
Low Complexity Stable Link Scheduling for Maximizing
Throughput in Multihop Wireless Networks

Xiang-Yang Li ∗ XiaoBing Wu† XuFei Mao ShaoJie Tang YanWei Wu Ping Xu
XiaoHua Xu

ABSTRACT
This paper presents novel distributed algorithms for scheduling trans-
missions in multi-hop wireless networks. Our algorithms generate
new schedules in a distributed manner via simple local changes to
existing schedules. Two classes of algorithms are designed: one
assumes known location information of all wireless nodes, and the
other does not. Both classes of algorithms are parameterized by an
integer k (called algorithm-k). We show that algorithm-k of our
class that uses geometry location achieves (1 − 2/k)2 of the ca-
pacity region, for every k ≥ 3; algorithm-k of our class that did
not use geometry location achieves 1/ρ of the capacity region, for
every k ≥ 3 and a constant ρ depending on k. Our algorithms have
small worst-case overheads. Both classes of algorithms can gener-
ate a new schedule by requiring communications within Θ(k) hops
for every node. The parameter k explicitly captures some tradeoffs
between control overhead and the throughput performance of any
scheduler. Additionally, the class of algorithms with known geom-
etry location of nodes can find a new schedule in time Θ(k2∆),
where ∆ is the minimum mini-time-slots such that each of the n
nodes can communicate with its neighbors once, which is clearly
the minimum time-slots required by any scheduling algorithm.

1. INTRODUCTION
Link scheduling that maximizes the network throughput has been

extensively studied in the literature. Recently, a number of schedul-
ing algorithms with theoretical performance guarantees [2, 10, 14,
23, 25, 31] and/or of practical efficiency have been added to an al-
ready rich body knowledge [3,12,18,24,27,28] of general schedul-
ing problems. Scheduling algorithms in networking community of-
ten want to maximize the network throughput [25, 31], or achieve
a certain fairness among all requesting network flows [16, 17, 29,
30]. The task of wireless scheduling (or medium access control)
is challenging due to the simultaneous presence of two character-
istics: interference between simultaneous transmissions, and the
need for practical distributed implementation with small communi-
cation overhead and time complexity. It will be more challenging
∗Dept. of Comp. Sci., Illinois Inst. of Tech.
†Dept. of Comp. Sci., NanJing University, NanJing, China

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to guarantee the performance of scheduler when the traffic flows
will arrive based on certain random process, not in a constant fixed
known data rate. In this paper, we will focus on the scenario when
data packets will arrive randomly (with a bounded variance). Un-
like the wired networks, the signal interference casts significant
effect on the fundamental limit on the data throughput that any
scheduling algorithms (centralized or distributed) can achieve. It
is well-known that a number of scheduling problems (e.g., max-
imum throughput scheduling) become NP-hard when considering
wireless interference, while their counter-parts are solvable in poly-
nomial time for wired networks. Thus, the scheduling algorithms
for wireless networks (even the benchmark performances obtained
by centralized scheduling approaches) often rely on heuristics that
approximately optimize the throughput.

A linear time centralized scheduling policy that achieves the max-
imum attainable throughput region has been presented by Tassiulas
and Ephremides [28] and Tassiulas [27]. For arbitrary interference
models, it is well-known [4] that maximum throughput schedul-
ing problem is NP-complete and not approximable within m

1
3−ε

for any arbitrarily small ε > 0 for a network of m links, unless
NP=ZPP. In [26], it is shown that one can obtain centralized (1+ε)-
approximation algorithms for max-throughput scheduling under all
K-hop interference models in the case of geometric graphs. They
also showed that the maximal scheduling policy (that chooses a
maximal independent set, instead of maximum weighted indepen-
dent set of links) will achieve an efficiency ratio1 1

49
for networks

modeled as unit disk graphs under k-hop interference model. How-
ever, the lack of central control in wireless networks calls for the
design of distributed scheduling algorithms. Such distributed algo-
rithms should achieve the maximum throughput or at least a guar-
anteed fraction of the maximum throughput, on the other hand, it
will incur only a small communication overhead.

The distributed scheduling algorithms, to the best of our knowl-
edge, are mainly based on the pick and compare approach that was
first developed and analyzed in [27]. It was shown in [27] we can
provide maximum possible throughput if we can pick an optimum
solution for the current time-slot with at least a constant probabil-
ity. In this approach, a set of links satisfying the interference con-
straints is picked at each time slot (with a constant probability it has
maximum weight) and its weight (typically the total queue size) is
compared with the weight of the set of links chosen to transmit
during the previous time-slot; and the one with maximum weight
is chosen for transmission during the current time-slot. However,
there are two challenges in using pick and compare approach: 1) it
is often difficult to find an optimum solution with at least a constant

1The efficiency ratio is defined as the largest number γ such that
any rate vector λ ∈ γC can be stablized. Here C is the capacity
region of the network.

probability, and 2) comparing the weights of two given schedulings
(i.e., matchings when consider primary-interference) often requires
network-wide computation and message exchange and may incur
substantial overhead in terms of time, even under the simplest of
interference models, such as the 1-hop interference model.

Recently, a number of distributed scheduling algorithms [4, 10,
14,20,22,25] for multihop wireless networks have been proposed in
the literature for (approximately) maximizing the attainable through-
put. Results in [10,20,25] only considered the primary-interference
model. Sharma et al. [4] proposed maximal matching policy for 1-
hop (i.e., primary-interference interference model) or 2-hop inter-
ference model (without using pick and comparing approach) that
runs in time log3 |V | and achieves 1

α1(G)
of the maximum through-

put. Here α1(G) is the 1-hop independence number of the inter-
ference graph. Lin [14] proposed a constant-overhead probabilis-
tic scheduling algorithm (based on contention and random back-
off) that achieves 1

3
− ε of the maximum throughput for primary-

interference model and 1
1+∆

− ε of the maximum throughput for
2-hop interference model. Here ∆ is the maximum number of node
degree in the communication graph G. A modified and enhanced
scheduling policy was proposed in [7] that guarantees 1

2
− ε of

the maximum throughput for primary-interference model and effi-
ciency ratio close to 1

1+∆
for 2-hop interference model. The best

distributed scheduling results for primary-interference model so far
is [25] that proposed a distributed scheduling with control overhead
O(k) that achieves k/(k + 2) efficiency ratio.

Our results: The main contributions of this paper are as follows.
It is known that pick and compare scheme provides 100% through-

put guarantee if we can pick an optimum scheduling with at least a
constant probability, but it may have a very large time complex-
ity. A question was posed by Sharma et al. in [4]: “Can one
design a low complexity scheduling scheme with close to 100%
throughput guarantee?”. In this paper, we firmly present a positive
answer to this question for reasonable interference models. Our
results can also be extended to solve more general optimization
problems, not necessarily the queue [15]. To the best of our knowl-
edge, our algorithms are the first in the literature such that any ar-
bitrary fraction of the capacity region can be achieved with con-
stant overhead for more sophisticated wireless interference models,
while the previous distributed scheduling methods either assume a
simple primary-interference model to get the same efficiency ratio,
or can only achieve efficiency ratio at most 1/(1 + ∆) for 2-hop
interference models. Our results also can be extended to the phys-
ical interference model where a reception is successful only if the
SINR is at least a certain threshold β0, under a reasonable signal
attenuation model, however, the efficiency ratio is only a constant
in (0, 1).

To present our design approach, we first present efficient cen-
tralized scheduling methods that guarantees an efficiency ratio of
(1 − 2

k
)2 in polynomial time. Our centralized methods work for

a variety of interference models where nodes could have different
interference radii. We then present an efficient stable distributed
scheduling algorithm that achieves the same efficiency ratio, while
the control overhead is only within Θ(k)-hops. A control message
is relayed by at most O(k) nodes. The parameter k explicitly cap-
tures some tradeoffs between control overhead and the throughput
performance of any scheduler. Two different classes of distributed
methods are presented: one assumes the availability of geometry
location of nodes (which guarantees a constant time complexity for
distributed scheduling), and the other only assumes that the inter-
ference graph is growth-bounded (which is true for all interference
models when interference ranges of nodes are within a constant fac-
tor of each other). Both classes of algorithms are parameterized by

an integer k (called algorithm-k). We show that algorithm-k of our
class that uses geometry location achieves (1−2/k)2 of the capac-
ity region, for every k ≥ 3; algorithm-k of our class that did not
use geometry location achieves 1/ρ of the capacity region, for ev-
ery k ≥ 3 and a constant ρ depending on k. The class of algorithms
with known geometry location of nodes can find a new schedule
in time Θ(k2∆), where ∆ is the minimum mini-time-slots such
that each of the n nodes can communicate with its neighbors once,
which is clearly the minimum time-slots required by any schedul-
ing algorithm.

The rest of the paper is structured as follows. In Section 2 we
present the wireless network model, and define the problems to be
studied. We present our novel low complexity centralized and dis-
tributed scheduling algorithms in Section 3 and Section 4 respec-
tively. Their properties and performances are analyzed. The simu-
lation studies of our protocols are presented in Section 5. In Section
6, we briefly review the related works. We conclude our paper with
future works in Section 7.

2. MODELS AND DEFINITIONS

2.1 Communication Network Model
A multihop wireless ad hoc network is modeled by a graph G =

(V, E), where the vertices V = {v1, v2, · · · , vn} represent the set
of n = |V | wireless devices in the network, and a directed link
(u, v) ∈ E iff these two wireless devices u and v can communi-
cate with each other directly without relaying. Node v is receiver
and u is the sender of link (u, v). Node v is also called the (com-
munication) neighbor of node u. We always use ei,j to denote link
(vi, vj) hereafter. We assume that each node vi has a fixed trans-
mission radius Ti, and a fixed interference range Ri. For each node
vi, we assume that Ri > (1 + θ)Ti for a constant θ > 0 (θ ≥ 1
in practice). We assume that the set V of communication terminals
are deployed in a plane. Each wireless terminal is only equipped
with single radio interface.

2.2 Interference Models
To schedule two links at the same time slot, we must ensure

that the schedule will avoid interference. Previous studies on sta-
ble link scheduling mainly focused on primary interference model,
in which no node can receive and send packets simultaneously. In
addition to these interference, several different models have been
used to model the interference. We briefly review the models we
use in this paper.

