations of the Face routing method
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on Gabriel graph and the local Delaunay triangulation LDel1(V ). We
choose n = 20, 30, · · · , 90, 100 nodes randomly and uniformly dis-
tributed in a square of length 100 meters. The uniform transmission
range of nodes are set as r, where r varies from 30, 40, 50, 60, 70 me-
ters. Table III illustrates the averaged spanning ratio achieved. The
average is computed for all pair of nodes. Given n and r, we generate
10 sets of random n points. We found that the spanning ratio of the
Face routing method is significantly less when local Delaunay triangu-
lation is used instead of Gabriel graph. It may be due to local Delaunay
triangulation has more edges, thus the faces traversed by the Face rout-
ing algorithm is often smaller when LDel is used than the case when
GG is used.

TABLE III
THE AVERAGE SPANNING RATIO OF FACE ROUTING METHODS ON

GABRIEL GRAPH AND LOCAL DELAUNAY TRIANGULATION.

n 0.3 0.4 0.5 0.6 0.7
20 3.2 3.0 2.9 2.9 2.9

30 4.7 4.8 4.6 4.4 4.3

40 5.0 5.2 5.1 5.0 5.1

50 5.5 5.9 5.9 5.7 5.3

60 6.1 6.1 6.1 6.3 6.0

70 6.5 6.5 6.6 6.4 6.6

80 6.9 6.7 7.1 6.9 6.6

90 7.0 7.1 7.4 7.5 7.1

100 7.3 7.4 7.7 7.3 7.3

On Gabriel graph

n 0.3 0.4 0.5 0.6 0.7
20 2.9 2.8 2.9 2.7 2.7

30 4.4 4.5 4.4 4.5 4.1

40 5.2 5.5 4.8 4.8 4.9

50 4.9 5.3 5.4 5.5 5.3

60 5.3 5.7 5.4 5.7 6.1

70 5.9 5.6 6.1 6.2 5.8

80 5.9 6.1 6.4 5.9 5.8

90 6.0 6.4 6.5 6.4 6.0

100 6.4 6.5 6.8 6.6 6.5

On local Delaunay triangulation

V. CONCLUSION

In this paper, we showed that, given a set of randomly distributed
wireless nodes over a region with node density n, when the transmis-
sion range rn satisfies πr2n ≥ 8 log n

n
, the localized Delaunay triangula-

tion equals the Delaunay triangulation with probability almost 1− 1
n

. If
πr2n ≥ 8 log n

n
, the induced network topology is connected with prob-

ability at least 1 − 1
n7 . In other words, with high probability, we can

construct the Delaunay triangulation using the localized Delaunay tri-
angulation if the network is connected. Thus, we can apply a localized
routing protocol [2] that guarantees that the distance traveled by the
packets is no more than a small constant factor of the minimum. We
also conducted experiments to show that the delivery rates of existing
localized routing protocols are increased when localized Delaunay tri-
angulation is used instead of several previously proposed topologies.
Notice that the Delaunay based routing method DTR works only when
a Delaunay triangulation is obtained. Currently, when we found that
Delaunay triangulation is not constructed, we rely on other heuristic to
route the packets. We leave it as a future work to design a protocol that
can guarantee the traveled distance using only the localized Delaunay
triangulation.
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