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ABSTRACT

Given a set of wireless network nodes AV, the directed weighted

transmission graph G; has an edge uv if and only if node v
is in the transmission range of node u and the weight of uwv
is typically defined as |uv|* +c for a real constant 2 < o < 4
and ¢ > 0. The minimum power topology G, is the smallest
subgraph of G: that contains the shortest paths between all
pairs of nodes. We described a distributed position-based
networking protocol to construct the enclosure graph G,
which is an approximation of Gy,. The total communica-
tion complexity is O(n). Let dg(u) be the the degree of
node » in a graph G. The time complexity of each node u
is O(dg, (u)logdg, (v)). The space required at each node is
O(dg, (u)). This improves the previous result that approxi-
mates G, in O(dg, (v)®) time using O(dg, (u)?) spaces. We
also show that the average degree dg, (u) is usually a con-
stant, which is at most 6. Our result is first developed for
stationary network and then extended to mobile network.

1. INTRODUCTION

Ad Hoc Wireless Network: In ad hoc wireless net-
work, mobile nodes communicate with each other either
through a single-hop transmission if the receiver node is
within its transmission range, or through multi-hop wire-
less links by using intermediate nodes to relay the message.
A single transmission by a node can be received by all nodes
within its transmission range. We always assume that each
mobile node can adjust its transmission power according to
its neighborhood information to possibly reduce the energy
consumption. Each mobile node typically has a portable set
with transmission and reception processing capabilities. In
addition, we assume that each node has a low-power GPS
receiver, which provides the position information of the node
itself. Each node sends a broadcast message containing its
identity and geometry position information using a fixed pre-
defined transmission power. To avoid the collisions, not all
nodes can broadcast their messages at the same time.

Power Efficient Routing: Energy conservation is a crit-
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ical issue in ad hoc wireless network for the node and net-
work life as the nodes are powered by batteries only. In the
most common power-attenuation model, the signal power
falls as %a, where r is the distance from the transmitter an-
tenna and « is a constant between 2 and 4 dependent on the
wireless transmission environment. This is typically called
the path loss. We always assumed that all receivers have the
same power threshold for signal detection, which are then
typically normalized to one. With these assumptions, the
power required to support a link between two nodes u and
v separated by distance r is r*. All additional power con-
sumed to receive, store and then process the signal [7] is
referred as the receiver power at the relay node. Hereafter,
we will denote such power by a constant ¢, which is same
for all nodes due to the nature of its operations.

Network Model: We model a wireless network by a
weighted directed graph G = (V,E). Here V is the set
of all mobile nodes, and edge (u,v) € E if and only if the
node v is in the transmission range of the node w. The
weight of the edge (u,v) is |uv|® 4+ c¢. Hereafter, we call
G the transmission graph. We assume that G is strongly
connected. Here a graph is strongly connected if there is a
directed path from any node to any other node. A directed
path from a node s to a node ¢ is said to be the minimum-
power path if it consumes the least power among all paths
from s to t. We concentrate on finding the minimum directed
subgraph G, = (V, E) of G; which contains the minimum-
power paths from each node to any other node. Hereafter,
the graph G, is also called minimum-power topology. Given
a node u, call a node v a neighbor of w if there is no power
efficient two-hops relay for the signal from u to v.

We assume that the mobile nodes are given as a set N
of n points set in the two-dimensional plane. Consider any
unicast 7 from a node u € N to another node v € N:

T = PopP1 - Pm—1Pm, where u =po, v =pn.

The total transmission power consumed by this path 7 is
S pic1pi|® +m - c. In worst case, it needs O(n?) to
compute the path with minimum energy consumption by
applying Dijkstra’s algorithm on G:. Note that the cost of
the centralized Dijkstra’s algorithm is O(nlog n+ E), where
E is the number of edges of the graph G;. We will show that
it is sufficient to apply the shortest path algorithm on a usu-
ally planar graph called the enclosure graph G.. Thus it is
more time efficient to compute the minimum-energy routing
using the enclosure graph. Notice that, Klein, Rao, Rauch
and Subramanian [3] had proposed a linear time centralized
algorithm to compute the shortest path for planar graph.