Transmitter Interference Model (TIM) [32]: In this model,
when the sources of two transmissions are at least a distance R
away, the transmissions can be scheduled simultaneously.

Fixed Power Protocol Interference Model (fPrIM) [31]: We
assume that, each node vi, in addition to have a fixed transmission
range Ti, has an interference range Ri such that any node vj will
be interfered by the signal from vi if ‖vi − vj‖ ≤ Ri and node vj

is not the intended receiver of the transmission by vi.
RTS/CTS Model: Each node vi is associated with a range Ri.

For each link (vp, vq), except vp and vq , no other nodes inside
D(vp, Rp)

⋃
D(vq, Rq) can transmit or receive simultaneously.

Here D(v, a) is a disk centered at v with radius a.
There are also other interference models, e.g., K-hop interfer-

ence model [26] (where two links interfere with each other if the
hop-distance between them is at most K − 1), and physical inter-
ference model (where the SINR at the receiver must be at least a
certain threshold). In this paper, we mainly focus on link schedul-
ing under TIM, fPrIM and RTS/CTS models.

Assume that the communication links in wireless networks are

predetermined. Given a communication graph G = (V, E), we
use conflict graph (e.g., [6]) FG to represent the interference in
G. Each vertex (denoted by ei,j) of FG corresponds to a directed
link (vi, vj) in the communication graph G. There is an edge be-
tween vertex ei,j and vertex ep,q in FG iff ei,j conflicts with ep,q

due to interference. Recall that whether two links conflict depends
on the interference model used underneath, e.g., fPrIM model or
RTS/CTS model. Thus, for a given communication graph G, the
interference graph FG may be different.

2.3 Traffic Model and Scheduling
We now describe the standard model for link (or node) schedul-

ing in the presence of wireless interference. As in the literature,
we assume that time is slotted and synchronized among all wire-
less devices. Wireless nodes communicate with other nodes in the
form of packets, whose size is normalized to one unit such that each
packet can be communicated in one time-slot. For simplicity, we
assume that all traffic is single-hop. Notice that most results can
be extended to multihop traffic as done in [15, 28]. For each link
e ∈ E, let At(e) be the number of new packets arrived for trans-
mission over link e. Let At be the vector of all arrivals at time slot
t. The arrival process At is assumed to be independent and iden-
tically distributed across time (it may be correlated across links),
with an average arrival rate vector a = E[At] and bounded second
moment E[A′tAt] < ∞. The packets At(e) can be transmitted at
time slot t or later by link e. When the packets cannot be served
immediately, they are put into the queue of link e. Let Qt(e) be
the set of packets queued at link e at time t and qt(e) be the queue
length. Let qt be the vector of queue lengths at time t. Here we
assume that there is no priori upper bound on the maximum queue
size, thus there are delays for packets but no packet drops.

A link scheduling algorithm is to decide which links to be active
and which links to be inactive for each time slot t. When a link
e is active at time slot t, it can transmit exactly one packet out of
its queue at time t. We will use the binary vector It of length |E|
to denote the set of active links at time t, with the convention that
It(e) = 1 iff link e is active and has a positive queue at time t.
The queue length vector thus evolves as qt+1 = qt + At+1 − It.
We say the system is stable if the total queue lengths of all links
remain finite almost surely, i.e., limT→∞ 1

T

∑T
t=1 Z(qt, B) →

0 almost surely as B → ∞. Here Z(qt, B) = 1 if
∑

e∈E qt(e) ≥
B, and Z(qt, B) = 0 otherwise.

A link scheduling algorithm for wireless networks is valid (or
feasible) if the set of active links at any time slot does not cause any
interference among all these active links. Let I = {I1, I2, · · · , I |I|}
be the set of all valid link schedulings (that could be exponential of
the number of links |E|). The capacity region C (a point in the ca-
pacity region is a vector a of the mean arrival rate E(At)) of the
network G is the strict convex closure of all feasible schedulings I:
a ∈ C if and only if there exist non-negative numbers λ1, λ1, · · · ,
λ|I|, such that

a =

|I|∑
m=1

λmIm, and
|I|∑

m=1

λm < 1.

C has also been referred to in the literature as “stability region”,
and “100% throughput region”. A scheduling policy is throughput-
optimal if it can achieve the optimal capacity region C. The ef-
ficiency ratio of a (possibly sub-optimal) scheduling policy is the
largest number γ such that the scheduling policy can stabilize the
system under any load vector a ∈ γ ·C. By definition, a throughput-
optimal scheduling policy has an efficiency ratio of 1.

Unlike recent scheduling algorithms in [10, 20, 25] that consider

only primary interference, in this paper, we consider more practical
interference models such as fPrIM and RTS/CTS model. Observe
that under primary interference model, link scheduling only needs
to ensure that any node communicates with at most one other node
at any time slot. Thus, any matching in graph G is a valid link
scheduling under primary interference model. Finding a match-
ing that maximizes certain weight (e.g., the total queue lengths of
selected links to maximize throughput [25]) can be solved in poly-
nomial time. The optimal scheduling policy is equivalent to com-
puting a maximum weighted independent set (MWIS) of links in
the conflict graph, where the weight of a link is its queue size, and
a set S ⊆ E of links are independent if they can be active simulta-
neously without interference. For interference models considered
in this paper, it is well-known that finding MWIS is NP-hard [31].
Thus, we will rely on approximation algorithms. A scheduling pol-
icy Sγ is called imperfect scheduling policy with ratio 0 < γ ≤ 1
(see [15] for more discussions) if at each time-slot t, it will com-
pute a schedule It ∈ I such that

It · qt ≥ γIOPT
t · qt, where IOPT

t = argmaxI∈I(I · qt)

The following two propositions will be the foundation for studying
the stability of our scheduling algorithms.

PROPOSITION 1. [15] Fix γ ∈ (0, 1]. If the user rates, a, lie
strictly inside γ · C (i.e., a lies in the interior of γ · C), then any
imperfect scheduling policy Sγ can stabilize the system.

Observe that scheduling policy Sγ must find a γ-approximation
scheduling at every time slot t. This requirement may be too strong
to be satisfied by certain distributed algorithms. When we can only
find the γ-approximation with a certain constant positive probabil-
ity, the following proposition was proved.

PROPOSITION 2. [25] Given any γ ∈ (0, 1], suppose that an
algorithm has a probability at least δ > 0 of generating a indepen-
dent set At of links with weight at least γ times the weight of the
optimal. Then, capacity γ · C can be achieved by switching links to
the new independent set when its weight is larger than the previous
one (otherwise, previous set of links will be kept for scheduling).
The algorithm should generate the new scheduling It from the old
scheduling It−1 and current queue lengths qt.

Observe that here the main difficulty of applying Proposition 2
could be to compare the solution At and It−1 to get schedule It,
in addition to ensure that Pr

(At · qt ≥ γIOPT
t · qt

) ≥ δ for con-
stants δ > 0 and γ > 0. In light of Proposition 1 and Proposition
2, we look for ways to generate link schedulings of approximately
optimal weight, with at least a certain constant probability.

3. CENTRALIZED SCHEDULING
In this section, we will describe centralized efficient and stable

scheduling algorithms with efficiency ratio arbitrarily close to 1.
Two different kinds of algorithms will be presented: one kind of
algorithms assume that we already know the geometry positions of
all wireless nodes, whereas the other kind of algorithms assume that
every wireless node u only knows the set of communication links
incident on it (or more precisely, for each link (u, v), u knows all
links that will interfere (u, v) and interfered by (u, v)). We will
start by describing centralized scheduling algorithms that essen-
tially illustrate our design approaches, and follow it in next section
by presenting our distributed scheduling algorithms that are stable,
throughput maximizing, and time efficient in next section.

bt
at

k

Square Removed area

v1

r̄ + 1

r̄

v2

(a) with location (b) without location

Figure 1: (a) Divide the space into grids for time-slot t. Here
links with black nodes are candidates for It. Links whose trans-
mitters fall in the removed area (links with white nodes in the
figure) are removed. (b) Using bounded growth property when
locations of nodes are unknown.

3.1 Utilizing Geometry Location
We first assume that each node u knows its geometry location,

denoted as (xv, yv). There are two cases: 1) all nodes have uniform
interference ranges and 2) nodes have different interference ranges.

3.1.1 Uniform Interference Ranges
We first assume that all nodes have uniform interference ranges.

For simplicity of presentation, we first address the link scheduling
problem under TIM: a scheduling of links is feasible if the distance
between any two transmitting nodes are separated by an Euclidean
distance at least R = 1. Recall that an optimum scheduling is to
find a MWIS of links in the conflict graph. Thus, centralized al-
gorithms (based on shifting strategy) of computing a MWIS have
long been known when the input graph is a unit disk graph (UDG).
Obviously, the conflict graph is rarely a UDG, even if the commu-
nication graph is a UDG. Our centralized scheduling approach is
also based on shifting strategy and it works as follows.

We first partition the 2D space into grids using horizontal lines
x = i and vertical lines y = j for all integers i and j. A vertical
strip with index i is {(x, y) | i < x ≤ i + 1}. Similarly, we can
define a horizontal strip with index j and cell(i, j) as the intersec-
tion area of a vertical strip i and a horizontal strip j. See Figure. 1
for illustration, where the shaded area are strips. Thus, if two links
are separated by a strip, then they can be scheduled for transmit-
ting simultaneously under TIM. To divide the problem of finding a
maximum weighted feasible scheduling into subproblems that are
solvable in polynomial time, we divide links into groups based on
grid partition. To ensure that the union of solutions of subproblems
are still independent, as a standard approach, we will add a sepa-
ration between adjacent subproblems as follows. At any time slot
t, we will “remove” the links whose transmitters are located inside
either vertical strips i with i = at mod k or horizontal strips j
with j = bt mod k. Here we at, bt ∈ [0, k − 1] are adjustable
numbers. As illustrated in Figure 1, we remove all links with trans-
mitters inside the gray strips. We define the preceding operations
as Partition(k, at, bt), i.e., divide the space into grid-cells and re-
move some links. Given (at, bt), define square(i, j) to be the set
of cells {cell(x, y) | x ∈ [ik + at + 1, (i + 1)k + at − 1], y ∈
[jk + bt + 1, (j + 1)k + bt − 1]}. A subproblem is then, given
a square(i, j), to find a MWIS of all links whose transmitter nodes
are inside. Here each square has size k − 1 and two links whose
transmitters are closer than R = 1 cannot transmit simultaneously.
Thus, the size of any set of interference-free links for a square(i, j)
is at most Λ = (k − 1)2/π

4
= O(k2). This implies that a MWIS

for each square(i, j) can be found by simple enumeration in time
nΛ

i,j , where ni,j is the number of nodes inside square(i, j).

Algorithm 1 Centralized Scheduling Using Geometry Information
Input: Location of nodes, queue size of every link, and k.
Output: Feasible active link set It for time slot t.
1: tmp = 0;
2: for at = 0 to k − 1 do
3: for bt = 0 to k − 1 do
4: Partition(k, at, bt);
5: Compute a MWIS A

(i,j)
t ;

6: if
⋃

(i,j) A
(i,j)
t · qt > tmp · qt then

7: tmp =
⋃

(i,j) A
(i,j)
t ;

8: It = tmp;

We compute a scheduling as follows: At time slot t, we choose
a partition (corresponding to some specific (at, bt)) and compute
a MWIS of links for each Square(i, j) that is not empty of nodes
inside. Let A(i,j)

t be the optimum solution for square(i, j) using the
weight qt. Here the weight of a link ei,j is defined as the maximum
queue size of node vi. Obviously, there are k2 different partitions
since there are k2 different choices for (at, bt) and each of them
corresponds to a distinct partition. Accordingly, we can choose the
“best” partition among the k2 partitions. Here the best partition
refers to the partition such that the total weight of all MWISs for
the squares is maximum among all k2 different partitions. Let It

be the union of the optimum solutions for all squares in the best
partition. Pseudo-codes are listed in Algorithm 1.

Obviously, for any two links ep,q and ex,y from two different
squares, the transmitters vp and vx are separated by distance at
least the strip width R = 1. Thus, they are always interference-
free. Thus, It generated by Algorithm 1 is an independent set. We
then prove that it has a good approximation ratio.

THEOREM 3. Given any vector qt, there exists a partition such
that the total weight of It computed by our algorithm, It · qt ≥
(1− 1

k
)2(IOPT

t · qt).

PROOF. In our algorithm, the links whose transmitters fall in
some vertical strip i with i ≡ at mod k or horizonal strip j with
j ≡ bt mod k (the gray area in Figure 1) will be “removed”. Note
that there are totally k2 different partitions since there are k2 dif-
ferent (at, bt) pairs and every cell(i, j) appears in the “removed”
strips for exactly 2k − 1 times. At the same time, all the removed
cells form 2k − 1 copies of the whole area of the network. Sup-
pose the optimal solution is (IOPT

t · qt) for time slot t, then there
always exists a partition such that the removed part of the optimal
solution, i.e., accumulated weight of the nodes in the gray area, is
at most 2k−1

k2 (IOPT
t · qt), by pigeonhole principle. Since the result

generated by our algorithm is optimal in the squares, It · qt is at
least (1− 2

k
+ 1

k2)(IOPT
t · qt), i.e., (1− 1

k
)2(IOPT

t · qt).

TT

R

v1 v3
v4

v2 T TR
v1 v4 v3v2

(a) fPrIM (b) RTS/CTS Model

Figure 2: From TIM model other interference models.

Note that we only studied TIM. In fact our algorithm can be
easily extended to deal with fPrIM and RTS/CTS model. We first

extend our results to the scenarios where every node has uniform
interference ranges under fPrIM and RTS/CTS model. Then we
extend our results to scenarios where transmission and interference
ranges can be different.

fPrIM: Suppose that interference range and transmission range
of every node are R and T respectively. Consider any two directed
links e1,2 and e3,4. Observe that if the distance ‖v1v3‖ is at least
R + T , then links e1,2 and e3,4 are interference-free. In Figure 2
(a), v1 and v3 can transmit simultaneously. We then partition the
space into grids using horizontal lines x = i(R + T) and vertical
lines y = j(R + T) for all integers i and j. In other words, the
cell-size is now R + T . A vertical strip with index i is {(x, y) |
i(R + T) ≤ x ≤ (i + 1)(R + T)}. Similarly, we can define a
horizontal strip with index j and cell(i, j) as the intersection area of
a vertical strip i and a horizontal strip j. The other is the same with
the simplified TIM. Clearly, the solution returned by Algorithm 1
is an independent set of links under fPrIM model.

Similar to Theorem 7, we can prove that the size of At
i,j is at

most a constant when R > (1 + θ)T for a constant θ > 0. Unfor-
tunately, when R = T , we can construct example to show that At

i,j

could be as large as Θ(ni,j), where ni,j is the number of transmit-
ters inside square(i, j). Then simple enumerating all independent
sets could have exponential time 2ni,j . When R > (1 + θ)T (this
is always true in practice) we can find the optimum solutions for
each subsquare in polynomial time. Similar to Theorem 3, we have

THEOREM 4. Under fPrIM, ∀qt, there exists a partition such
that It computed by our algorithm has It·qt ≥ (1− 1

k
)2(IOPT

t ·qt).

RTS/CTS Model: We observe that under RTS/CTS model, for
two nodes to transmit simultaneously, it suffices that the distance
between them is at least R+2T . For example, in Figre 2(b), nodes
v1 and v3 can transmit at same time without interfering each other.
We then partition the space into grids as under fPrIM except that
we let the width of each stripe be R + 2T . Similar to Theorem 7,
for any square, we can prove that the size of any set of interference-
free links is at most a constant. Thus, Step 4 of Algorithm 1 can be
done in polynomial time. Similarly we have,

THEOREM 5. Under RTS/CTS model, ∀qt, there exists a par-
tition such that It computed by our algorithm satisfies It · qt ≥
(1− 1

k
)2(IOPT

t · qt).

3.1.2 Heterogeneous Interference Ranges
In this subsection, we will present algorithms for different in-

terference models when endpoints of each link may have different
transmission and interference ranges. Basically, we will find Max-
imum Weighted Interference Free Set(MWIFS) based on the result
in [13]. Assume that we are given a set E={ep1,q1 , ep2,q2 , ..., epm,qm}
of m links in a two-dimensional plane, where link ep,q = (vp, vq)
has a sender vp and receiver vq , associated with an interference
area I(ep,q), an interference length L(ep,q) and weight ω(ep,q).
The weight ω(ep,q) is the queue length of link ep,q . For a subset of
links U ⊆ E, let ω(U) =

∑
ei,j∈U ω(ei,j), i.e, the total weight of

links in U .
The interference area I(ep,q) is the area in which links may be

interfered by ep,q . Here we say a link is in I(ep,q) when either
sender or receiver of that link is in I(ep,q). The interference area
I(ep,q) depends on interference model and interference ranges.
For TIM, I(ep,q) is a disk D(vp, Rp) centered at vp with radius
Rp. For RTS/CTS model, I(ep,q) is D(vp, Rp)

⋃
D(vq, Rq). For

fPrIM, I(ep,q) is disk D(vp, Rp).
Our method will again partition the problem to smaller subprob-

lems using grid-partition described previously. Recall that in sub-

Algorithm 2 Approximate MWIFS
Input:All m links, L(e), I(e), w(e) of each link e, and geometry
location of each node and a constant Λ.
Output: Feasible active link set It for time slot t.

for all j = l + 1 downto 1 do
for all every S with level j do

Let R be all links in L(r, s) of level ≤ j interfere S.
for all J ⊆ R with at most Λ links do

if J is an interference-free set then
Let X be interference links in J with level j.
for every child square S′ of S do

Let I ′ be links in J interfere S′.
Set X = X ′∪ IFS(S′, I ′).

Let I be links in J with level ≤ j.
if ω(X) > ω(IFS(S, I)) then

IFS(S, I) = X .
It ←

⋃
S IFS(S, ∅), where S is all squares with level 0;

subsection 3.1.1, all our proofs heavily rely on the fact that any fea-
sible scheduling of links in any subproblem (links in a square) has
at most a constant number of links. This is true only when “sizes”
of the interference regions claimed by all links are same (true for
result in subsubsection 3.1.1) or within a small constant factor of
each other. This is clearly not true when nodes have different in-
terference ranges. Our approach is 1) group links into different
groups, where in each group, the “size” of the interference region
claimed by every link is similar; 2) then partition the links of each
group using space partition as did in subsubsection 3.1.1.

To characterize the size of interference region, we define the in-
terference length L(ep,q) of a link ep,q as following. For TIM,
L(ep,q) = Rp. For RTS/CTS model, L(ep,q) = max(Rp, Rq).
For fPrIM, L(ep,q) = Rp. For simplicity, we normalize the largest
L(ep,q) to 1, and other lengths are scaled accordingly.

Let ` = log maxi L(ei)
mini L(ei)

. We partition links into ` + 1 levels such
that level j, 0 ≤ j ≤ `, consists of all links ep,q with interference
length satisfying that 1

(k+1)j+1 < L(ep,q) ≤ 1
(k+1)j . Let `(ep,q)

denote the level of link ep,q , i.e., `(ep,q) = blogk+1
1

L(ep,q)
c. For

each level j, we subdivide the space into grid by using a set of
vertical lines Lj,v : x = v 1

(k+1)j , v ∈ Z (with index v) and a set
of horizontal lines Hj,h : y = h 1

(k+1)j , h ∈ Z (with index z).
A (r, s)-shifting of the subdivision is the grid defined by all verti-

cal and horizontal lines such that v mod k ≡ r and h mod k ≡
s. For each (r, s)-shifting and level j, we divide the plane into
squares by lines Lj,v and Hj,h such that v mod k ≡ r and h
mod k ≡ s. We call those squares level j-square. Furthermore,
for each (r, s)-shifting, remove all links hit by the border lines (or
more exactly, the links whose transmitters are inside the gray strips
as in Figure 1) in corresponding j-squares, we call the remaining
links L(s, r). Here a link with level j will be removed only when it
is hit by the border line of some j-square. It is not removed if only
hit by squares from other levels.