Previous work: Rodoplu and Meng [7] described a dis-
tributed protocol to approximate the minimum-power topol-
ogy for a stationary ad hoc network. Their algorithm finds
the topology via a local search in each nodes surrounding.
Each mobile node u first finds all nodes, denoted by T'(u),
lied in its transmission range. The node w then tries to find
nodes in T'(u) such that it can not be the neighbor of w.
Here a node v directly relays the signal from a node u to a
node t if w sends signal to v and v then relays it. However,
their protocol is not time and space efficient. Let da(u) be
the the degree of node u in a graph G. The worst time com-
plexity could be O(dg, (u)®). Moreover, the possible space
required by node u is O(dg, (u)?).

Our Result: Instead of constructing the minimum-power
topology G, we construct an enclosure graph G., which
contains G, but not much larger. The enclosure graph is
formed by connecting each node to its neighbors. Each mo-
bile node u, instead of finding nodes that can not be served
as relay nodes [7], tries to find the nodes that are guaran-
teed to be the neighbors of w. The total communication
complexity is O(n). The time complexity of each node u
is O(min(dg, (v)da, (u),da, (v)logda, (u))) when o = 2 or
¢ = 0. The space required at each node is O(dg, (u)). This
improves the previous result [7]. We also show that the av-
erage degree dg. (u) is usually a constant, which is at most
6. Our result is first developed for stationary network and
then extended to mobile network.

2. MINIMUM POWER TOPOLOGY
2.1 Basic Definitions

DEFINITION 1. The relay region of node r for node s is
Ro.c(s,r) ={z | |sz|® > |sr|* + |rz|™ + c}.
When it is clear from the context, we will drop the «

and/or ¢ from Ra.c(s,r). We then study in detail what
is the mathematical formula to represent the relay region

Ra.c(s,r). Let (zi, y;) denote the position of a two-dimensional

node i. Assume that node r has coordinates (0,0) and node
s has coordinates (—|sr|,0). When « = 2, it is not difficult
to show that point d = (x4, ya) in the relay region R(s,r) iff
xq > 557 Thus, if s = (—=|sr|,0) and r = (0, 0), then

c
Rae(s,r) = {(z,y) | 2 > m}-
Therefore, the boundary of the relay region Ra.(s,r) is a
line perpendicular to sr and node r has distance ﬁ to the
relay region. When o = 4, we have point d = (x4, yq) in the
relay region R(s,r) iff

c
2|sr|”

(2zq + |s7|)yd + 225 + 3|sr|a] + 2|sr|°zq >

Figure 1 illustrates typical relay regions with o = 2 and
a = 4 respectively.
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Figure 1: Relay regions: Left a = 2; Right a = 4.

Given any two nodes s and r, let h,s be the half plane
defined by the bisection line of segment sr and containing
node r. The relay region Ra.(s,r) is inside h,s for any
propagation environment constant « and receiver cost c.

We then study the properties of the structure of the min-
imum energy topology of a set of stationary nodes. For sim-
plicity, let E (s,r) be the complement of Ry, (s,r). The
fact that a node d is in the relay region R(s,r) does not
imply that node 7 has to relay the signal to d. The fact that
a node d is not in the relay region R(s,r) does not imply
that node r will not relay the signal to d.

DEFINITION 2. [ENCLOSURE REGION]| The enclosure re-
gion of a node s is defined as Eq.,c(s) = ﬂTET(S) Eqyc(s,r).

Notice that the above definition is analog to the Voronos
region of a node s, which is defined as V(s) = {z | Vg €
N, |zs| < |zq|}. Remember that here T(s) is the set of
nodes lying within the transmission range of node s

DEFINITION 3. [NEIGHBORS| The neighbors Nac(s) of a
node s is defined as Nao(s) ={u|u € T(s), u € Eq(s)}.