Then we compute MWIFS using dynamic programming, as shown
in Algorithm 2. The key difference between Algorithm 2 and algo-
rithm in [13] is: instead of finding an independent set of nodes, we
need to find a feasible interference-free set(IFS) of links. Notice
that an interference-free link set is not necessary to be an indepen-
dent node set. A link ep,q is said to interfere a square S if there
is a link ex,y inside S such that ep,q interferes ex,y . In this al-
gorithm, we enumerate all possible feasible subset J in set R for
each j-square. Since the size of J is no more than Λ, we can finish

each enumeration within O(mΛ) time. Then the running time of
this algorithm is O(k2mΛ). We will show that Λ is a constant in
Theorem 7(see appendix for the proofs).

LEMMA 6. Any given link ep,q is interfered by at most a con-
stant number of interference-free links ex,y with larger length L(ex,y).

THEOREM 7. Let S be any j-square and let I be a set of interference-
free links with level at most j, each of which may interfere some
links contained in S. Then there is a constant Λ depending on the
interference model and k such that |I| ≤ Λ.

For any set S, we use OPT (S) to denote the total weight of
MWIFS with links in S. The following lemma shows that our shift-
ing strategy produces a good solution (see appendix for its proof).

LEMMA 8. There is at least one (r, s)- shifting, 0 ≤ r, s < k
such that OPT (L(r, s)) ≥ (1− 1

k
)2OPT (E) for TIM, fPrIM and

RTS/CTS models respectively.

3.2 Utilizing Bounded Growth Property
In this section, we present centralized approach for link schedul-

ing in wireless networks where geometry information of nodes is
unknown. We assume that a conflict graph FG = (V ′, E′) is avail-
able through network measurement, where V ′ is the set of links E
in G. Hereafter, our algorithm is based on FG.

Our proposed method borrows idea from the algorithm for MWIS
problem proposed in [21]. The basic idea is that for any time slot t
we first select a vertex v with maximum weight in the current net-
work; then we compute maximum weighted independent set Γr in
the r-hop neighborhood Nr of v which includes v. See Figure 1
for illustration. Here Nr of vertex v is defined as:

Nr(v) := {u ∈ V ′|u has hop-distance at most r from v}.
We repeat the process until the weight of Γr satisfies

W (Γr+1) = Γr+1 · qt ≥ ρW (Γr) = ρΓr · qt, (1)

where ρ = 1 + ε and ε > 0. The process stops when inequality
(1) is violated for the first time. We will prove that under fPrIM
and RTS/CTS model, r is at most a constant r̄ and r̄ does exist
for every vertex v we pick. We can prove that for all interference
models, graph FG is growth bounded. In other words, for any r,
Γr has size at most f(r) for a polynomial f when each vertex has
weight 1: f(r) = O(r2) for all interference models studied.

We then “remove” N r̄+1 of vertex v including v. We repeat the
above process until all the vertices in the network are “removed”.
Assuming that the vertices we have picked are v1, v2, · · · , vb, the
candidate solution for It is the union

⋃b
i=1 Γr̄i(vi). Note that we

remove (r̄i + 1)-neighborhood of vi instead of N r̄i in order to
ensure that the union of Γr̄i is independent.

Algorithm 3 Centralized Scheduling Using Bounded Growth
Input: FG = (V ′, E′), queue size of every link, ρ and It−1.
Output: Feasible active link set It for time slot t.
1: repeat
2: Pick a vertex v ∈ V ′ with maximum weight;
3: Compute Γr̄(v);
4: It = It ∪ Γr̄(v);
5: V ′ = V ′ −N r̄+1;
6: until V ′ = ∅;

Now we prove that r̄ does exist and is bounded by a constant
(depending on ρ) in different interference models.

THEOREM 9. There exists a constant c = c(ρ) such that r̄ ≤ c
under fPrIM and RTS/CTS model.

PROOF. We assume that the uniform transmission range of ev-
ery node is T and the uniform interference range is R. Recall that,
if two links ep,q , ex,y conflict, the distance between two transmit-
ting nodes is at most R + T for fPrIM, at most R for TIM, and
at most R + 2T for RTS/CTS model. In all cases, the transmit-
ters in Nr(ep,q) is contained inside disk D(vp, r(R + 2T)) ⊆
D(vp, r 3+2θ

1+θ
R). On the other hand, if two links ep,q , ex,y are

interference-free, the distance between the transmitting nodes vp

and vx must be larger than R−T ≥ θ
1+θ

R for fPrIM model and R
for TIM and RTS/CTS models. This implies that, for fPrIM model,
the cardinality of Γr(e) for any link e is at most

|Γr| ≤ π(r
2 + θ

1 + θ
R)2/π(

θ

1 + θ
R/2)2 =

4(2 + θ)2

θ2
r2 = c1r

2,

(2)
Similarly, we can prove that |Γr| ≤ c1r

2 for both TIM and RTS/CTS
models for some constant c1 > 0. Notice that

W (Γr) = Γr · qt =
∑
i∈Γr

wi ≤
∑

ei∈Γr

wmax = |Γr|wmax, (3)

where, wi is the weight of a vertex ei, i.e., the queue size of link
ei, wmax is the weight of the initiating node. If r is not bounded,
then according to (1), ∀r,

W (Γr) ≥ ρW (Γr−1) ≥ ρ2W (Γr−2) ≥ · · · ≥ ρrwmax. (4)

Then |Γr|wmax ≥ ρrwmax. Clearly, this will be violated when
r > r0 where r0 satisfies c1r

2
0 = ρr0 , i.e., ρ = (c1r

2
0)

1/r0 . In
other words, r ≤ r0.

Note that, due to (2), we may compute Γr by simple enumeration
in time O(nc2), where c = O(r̄) = O(1/ε2 log 1/ε) and ρ =
1 + ε. Similar to [21], we have

THEOREM 10. It generated by Algorithm 3 is an independent
set of weight at least 1

ρ
= 1

1+ε
of the weight of a MWIS. In other

words, It · qt is at least 1
ρ
(IOPT

t · qt).

4. DISTRIBUTED SCHEDULING
In this section, we introduce our efficient distributed algorithms

from two points of views as we did in section 3, i.e., using geometry
location and using bounded growth property. We first describe our
distributed algorithms using TIM model where Ri = 1 for each vi.
Later, we will show that our algorithms can be easily extended to
other interference models, like fPrIM and RTS/CTS model.

Notice that, all the communications of our distributed algorithms
are based on a CDS, i.e., the global CDS will be constructed at
the beginning of both distributed algorithms. Our main idea is
to let CDS relay packets between wireless nodes. Several meth-
ods [1] were proposed to get a CDS from G such that CDS C has
a bounded degree d. In addition, because some of our algorithms
works on conflict graph instead of communication graph, we as-
sume one hop in the conflict graph of G corresponds to at most β
hops on G, i.e., we assume if there is a link between two vertices
(corresponding to links in G) e1 and e2 in the conflict graph, one
of end nodes of e1 can reach one of end nodes of e2 in at most β
hops, where β is a constant, typically 2.

The challenges for designing low-complexity distributed schedul-
ing with efficiency ratio 1− ε are that 1) when we use Proposition
1, it is difficult to find a MWIS distributively with approximation
ratio 1 − ε for every time-slot; 2) when we use Proposition 2, it is

Super−subsquareSubsquare Removed area

bt
at

κ

v2r̄r̄ + 2
v1

v5

r̄ + 1

v3

v4

(a) with location (b) without location

Figure 3: Here the round white nodes are the solution we com-
puted from time slot t−1, grey rectangle nodes are the solution
we computed from time slot t.

expensive to compare two global solutions. We will propose var-
ious methods that either address the first challenge or the second
challenge or both simultaneously.

4.1 Using Geometry Location
First we consider the TIM when nodes have uniform R = 1.

When every node knows its geometry location, we partition the
whole space into cells with size 1. Then every node knows exactly
which cell it belongs to. See Figure 3(a) for illustration. For cen-
tralized algorithm, our method guarantees finding a (1 − 1/k)2-
approximation of MWIFS at each slot t by finding the best par-
tition. Clearly, this is impossible when we need low-complexity
distributed scheduling. As in the literature, we will adopt the pick
and compare approach. Randomly picking a partition (using ran-
dom (at, bt) at time slot t) guarantees that, with probability at least
1/k2 we will end up with the best partition, and a MWIFS whose
weight is at least (1−1/k)2 of the optimum. The challenge now is
to compare such candidate solutionAt with previous solution It−1

and then find the better one efficiently. To address this, we will
find a special solution At that is guaranteed to be better than It−1.
Then, the compare operation is not necessary.

Recall that, using space partition, It−1 (similar to Algorithm
1) is composed of optimum solutions from each square(i, j). If
we keep the same space partition (same (at, bt) for all t) for all
time-slots, clearly, we can produce the solution A

(i,j)
t for each

square(i, j) and A
(i,j)
t ·qt ≥ I

(i,j)
t−1 ·qt from the optimality of A

(i,j)
t

for square(i, j) with weight qt. Consequently, At · qt ≥ It−1 · qt.
However, using same partition for all time-slots clearly violates the
property that At has constant approximation ratio with constant
probability when t → ∞. The key observation is that, after fix-
ing a partition, the removed links (whose senders fall inside the
gray strips) will accumulate packets since they will never be served
now. Thus, to ensure the constant probability of getting good solu-
tion, we need randomly choose a partition for every time-slot. The
challenge now is to ensure that At is always better than It−1. To
address this, for a square(i, j) partitioned in time t, when we com-
pute a solution A

(i,j)
t , we will compare the local optimum solution

using qt, with some special partial solution of It−1 that are locally
known to square(i, j), and the better one is chosen as final I

(i,j)
t .

To describe our method in detail, we define some terms first. A
sub-square(i, j) is the set of grid cells: {cell(x, y) | x ∈ [i ∗
k + at + 2, (i + 1) ∗ k + at − 1]y ∈ [j ∗ k + bt + 2, (j +
1) ∗ k + bt − 1]}. A super-subsquare(i, j) is the set of grid cells
{cell(x, y) | x ∈ [i ∗k +at +1, (i+1) ∗k +at]y ∈ [j ∗k + bt +
1, (j + 1) ∗ k + bt]}. Clearly, the collection of super-subsquares
will be a space partition. A sub-square(i, j) is contained inside

the super-subsquare(i, j). See Figure 3(a) for illustration, where
the larger square region is a super-subsquare(i, j) and the smaller
square region is a sub-square(i + 1, j).

At any time slot t, we will “remove” the links whose senders are
located inside either vertical strips i and i + 1 with i = at mod k
or horizontal strips j and j + 1 with j = bt mod k, i.e., links
whose transmitters are inside the gray region of Figure 3(a) will be
moved. Observe that, for every k strips, we remove two consecutive
strips instead of one-strip used by centralized algorithm. This is
used to ensure that the union of A

(i,j)
t for all sub-square(i, j) is

independent. Our algorithm works as follows.
Step 1: At time slot 0, we do a partition using (a0, b0) = (0, 0)

and compute an optimum MWIS A
(i,j)
0 of nodes for each sub-

square (i, j) that is not empty of nodes inside. Here the weight
of a node v is defined as the maximum queue size of all out-going
links of node v. Let the solution I0 of time slot 0 be the union of
the optimum solutions A

(i,j)
0 for all sub-squares.

Step t + 1: For any time-slot t, we partition the space using
(at, bt). Here we choose (at, bt) as (t, t) when k ≥ 5. Observed
that when k = 3 (or 4), some cells will be “removed” in every
time-slot if (at, bt) = (t, t). Therefore, when k = 3 (or 4), we let
(at, bt) map to one distinct partition of the total 9 (or 16) different
partitions (we can use a random permutation σ of {(a, b) | a, b ∈
[0, k − 1]} to get (at, bt) ← σ(t), the partition will repeat after
k2 time-slots. We then compute the optimum MWIS, denoted as
A

(i,j)
t , for all sub-squares (i, j) using the weight qt.
Let I

(i,j)
t−1 be the set of nodes from It−1 (the global solution at

time slot t−1) that fall in the super-subsquare (i, j) instead of sub-
square(i, j). Clearly, we can compute such set locally. If I

(i,j)
t−1 ·

qt > A
(i,j)
t · qt, let I

(i,j)
t = I

(i,j)
t−1 , else I

(i,j)
t = A

(i,j)
t . Then the

global solution is the union of I
(i,j)
t for all super-subsquares.

The pseudo-codes are given in Algorithm 4. Note that for each
super-subsquare, one node (assume u) will become the (only) coor-
dinator computing the MWIFS of links inside this super-subsquare
(actually the subsquare contained by this super-subsquare). Here
we can simply choose the node which is closest to the center of each
super-subsquare as the coordinator node for this super-subsquare.
And, we assume the message RESULT(I(i,j)

t) used in Algorithm
4 contains all the needed information of all independent links se-
lected by the coordinator inside super-subsquare(i, j) in time slot
t. Here every node marks all its out-going links White at the be-
ginning of a time-slot t; it will mark a link Red if it is chosen to be
active, and Black otherwise.

THEOREM 11. It generated by Algorithm 4 is an independent
set.

PROOF. We prove it by induction. At time slot 0, I0 is the union
of A

(i,j)
0 , the MWIS in sub-square(i, j). The union of A

(i,j)
0 is an

independent set since two links from two different sub-squares are
independent. In other words, I0 is an independent set. If It−1 is
an independent set when t ≥ 1 then we prove It is an independent
set. We observe that in each super-subsquare(i, j), either A

(i,j)
t or

I
(i,j)
t−1 is chosen to be a part of It. Consider any two different super-

subsquare(i, j) and super-subsquare(i′, j′). If I
(i,j)
t−1 and I

(i′,j′)
t−1

are chosen respectively as I
(i,j)
t and I

(i′,j′)
t , the union of them is

an independent set by induction. If either I
(i,j)
t is A

(i,j)
t or I

(i′,j′)
t

is A
(i′,j′)
t or both, the union of them is still an independent set

since they are separated by corresponding vertical and horizontal
strips. Therefore It is an independent set. As an illustration, in
Figure 3(a), the round white nodes in one super-subsquare do not

Algorithm 4 Distributed Scheduling by node v With Location
Input: k, at, bt.
Output: Active or not for each of its outgoing links at time slot t.
1: state = White; active = NO; Coordinator = NO;
2: Calculates which cell Z node v resides in regarding to the cur-

rent partition(k, at, bt,);
3: if I am the closest one to the center of super-subsquare then
4: Coordinator=YES;
5: if Coordinator = YES then
6: Collect the queue size qt for all links within the same super-

subsquare(i, j), and the scheduled links I
(i,j)
t−1 in current

super-subsquare(i, j) at previous time-slot t− 1 also.
7: Computes MWIS A

(i,j)
t in sub-square(i, j);

8: if I
(i,j)
t−1 · qt > A

(i,j)
t · qt then

9: I
(i,j)
t = I

(i,j)
t−1 ;

10: else
11: I

(i,j)
t = A

(i,j)
t ;

12: Broadcasts RESULT(I(i,j)
t) in super-subsquare(i, j);

13: if state= White then
14: if receives message RESULT(I(i,j)

t) then
15: if v ∈ I

(i,j)
t then

16: state = Red; active=YES;
17: else
18: state = Black; active=NO;

collide with other round white nodes in another super-subsquare
since they are disjoint subsets of It−1; and the round white nodes
in one super-subsquare do not collide with grey rectangle nodes
in another sub-square since they are separated. This finishes the
proof.

As we have mentioned before, node u will use a good CDS to
collect and send packets to all other nodes. Our main idea is that
let the part of global CDS that fall in one super-subsquare to take
charge of communications between wireless nodes, i.e., relay mes-
sages. Because all super-subsquares are independent and we com-
pute the local MWIS individually, we discuss the time complexity
and message complexity inside one super-subsquare. For simplic-
ity, without causing ambiguity, we use G = (V, E) to denote the
communication graph inside a super-subsquare and C is the set of
nodes from global CDS falling in this super-subsquares. Assume
that the graph formed by all nodes in C is GC = (VC , EC) and
assume that GC is connected. Let TC denote the BFS tree of GC .
Then, the maximum degree in TC is bounded by constant d as well.
For any node v ∈ C, we add a link (v, P (v)) to TC , here P (v) is
the dominator node of v. The resulting graph is called Data Com-
munication Tree (DCT) H of G. Clearly, for each super-subsquare,
each link in the H has at least one end node in the CDS. We first
show that every link in GC can be active at least once in constant
time by Lemma 12.

LEMMA 12. For any link e of E(H), let ψ(e) be the set of links
that interfere with e, then |ψ(e)| ≤ c ∗ d ∗ ∆(G), where c only
depends on R/T .

PROOF. For any edge e = (u, v) of H , we know that either u or
v (or both) will belong to C. Without loss of generality, we assume
u ∈ C. For all edges interfere with e, both end nodes should be
within distance 2T + R from u (this is true for all interference
models we discussed). There are at most a constant number of
nodes from CDS within this range since R = Θ(T) and the CDS
has a constant-bounded degree. By an area argument, we can show
that ψ(e) ≤ (R+2T

T/2
)2 · d ·∆(G). This finishes the proof.

LEMMA 13. Any two nodes inside a super-subsquare can com-
municate with each other in O(k2∆(G)) mini-time-slots.

PROOF. As we know, the area of one super-subsquare is equal
to (φk)2, where φ = Θ(R) is the width of one strip. If we di-
vide one super-subsquare into mini-cells with side length T√

5
, ev-

ery two nodes from two adjacent mini-cells can communicate with
each other directly. We know that the hop number of shortest path
(in original communication graph G) between any two nodes is
bounded by O((2φk)2

(T√
5
)2

) = O(k2). When the communications are

based on the CDS, the hop numbers will also be at most O(k2).
By Lemma 12, any two nodes can communicate with each other in
O(k2 · c · d ·∆(G)) mini-time-slots.

LEMMA 14. The time complexity of one round in Algorithm 4 is
Θ(N). Here N denotes the number of nodes in a super-subsquare.

PROOF. As described in Algorithm 4, from the start of a round
to time when all nodes (inside a super-subsquare) know their roles
in this round, there are 3 phases. In the first phase, the coordina-
tor node collects information (like ID, weight) from all other nodes
in the same super-subsquare. In the second phase, based on the
information collected, coordinator node will compute the MWIS
and compare the MWIS with the total weight of all nodes in this
super-subsquare from the global MWIS of last round. Coordina-
tor node will pick the better one of two sets as the local MWIS
for this round. In the last phase, coordinator node will broadcast
the information of local MWIS to all nodes within the same super-
subsquare. So the total time consumed by all 3 phases are one data
collection (phase 1), computation (phase 2) and broadcast locally
(phase 3). Phase 2 will not incur delay and phase 3 can clearly be
done in time O(N) using CDS.

From Lemma 12, in O(∆(G)) time-slots, the messages from
each dominatee node are collected to the corresponding dominator
node in the CDS. We can show that after N + h(TC) rounds, all
messages can be scheduled to arrive in the root (the coordinator
node) of tree H , where h(TC) is the height of the BFS tree TC

rooted at the coordinator node. Notice that h(TC) = O(k2). Thus,
the total mini-time-slots needed is O(∆(G)) + O(N + O(k2)) =
O(N) since ∆(G) ≤ N .

LEMMA 15. Using CDS, any bit is relayed by at most a con-
stant number of nodes.

PROOF. We have shown in Lemma 13 that for any two nodes
u and v within the same super-square, the hop number HG(u, v)
is bounded by a constant, and the hop number between u and v on
data communication tree H satisfies HT (u, v) ≤ 2+3HG(u, v), a
constant as well. So, any bit will be only relayed constant times.

LEMMA 16. When k ≥ 5, Algorithm 4 has a probability of at
least 1

k
to generate an independent set of links with weight at least

(1− 4
k
) of optimal solution, i.e., Pr

(
It · qt ≥ (1− 4

k
)(IOPT

t · qt)
) ≥

1
k

. When k = 3 or 4, Algorithm 4 has a probability of at least 1
k2 to

generate an independent set of links with weight at least (1− 2
k
)2 of

optimal solution, i.e., Pr
(
It · qt ≥ (1− 2

k
)2(IOPT

t · qt)
) ≥ 1

k2 .