When it is clear from the context, we will also drop the
constant o and/or ¢ from E, c(s,r) and Nu o(s). In [7] they
define the enclosure region and neighbors as

ﬂ Ea(s,r)
r€Na(s)

Nu(s)={u|u e N and u € Ea(s)}.

Ey(s) =

Unfortunately, these definitions of enclosure region and neigh-
bor are erroneous. It is possible that a node v ¢ Na (s) but
we need node v to define the enclosure region. See the full
version of the paper for more details. As [7], we define the
enclosure graph as following.

DEFINITION 4. [ENCLOSURE GRAPH| The enclosure graph

G&“’C) of a set of mobile nodes N is a directed graph with
vertices N and edges (u,v) where v € Ny c(u).

Consider any two nodes s and d. Let path m = sv1 - - v d
be the minimum energy path from s to d. Then it is obvious
that it is not power efficient to use any other node to relay
the signal from s to v;. Consequently, we have

THEOREM 1. G contains the minimum energy topology.

Notice that it is not difficult to construct an example such
that the enclosure graph is not equal to the minimum en-
ergy topology. However, as we will showed later, usually the
number of edges in G is O(n).

REMARK 1. The nearest neighbor of u is in Nu(u).

2.2 Without Receiver Cost

We then study the situation that the receiver’s cost is
negligible compared to the transmission cost incurred.

Let GG N be the Gabriel graph of all mobile nodes. Here
an edge wv is in the Gabriel graph if the circirl using uv as
diameter does not contain any other node inside. Let G(u)
be the nodes in GG N that are connected to node u. We
then show that G(u) contains the neighbors N(u) of node u
if c=0.



LEMMA 2. The Gabriel neighbors G(u) of a node u con-
tains No(u) for any a > 2 if ¢ =0.

Proof. Consider any power efficient path that contains
edge wv. If uv is not an Gabriel edge, then there exists a
point w inside the circle using uv as diameter. Then, |uw|*+
|wv|* < |uv|® for @ > 2. Thus, the path by substituting
edge wv with subpath wwwv will result in a path consuming
less energy. This is a contradiction. ]

The Gabriel graph is a subgraph of the Delaunay triangu-
lation and thus it is a planar graph [4]. Thus, the enclosure
graph G20 is a planar graph and the number of edges is at
most 3n. The average number of edges incident to a node u
is at most 6. It is well-known that all Gabriel edges incident
on u can be found in time O(dg, (uv) logda, (u)).

2.3 With Receiver Cost

We study the situation when the receiver’s cost is not
negligible compared to the transmission cost incurred.

LEMMA 3. Given two nodes s andr, Ra, (s,7) C Ra,(s,T)
if an < a2 and the distance |sr| > 1.

Proof. Consider any point z in the relay region R, (s,r).
From definition 1, we know that |sz|*' > |sr|*! +|rz|*! +c.
It is always true that |sz| > |sr| and |sz| > |rz|. Then

|sz|*2 > (|sr|** + |rz|™* +¢) - |sz|*2™*!
> |sr|*|sz|*2 T + |ra|*t |sz|*2 T + ¢fsp|*2 T
> |sr|*t - sr|*2TM 4 |ra|*t - |re|*TY + e
= |sr|*? + |rz|*2.

This completes the proof. [ ]

3. DISTRIBUTED ALGORITHMS

In this section, we describe a distributed algorithm which
finds the minimum energy topology for a set of stationary
nodes. In our protocol, each nodes only has to consider
asymptotically constant number of nodes to construct the
global minimum power paths.

3.1 Neglect thereceiver’s cost

We first consider the case when the receiver’s cost could
be neglected. We showed that the neighbors N(u) is a sub-
set of the Gabriel graph edges G(u) if ¢ = 0, which can be
computed efficiently using the information of T'(u) as fol-
lows. For a node v € T'(u), node u tests if there is another
node w from T'(u) inside the circle using uv as diameter. If
no such w, then edge uv is a Gabriel edge.