PROOF. Since we let (at, bt) = (t, t) when k ≥ 5, there are to-
tal k different partitions. Each cell(i, j) appears in the “removed”
strips for at most 4 times. Suppose the optimal solution is (IOPT

t ·
qt) for time slot t, then there exists at least one good partition
such that the removed part of the optimal solution, i.e., accumu-
lated weight of the nodes in the gray area, is at most 4

k
(IOPT

t · qt).
Since the result generated by Algorithm 4 for this good partition is

optimal in the remaining area, It · qt is at least (1− 4
k
)(IOPT

t · qt).
Therefore the best partition generates an independent set of links
with weight at least (1 − 4

k
) of optimal solution. With probability

≥ 1
k

, (t, t) is the best partition.
When k = 3 (or k = 4), there are total k2 different parti-

tions. Each cell appears in the “removed” strips for exactly 4k − 4
times. For similar reason above, there exists at least one parti-
tion such that the removed part of the optimal solution is at most
4k−4

k2 (IOPT
t · qt) for any time slot t. Therefore for this good parti-

tion Algorithm 4 generates an independent set of links with weight
at least (−1 4k−4

k2) of the optimal solution, i.e., (1− 2
k
)2 of the op-

timal solution. The probability any partition is a good partition is
at least 1

k2 .

THEOREM 17. Algorithm 4 achieves (1− 4
k
)C capacity for any

k ≥ 5 and (1− 2
k
)2C capacity for any k = 3 or 4.

The claim holds by Proposition 2 and Lemma 16. For k ≥ 5,
the efficiency ratio can be improved to (1 − 2

k
)2 using random

(at, bt) partition. For other interference models, instead of using
cell size R, we will partition the space using cells of size R + T
for fPrIM and cells of size R+2T for RTS/CTS model. Algorithm
4 again achieves (1 − 2

k
)2C capacity for any k ≥ 3 for these two

interference models.

4.2 Using Bounded Growth Property
In this section, we introduce our distributed scheduling algorithm

when we do not have geometry locations of nodes. Notice that in
centralized scheduling, to guarantee the correctness, we start from
a link e with the largest queue size and then grow the region until a
certain criterion (inequality (1)) is violated. Given ρ, we know that
we will explore at most r-hops neighborhood Nr of e in the conflict
graph. Thus, other links that do not have the global largest queue
size can also start to explore its neighborhood Nr and find a MIS
simultaneously. Let k = r be the control parameter depending on
ρ. To ensure that two simultaneous explorings will be consistent,
we need that any two intiating links must be separated by at least
2k +4 hops in the conflict graph FG. For having a low-complexity
stable distributed scheduling with efficiency ratio arbitrarily close
to 1, we will use the pick and compare idea similar to previous sub-
section. Assume that for each pair of conflicting links (vp, vq) and
(vx, vy), the hop distance between them in communication graph
G is at most a constant β. Our main idea is as follows:

Step 1: At the beginning of each time slot t, every node col-
lects link information in its (2k + 4)-hop neighborhood of conflict
graph, that is, its ((2k + 4)β)-hop neighborhood N

(2k+4)β
G (v) of

communication graph G. Here constant k is a system parameter.
The wireless node with maximum weight in its ((2k + 4)β)-hop
neighborhood will become a coordinator for local MWIS compu-
tation. We choose the value of k in a way such that every node
initiating a local MWIS computation terminates the computation
within k hops. Note that we let each node collect information in its
((2k+4)β)-hop neighborhood for ensuring that MWISs computed
by simultaneous coordinators will always be independent.

Step 2: Based on the collected information, if a node v has max-
imum weight among all its neighbors within β(2k + 4) hops, v
starts to compute local MWISs Γ0(v), Γ2(v), ..., Γr̄(v) by enu-
meration. Different from the centralized algorithm, we find a r̄ such
that ρW (Γr(v)) ≤ W (Γr+2(v)) when r < r̄ and ρW (Γr̄(v)) >
W (Γr̄+2(v)). Note that we prove in Theorem 18 that an r̄ ≤ k
does exist according the bounded growth property of wireless net-
work under the interference models we considered. Here k depends
on ρ. Let Av

t = Γr̄(v), denoting the local result for time slot t us-
ing the weight qt. Let I r̄+1

t−1 be the set of nodes from It−1 (the

Algorithm 5 Distributed Scheduling Using Bounded Growth
Input: k, ρ.
Output: Active or not in time slot t.
1: state = White; active = NO; head = NO;
2: Collects information (e.g., qt(e)) from N2k+4 in FG.
3: if wv ≥ wu, for any u ∈ N2k+4(v) then
4: head = YES;
5: if head = YES then
6: Computes Γ0, Γ2, ..., Γr̄, Γr̄+2 such that Γi+2 ·qt ≥ ρ∗Γi ·

qt, for 0 ≤ i ≤ r̄ − 2, and Γr̄+2 · qt < ρΓr̄ · qt.
7: Av

t = Γr̄;
8: I r̄+1

t−1 = It−1 ∩N r̄+1;
9: if I r̄+1

t−1 · qt > Av
t · qt then

10: Iv
t = I r̄+1

t−1 ;
11: else
12: Iv

t = Av
t ;

13: Broadcasts message RESULT(Iv
t) in N r̄+2+2k+4;

14: if state = White AND head = NO then
15: if receives message RESULT(Iu

t) then
16: if v ∈ Iu

t then
17: state = Red; active = YES;
18: if v ∈ N r̄+2 AND v /∈ Iu

t then
19: state = Black; active = NO;
20: if v ∈ N r̄+2+2k+4 \N r̄+2 then
21: If v has no White neighbor within 2k + 4 hops that

has larger weight, goto 5;

global solution computed for time slot t− 1) that ∈ N r̄+1(v), i.e.,
I r̄+1

t−1 = It−1 ∩N r̄+1(v). Note that at time slot 0, let I r̄+1
t−1 be zero

vector without loss of generality. Obviously, we can compute I r̄+1
t−1

locally. In Figure 3(b), the region enclosed by the blue circle (mid-
dle circle) indicates the (r̄ +1)-neighborhood of a node; The white
nodes are nodes in It−1; the grey rectangle ones are computed in
time slot t. If I r̄+1

t−1 · qt > Av
t · qt, we let Iv

t = I r̄+1
t−1 , otherwise

Iv
t = Av

t .
Step 3: v then announces It

v in its (r̄+2+2k+4)-neighborhood
of conflict graph (β(r̄ + 2 + 2k + 4)-hops in the communica-
tion graph) and “removes” N r̄+2 from the conflict graph (at most
Nβ(r̄+2) in communication graph). As a result, some node u ∈
N r̄+2+2k+4 \ N r̄+2 might find that it has the maximum weight
in its (2k + 4)-neighborhood and it can start to compute its local
MWISs.

Notice in the pseudocode of Algorithm 5, message RESULT(Iv
t)

contains the information of all nodes selected by node v as the lo-
cal solution in time slot t. In addition, we use several colors to
distinguish the different status of vertices. For example, if a node v
marks itself with color Red, it means v is selected in the solution
for this round. Black means the node is not selected as the solution
in this round.

THEOREM 18. There exists a constant c = c(ρ) such that r̄ ≤
c in fPrIM model and RTS/CTS model.

The proof is similar to that of Theorem 9, based on observation.

W (Γr) ≥ ρW (Γr−2) ≥ ρ2W (Γr−4) ≥ · · · ≥ ρb
r
2 cwmax.

THEOREM 19. It generated by Algorithm 5 is an independent
set and, It · qt ≥ 1

ρ
(IOPT

t · qt).

PROOF. Let V̄ ′ = V ′\N r̄+2, and inductively assume that Γ′ ⊂
V̄ ′ is a ρ−approximation independent weighted set in FG[V̄ ′]. Ob-
viously, It = Γr̄ ∪ Γ′ is an independent set in FG. Since Γr̄+2 is

a MWIS in N r̄+2, we have W (IOPT
t ∩ N r̄+2) ≤ W (Γr̄+2) ≤

ρW (Γr̄). Thus,

W (IOPT
t) = IOPT

t qt = W ((IOPT
t ∩N r̄+2) ∪ (IOPT

t ∩ V̄ ′))

= W (IOPT
t ∩N r̄+2) + W (IOPT

t ∩ V̄ ′)

≤ ρW (Γr̄) + ρW (Γ′) = ρW (Γr̄ ∪ Γ′) ≤ ρW (It) = ρIt · qt.

Thus, It · qt ≥ 1
ρ
IOPT

t · qt. Note that here W (It) ≥ W (Γr̄ ∪
Γ′) since every initiating node chooses max(Γr̄, I r̄+1

t−1) in terms of
weight.

Next, we show that our Algorithm 5 for growth bounded graph
also has bounded time and message complexity. Remember that
all the communications are based on the CDS, i.e., when any node
collects or sends information locally, we will construct CDS first
and use it as backbone locally to relay information.

LEMMA 20. For any node in the graph G, collecting (or send-
ing) information from (or to) any node within β(2k+4) hops can be
done in time O(k∆(G)) and any bit will be relayed in 3×β(2k+4)
mini-time-slots in each round. Here, β and k are constants.

PROOF. In Algorithm 5, every node will collect information
from all neighbor nodes within β(2k +4) hops in each round, here
β is a constant. Based on the CDS, we know every link can be
active at least once in every c · d · ∆(G) mini time-slots due to
Lemma 12. In addition, for any two nodes u and v which are at
most β(2k + 4) hops away in graph G, the hop distance between
them are at most 2 + 3× β(2k + 4) by using CDS. Thus, the time
for any node u to send a message to any other node v is at most
(2+3×β(2k+4))c ·d ·∆(G) which is O(k ·∆(G)). Clearly, for
any bit need to be sent from u to v, there are at most 3×β(2k+4))
nodes on the path between u and v when CDS is used.

When a coordinator node u wants to send a message to some
node within β(3k + 6) hops, the procedure can be viewed as a
reverse of data collection from coordinator node.

Notice that, in the growth bound graph a bunch of wireless nodes
with largest weight in their local neighborhood will become the co-
ordinator nodes locally and start the algorithm simultaneously. We
show the total time complexity and message complexity of Algo-
rithm 5 in each round are bounded by the following Lemma 21.

LEMMA 21. With Algorithm 5, each node vi will know if vi ∈
It in O(∆(G) · [β(2k + 4)]2) mini-time-slots, and the number
of total messages needed to collect and broadcast information is
O(∆(G) · [β(2k + 4)]2). Here, both β and k are constant.