3.2 Theconstant o =2

For any node v in T'(u), let v" be the midpoint of the line
uv. We call v’ the image of v. We will use such image points
v’ to compute the Voronoi region of u. Let I, be the line
that passes point v’ and is perpendicular to the segment uv'.
Let h, be the half plane defined by line I,/ containing the
node u. See Figure ?? for an illustration. Then the Voronoi
diagram V(u) of node u is Nyer(y)h,. Assume a node v
defines a segment pq in the Voronoi region of u. Then it
is easy to show that points p and ¢ can be computed in
O(dg, (u)) time by computing the intersection points of line
l,» with all other half planes h,, defined by other nodes w.

Figure 2: The Voronoi regions of a local node u.

Notice that the nearest neighbor node v of u always de-
fines a segment, say qoq1, in the Voronoi cell of V(u). The
segment goq: can be computed in O(dg, (u)) time. Assume
point ¢ is the intersection of the line [, and [,,. Then
we know that line [,/ also defines a segment, say qig2 in
the Voronoi cell of V(u), which can also be computed in
O(dg, (u)) time. Figure 2 illustrates the above proves. Then
we can repeat the above procedure until the Voronoi region
of u is computed. The Voronoi cell of a node u can be com-
puted in O(dg, (u)dg. (u)) time by node u where dy (u) is
the number of segments of the Voronoi cell of u.

The above procedure to compute the Voronoi diagram of
a node u can be used to compute the neighbors N(u) of
node u when o = 2 and ¢ > 0. Instead of defining v’ as
the midpoint of segment uv, we define v’ as the intersection
point of the line uv and the boundary of the relay region
R(u,v). We already show that the boundary of R(u,v) is a
line when o = 2. Then similarly, we know that the neigh-
bors N(u) of a node u can be computed in O(dg, (v)da. (u))
time if the propagation constant @ = 2. When the num-
ber of neighbors of u is more than logdg, (u), we also use
the Delaunay triangulation to find the neighbors as follows.
For each node v, it is mapped to a point v’ as the inter-
section point of line uv and the boundary of R(u,v). De-
fine point v" such that v’ is the midpoint of segment uv'.
Then compute the Delaunay triangulation y of the point set
{v"" | v € T(u)}U{u}. The neighbors of node u in the Delau-
nay triangulation y is then N(u). This procedure has time
complexity O(da, (u) log dg, (v)). Unlike the case ¢ = 0, this
algorithm computes the exact N(u).

LEMMA 4. The neighbors N(u) of node u can be computed
in O(min(da, (u)da, (u), da, (u) log da, (v))) time if the prop-
agation constant o = 2.

3.3 General Cases

For general o and ¢, we propose the following method.

ALGORITHM 1. Min-Power Topology(u)

N'(w) = ¢; Q = T(u).

while (Q # ¢) {

Let v € Q be the nearest node to u;

N'(u) = N'(u) U {o};

Eliminate all nodes x from (Q such that
|luv]|® + |ve|* > |ux|® +¢; }

Notice that the computed result N'(u) is guaranteed to
contain N (u). If the computed set N’ (u) is still large, we can
apply the above method on N'(u) also to refine the solution.
Here @ is the set of all possible neighbor nodes within the
transmission range of u. We find the nearest neighbor node
v of u from @ and add it to N(u). By the definition of the
enclosure region and the neighbors, we know that all nodes



from @ N R(u,v) could not be the neighbors of u. Then we
can eliminate them first. The above procedure is repeated
until @ is empty. Notice that each node will be eliminated
once or put into N'(u). Thus the main complexity comes
from searching the nearest node of w from Q. It is easy
to show that the time complexity of the above algorithm
is O(da, (u)logda, (u)), if we sort the distance of all nodes
from T'(u) to u.

3.4 Setting the Search Region

By using our localized approach, we have a simple criteria
for stopping exploring new nodes. We find new nodes using
the following sequences of transmission powers p, 2p, 4p, - - -,
2p, ---. Here p is a predefined constant transmission power.
We stop transmitting using power 2°p if the enclosure region
computed by using nodes found so far is in the circle centered
at u with radius (2'~'p). Let B(u,r) be the disk centered at
u with radius r. Let E,(u) be the enclosure region of node
u computed using all nodes within disk B(u,r). Then the
following lemma supports our algorithm.

LEMMA 5. If E,(u) is inside disk B(u,r), then E,(u) is
the enclosure region E(u) of u.

Proof. Consider any node w that is not inside B(u,r).
For any point z in the relay region R(u,w), we have |uz| >
|uw| > r. It then implies that the intersection of R(u,w) and
E,(u) is empty. Then node w can not affect the enclosure
region E(u). ]

The power consumed by the above doubling approach to
find the region that contains all information necessary for
computing the neighbors of a node u is less than a small
constant factor of the optimal power consumption.

4. DYNAMIC DISTRIBUTED NETWORKS

For mobile wireless networks, since each node often moves
over the time, the networking protocol must be able to dy-
namically update its links in order to maintain the strong
connectivity of the network. In this section, we consider the
case that the network is dynamically changing. Notice that
a node moves from one position to the other position can be
viewed as two events: one node is deactivated at the old po-
sition and one node is activated at the new position. Thus,
we consider how to add a new node to the network and how
to remove one node from the network.

First let’s consider how to add a new node into the net-
work. Notice that, for each node u, we only use the nodes
from N(u) to relay the signal sent from wu if necessary. As-
sume that node z is added to the network. It is easy to show
that only the nodes u whose enclosure region E(u) contains
z need to be updated. To update the networking topol-
ogy, the new node z broadcasts its position information to
nearby nodes. Each node u that received the message checks
whether the node z is contained in its enclosure regions. As-
sume that node u also stores a set of nodes that defines the
enclosure region E(u). Node u checks if there is a node v
defining E(u) such that z is inside R(u,v). If such node v
exists, then the neighbor set N(u) does not need to be up-
dated. Otherwise, remove all nodes v € N(u) such that v
is in R(u,z). It is easy to show that the above procedure
can be done in O(N(u)) time. Obviously, we can update
the enclosure region E(u) in O(|E(u)|) time, where |E(u)|
is the number of nodes defining it.

Then we consider that how to remove a node from the
network. Obviously, a removed node z affects the neighbors
of anode u when z € N(u). However, when node z defines a
boundary of E(u), then the removal of node z will affect the
enclosure region E(u). Consequently, it may introduce some
new neighbors to the node u. Therefore, we first check if z
belongs to the set of nodes defining E(u). If it does, we have
to revive the nodes blocked by z only and add them to N(u).
The set of nodes defining E(u) is also updated correspond-
ingly. The above procedure can be done in O(dg, (u)d(u))
time, where d(u) is the number of new neighbors introduced.
Updating new neighbors is similar to finding all neighbors.

5. CONCLUSION

We have described a distributed protocol to find the en-
closure graph for a stationary wireless ad hoc network. We
also show how to apply the algorithm for updating the op-
timal topology when the network is dynamically changing.
The enclosure graph is not always the same as the minimum
energy topology. We leave it as an open problem to compute
the exact minimum energy topology.

After the minimum-power topology is constructed, the
Bellman-ford algorithm can then be applied to compute the
shortest path between any two nodes. However, the dis-
tributed Bellman-ford algorithm may be too slow to com-
pute to the shortest path. It is worthwhile to develope an
algorithm which can directly find the shortest path or find
the path whose length is within a constant factor of the
shortest path. Here the length of a path is the energy con-
sumed by this path. Recently, several routing protocols [1,
2, 5, 6, 8] have been proposed for ad hoc wireless networks.
The routing must be truly local. In other words, it only
uses the destination location information and the current
node information such as its location and its neighbors.
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