PROOF. At the beginning every node not on the CDS will send
its information to its dominator, which can be finished in c·d·∆(G).
Any node u has at most ∆(G) · [β(2k + 4)]2 neighbors within
β(2k + 4) hops by an area argument. By using the similar proof in
Lemma 14, we get the total time used is O(∆(G) · [β(2k + 4)]2).
In addition, the time of computation and comparison consumed by
the coordinator can be considered as O(1). Obviously, the time for
the coordinator to broadcast the locally solution to all nodes within
β(3k+6) hops is at most of the first step. Thus, the total time used
is bounded by O(∆(G) · [β(2k + 4)]2).

On the other hand, we know that the coordinator node has at
most ∆(G) · [β(2k + 4)]2 nodes within β(2k + 4) hops. And
for each node (within β(2k + 4) hops), the message from it to the
coordinator node is at most relayed by 3β(2k + 4)) hops. Thus,
the total message complexity is bounded by O(∆(G) · [β(2k +
4)]2)3β(2k + 4)) = O(∆(G) · k3).

By Proposition 2 and Theorem 19, we have, ∀k ≥ 3,

THEOREM 22. Algorithm 5 is stable, achieves 1
ρ
· C capacity.

Here constants k and ρ satisfy that c1k
2 = ρk.

Note that our distributed scheduling here guarantees to find a
scheduling with efficiency ratio 1/ρ, however, it could run in linear
mini-time-slots in the worst case. Thus, using Proposition 1, we do
not need compare solutions in time t − 1 and t (thus the removed
strips with width 1 still works for distributed method). However,
our pick and compare approach here provides a foundation for de-
signing time-efficient distributed scheduling using only topological
information, in which we only need to ensure Pr

(
Itqt ≥ γIOPT

t qt

)
>

δ for a constant δ > 0. A possible approach is to let a node v serve
as coordinator with a probability depending on its queue size and
control parameter k.

5. SIMULATION RESULTS
In this section, we present the simulation results that evaluate

our distributed algorithms. Here, we mainly show the results con-
cerning the stability of the network when our distributed algorithms
execute due to the limited space. We simulated a fixed 10× 10 ho-
mogeneous grid network similar to the one used in [25]. There are
100 wireless nodes with transmission range 1 deployed in each of
the intersections of two lines. Our simulation is based on TIM and
all nodes have interference range 2. We assume the packets arriving
at a node by a poisson process with rate λ. Obviously the average
queue size of all nodes always increases with time when λ 6∈ C.

The performance of Algorithm 4 is illustrated in Fig. 4 (a). Here,
we set k = 8. Initially the queue size of each node is 0. After
running for 1000 time slots, the results of average queue size in the
network are showed in Figure 4(a). We can see that when λ is no
larger than 0.06, the queue size is almost 0, which indicates that
all arrived packets for each node are scheduled. The queue size
increases linearly over time when λ > 0.06.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

λ

 a
ve

ra
ge

 q
ue

ue
 s

iz
e

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

100

200

300

400

500

600

λ

av
er

ag
e

qu
eu

e
si

ze

(a) with geometric information (b) using bounded growth

Figure 4: Average queue size for distributed algorithm.

For Algorithm 5, similarly, Figure 4(b) shows the same property.
We set k = 3 in this case. In addition, the number of mini-time-
slots needed to schedule a growth bounded graph by algorithm 5 is
bounded and does not increase with the number of nodes. In our
simulations, the average loop time to complete the scheduling is
6.9 in a 36 nodes’ random network; the average mini-time-slots is
10.6 in a 70 nodes’ random network; 22.9 in a 282 nodes’ random
network; 28.6 in a 829 nodes’ random network. Notice the perfor-
mance of the network could be improved by increasing k, which
allows several similar areas in the network scheduled simultane-
ously. We omit the simulation results here due to limited space.

6. RELATED WORK

Interference-free link scheduling in multihop wireless network
has been extensively studied. In their seminal work [28], Tassiu-
las and Ephremides consider a synchronized slotted system where
each frame consists of a single slot. They propose a scheduling
policy that at each slot, selecting a link transmission set with max-
imum total queue sizes. It is proved that this policy achieves the
maximum throughput region. Tassiulas proposes randomized cen-
tralized algorithms in [27] which can achieve the capacity region
with O(n) time complexity, where n is the network size.

The interference model adopted in the scheduling scheme is im-
portant. It is well known [4] that for an arbitrary interference model,
the maximum throughput scheduling problem is NP-complete and
not approximable within m

1
3−ε for any arbitrarily small ε > 0

for a network of m links, unless NP = ZPP. On the other hand,
since there is no central entity in the multihop wireless network,
distributed link scheduling is preferred. Using primary interference
model, Modiano et al. [20] present the first distributed link schedul-
ing scheme for multihop wireless networks that achieves nearly the
capacity region, based on the pick and compare approach [27] and
a distributed matching. Scheduling overheads were not considered.
In [4], Sharma et al. first compare maximal scheduling, pick and
compare, and some constant-time scheduling approaches. Then
they propose randomized maximal scheduling algorithms based on
maximal matching under primary-interference model, and 2-hop
interference model (without using pick and comparing approach),
that runs in time log3 |V | and achieves 1

α1(G)
of the maximum

throughput. Here α1(G) = maxe∈E α1(FG) and α1(FG) is the
1-hop independence number of FG, i.e., the largest number of links
from ψ(e) that will not cause interference among themselves. Here
ψ(e) is the set of all links interfering a link e in the communica-
tion graph G = (V, E). Penttinen et al. [22] propose a distributed
and fair link scheduling algorithm for multihop wireless networks.
In [10], the authors propose centralized and distributed algorithms
computing an MWIS on conflict graph under primary interference
model for tree-structured wireless networks. The scheduling over-
head however grows with network size.

A few methods with constant overhead were also proposed. Lin
and Rasool [14] propose two distributed and probabilistic schedul-
ing algorithms which incur constant overhead. In their proposed
algorithms, each link computes a transmission probability based
on the queue-length information of its own and its interfering links.
They prove that the proposed algorithms respectively achieve 1

3
−ε

of the capacity region under primary interference model and 1
1+∆

−
ε of the capacity region under 2-hop interference model. This is im-
proved by [4,7]. Joo et al. [7] propose another distributed constant-
overhead probabilistic scheduling algorithm based on [14]. Under
primary interference model, the algorithm guarantees 1

2
− ε of the

maximum throughput. Under 2-hop interference model, the algo-
rithm achieves an efficiency ratio close to 1

1+∆
. Recently, using

primary interference model, Sanghavi et al. [25] propose a dis-
tributed link scheduling algorithm based on matching augmenta-
tion. A new interference-free schedule can be generated in less
than 4k + 2 slots, provided that there are enough scheduling initia-
tors in the network, where k is a system parameter. They prove that
the proposed algorithm achieves k

k+2
of the capacity region, for ev-

ery k ≥ 1. In [8], Joo developed a simple distributed scheduling
policy that achieves O(log |V |) complexity by relaxing the global
ordering requirement of Greedy Maximal Scheduling (GMS) [9].
It deterministically schedules only links that have the largest queue
length among their local neighbors and guarantees a fraction of the
optimal performance no smaller than GMS.

Observe that maximum capacity scheduling requires the comput-

ing of a MWIS in the conflict graph. Marathe et al. [19] propose
a simple centralized algorithm with approximation ratio 3 for com-
puting MIS (without weight) in UDG. Harry et al. [5] present the
first PTAS to approximate the MIS in UDGs. Nieberg et al. [21]
propose a PTAS for MWIS problem in UDG. Li and Wang [13] fur-
ther present PTASs for MWIS for a variety of wireless networks.
A distributed PTAS approximation for MIS in UDG is proposed
in [11].

7. CONCLUSION
In this paper, we address the interference-free link scheduling

problem in multihop wireless networks. For networks with or with-
out geometry location, we respectively propose two classes of cen-
tralized and distributed scheduling algorithms. We prove that the
produced schedulings are stable and achieve any arbitrary fraction
of capacity region. In specific, our distributed link scheduling al-
gorithm using geometry location achieves (1 − 2

k
)2 of capacity

region for every k ≥ 3; when geometry location is unavailable,
our distributed scheduling algorithm achieves 1

1+ε
of capacity re-

gion. More importantly, all our algorithms generate a valid new
schedule by requiring communications within Θ(k) hops for every
node. Additionally, our algorithms incur constant overhead. More-
over, the proposed algorithms using geometry location generate a
new valid schedule in constant time-slots. Our methods can be ex-
tended to deal with physical interference model such that it has a
constant efficiency ratio. The details are omitted due to space limit.
It remains a challenge to design an efficient stable scheduling al-
gorithm, without explicitly using geometry locations of nodes, that
will run in almost a constant time.

8. REFERENCES
[1] ALZOUBI, K., LI, X.-Y., WANG, Y., WAN, P.-J., AND FRIEDER,

O. Geometric spanners for wireless ad hoc networks. IEEE TPDS 14,
4 (2003), 408–421.

[2] CHAPORKAR, P., AND PROUTIERE, A. Adaptive network coding
and scheduling for maximizing throughput in wireless networks. In
MobiCom (2007), pp. 135–146.

[3] DHALL, S., AND LIU, C. On a Real-Time Scheduling Problem.
Operations Research 26, 1 (1978), 127–140.

[4] G., S., C., J., AND SHROFF, N. Distributed scheduling schemes for
throughput guarantees in wireless networks. Allerton (2006).

[5] HARRY, I., HUNT, B., MARATHE, M., RADHAKRISHNAN, V.,
RAVI, S., ROSENKRATZ, D., AND STEARNS, R. NC-approximation
schemes for NP- and PSPACE-hard problems for geometric graphs.
Networks 25 (1995), 59–68.

[6] JAIN, K., PADHYE, J., PADMANABHAN, V. N., AND QIU, L.
Impact of interference on multi-hop wireless network performance.
In MobiCom (2003), pp. 66–80.

[7] JOO, C., AND SHROFF, N. Performance of random access
scheduling schemes in multi-hop wireless networks. In IEEE
INFOCOM (2007).

[8] JOO, C. A local greedy scheduling scheme with provable
performance guarantee. In ACM MobiHoc (2008).

[9] C. JOO, X. LIN, AND N. B. SHROFF Understanding the Capacity
Region of the Greedy Maximal Scheduling Algorithm in Multi-hop
Wireless Networks. In IEEE INFOCOM, 2008.

[10] KABBANI, A., SALONIDIS, T., AND KNIGHTLY, E. Distributed
Low-Complexity Maximum-Throughput Scheduling for Wireless
Backhaul Networks. In IEEE INFOCOM (2007), pp. 2063–2071.

[11] KUHN, F., NIEBERG, T., MOSCIBRODA, T., AND WATTENHOFER,
R. Local approximation schemes for ad hoc and sensor networks. In
DIALM-POMC (2005), pp. 97–103.

[12] KUMAR, P., AND MEYN, S. Stability of queueing networks and
scheduling policies. IEEE Trans. on Automatic Control, 40, 2 (1995),
251–260.

[13] LI, X.-Y., AND WANG, Y. Simple approximation algorithms and
PTASs for various problems in wireless ad hoc networks. Journal of

Parallel and Distributed Computing (2005).
[14] LIN, X., AND RASOOL, S. Constant-time distributed scheduling

policies for ad hoc wireless networks. In IEEE CDC (2006).
[15] LIN, X., AND SHROFF, N. B. The impact of imperfect scheduling

on cross-layer congestion control in wireless networks. IEEE/ACM
Trans. Netw. 14, 2 (2006), 302–315.

[16] LIU, Y., AND KNIGHTLY, E. Opportunistic fair scheduling over
multiple wireless channels. In IEEE INFOCOM , vol. 2.

[17] LU, S., BHARGHAVAN, V., AND SRIKANT, R. Fair scheduling in
wireless packet networks. IEEE/ACM Trans. on Networking (TON) 7,
4 (1999), 473–489.

[18] LU, S., AND KUMAR, P. Distributed scheduling based on due dates
and buffer priorities. IEEE Trans. on Automatic Control, 36, 12
(1991), 1406–1416.

[19] MARATHE, M., BREU, H., HUNT III, H., RAVI, S., AND
ROSENKRATZ, D. Simple heuristics for unit disk graphs. Networks
25 (1995), 59–68.

[20] MODIANO, E., SHAH, D., AND ZUSSMAN, G. Maximizing
throughput in wireless networks via gossiping. In ACM
SIGMETRICS (2006), pp. 27–38.

[21] NIEBERG, T., HURINK, J., AND KERN, W. A robust ptas for
maximum weight independent sets in unit disk graphs. In Workshop
on Graph-Theoretic Concepts in Compt. Sci. (2004), pp. 214–221.

[22] PENTTINEN, A., KOUTSOPOULOS, I., AND TASSIULAS, L.
Low-complexity distributed fair scheduling for wireless multi-hop
networks. In 1st Workshop on Reso. Alloc. in Wireless Netw. (2005).

[23] RAMABHADRAN, S., AND PASQUALE, J. Stratified round Robin: a
low complexity packet scheduler with bandwidth fairness and
bounded delay. In ACM Sigcomm (2003), pp. 239–250.

[24] RAMANATHAN, S., AND LLOYD, E. Scheduling algorithms for
multi-hop radio networks. IEEE/ACM Trans. on Networking 1 (April
1993), 166–172.

[25] SANGHAVI, S., BUI, L., AND SRIKANT, R. Distributed link
scheduling with constant overhead. In ACM SIGMETRICS (2007),
pp. 313–324.

[26] SHARMA, G., SHROFF, N., AND R., M. R. On the complexity of
scheduling in wireless networks. In ACM MobiCom ’06 (2006).

[27] TASSIULAS, L. Linear complexity algorithms for maximum
throughtpu in radionetworks and input queued switches. In
INFOCOM (1998), pp. 533–539.

[28] TASSIULAS, L., AND EPHREMIDES, A. Stability properties of
constrained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Trans. on Automatic
Control, 37, 12 (1992), 1936–1949.

[29] TASSIULAS, L., AND SARKAR, S. Maxmin fair scheduling in
wireless networks. In IEEE INFOCOM (2002), vol. 2.

[30] VAIDYA, N., DUGAR, A., GUPTA, S., AND BAHL, P. Distributed
Fair Scheduling in a Wireless LAN. IEEE Trans. on Mobile
Computing, 4, 6 (2005), 616–629.

[31] WANG, W., WANG, Y., LI, X.-Y., SONG, W.-Z., AND FRIEDER,
O. Efficient interference aware tdma link scheduling for static
wireless mesh networks. In ACM MobiCom (2006).

[32] YI, S., PEI, Y., AND KALYANARAMAN, S. On the capacity
improvement of ad hoc wireless networks using directional antennas.
In ACM MobiHoc (2003), pp. 108–116.

APPENDIX
Proof of Lemma 8

PROOF. For TIM and RTS/CTS model, a link ei will be re-
moved in a (r, s)-shifting only if its interference area I(ei) is hit
by the lines of l(ep,q)-squares. Since the diameter of I(ep,q) is
at most 1

(k+1)l(ep,q) and the lines of l(ep,q)-square will move at

least 1

(k+1)l(ep,q) during shifting, each link can be removed at most

2k − 1 times in all k2 shifting. Similar to the proof of Theorem 3,
we can prove that OPT (L(r, s)) ≥ (1− 1

k
)2OPT (E).

For fPrIM, the proof is similar. Note the diameter of I(ep,q)
is at most 2

(k+1)l(ep,q) . Thus each link can be removed at most

4k − 4 times in all k2 shifting. Thus, OPT (L(r, s)) ≥ (1 −
2
k
)2OPT (E).

Proof of Lemma 6

PROOF. Here we show a constant c0 for each model.
For TIM and RTS/CTS model, c0 is at most 5. If sender vp(or

receiver if under RTS/CTS model) is covered by 6 or more in-
terference areas, then we can find two senders vi and vj(or re-
ceivers if under RTS/CTS model) such that ∠vivpvj ≤ π

3
accord-

ing to pigeonhole principle. Let di,j = ‖vi − vj‖. For vi and
vj , d2

i,j ≤ d2
i,p + d2

j,p − 2 cos π
3
· di,p · dj,p = max{di,p, dj,p}2 +

min{di,p, dj,p}2−max{di,p, dj,p}·min{di,p, dj,p} ≤ max{di,p, dj,p}2 ≤
max(Rvi , Rvj)

2. Thus, these two links with vi and vj are not in-
terference free which contradicts our assumption.

For fPrIM, c0 is at most d 2π

arcsin γ−1
2γ

e, where γ = maxi
Ri
Ti

.

We divide the whole space into d 2π

arcsin γ−1
2γ

e equal cones using

d 2π

arcsin γ−1
2γ

e rays from vp. If vp is in more than d 2π

arcsin γ−1
2γ

e in-

terference areas, then we can find two receivers vi and vj such that
∠vivpvj ≤ arcsin γ−1

2γ
by pigeonhole principle. Wang et al. [31]

proved that the two links with vi and vj are not interference free in
this condition, which contradicts our assumption.

Proof of Theorem 7

PROOF. We prove it for each interference model separately.
For TIM, we first consider all interference free links inside S.

Notice that all links in I have level at most j, which implies that the
interference area of each link in I has a diameter 1

(k+1)j+1 . Then
the distance between the senders of any two interference free links
is at least 1

(k+1)j+1 . The j-square S has side length k
(k+1)j . There-

fore, there are at most (k
(k+1)j)2�π(1

2(k+1)j+1)2 = 4k2(k+1)2

π

interference free links contained in S by area argument.
Then we concentrate on estimating how many interference free

links such that (1) their senders are outside S, (2) with level at
most j, (3) each of them may interfere with a link inside S. We
show that there are only a constant number of such links by an area
argument. Consider the four strips, denoted by B(S), surrounding
S with width 1

2(k+1)j+1 . For each link ep,q that interferes with
some links inside S, it is not difficult to show that B(S)

⋂ I(ep,q)
achieves the smallest area when vp is on the boundary of B(S)
and Rvp = 1

2(k+1)j+1 . The smallest area of B(S)
⋂ I(ep,q) is

π 1

8(k+1)2(j+1) . According to Lemma 6, every point in B(S) is
covered by at most 5 interference free disks. The area of B(S) is
2k(k+1)+1

(k+1)2(j+1) . Thus, the number of interference free disks is at most

5× 2k(k+1)+1

(k+1)2(j+1)�π 1

8(k+1)2(j+1) = 80k(k+1)+40
π

.

So the total number of interference free links I with level j and
intersecting S is at most Λ = 4k2(k+1)2

π
+ 80k(k+1)+40

π
.

For RTS/CTS model, the proof is similar to the proof above. We
first consider links inside S. We use the position of the endpoint
with larger interference radius to represent the position of a link.
The distance between any two interference free links is at least
minep,q∈I(L(ep,q)) ≥ 1

(k+1)j+1 under RTS/CTS model. There-

fore, there are at most (k
(k+1)j)2�π(1

2(k+1)j+1)2 = 4k2(k+1)2

π

interference free links contained in S.
Then we consider links outside S. Consider the same strips

B(S) as above, surrounding S with width 1
2(k+1)j+1 . According to

Lemma 6, every point in B(S) is covered by at most 5 interference
free links. Using the same area argument as above, the number of

interference free links is at most 5× 2k(k+1)+1

(k+1)2(j+1)�π 1

8(k+1)2(j+1) =
80k(k+1)+40

π
.

So the total number of interference free links I with level j and
intersecting S is at most Λ = 4k2(k+1)2

π
+ 80k(k+1)+40

π
.

For fPrIM, the proof is also similar. Consider the same strips
B(S) as above, surrounding S with width 1

2(k+1)j+1 . According to
Lemma 6, every point in B(S) is covered by at most d 2π

arcsin γ−1
2γ

e
interference free links. The area of B(S)

⋃
S is 1

(k+1)2(j−1) . Each

link covers at least an area of π 1

8(k+1)2(j+1) . The smallest area is
achieved when the sender is on the boundary and the interference
radius is 1

2(k+1)j+1 . So the total number of interference free links
I with level j and intersecting S is at most Λ = d 2π

arcsin γ−1
2γ

e ×
1

(k+1)2(j−1)�π 1

8(k+1)2(j+1) = d 2π

arcsin γ−1
2γ

e × 8(k+1)4

π
.

