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Design Multicast Protocols for Non-Cooperative
Networks

WeiZhao Wang∗ Xiang-Yang Li∗ Zheng Sun† Yu Wang‡

Abstract— Conventionally, most network protocols assume that
the network entities who participate in the network activities
will always behave as instructed. However, in practice, most
network entities will try to maximize their own benefits instead
of altruistically contribute to the network by following the
prescribed protocols, which is known as selfish. Thus, new
protocols should be designed for thenon-cooperative network
which is composed of selfish entities. In this paper, we specifically
show how to designstrategyproof multicast protocols for non-
cooperative networks such that these selfish entities will follow
the protocols out of their own interests. By assuming that a group
of receivers is willing to pay to receive the multicast service, we
specifically give a general framework to decide whether it is
possible, and how if possible to transform an existing multicast
protocol to a strategyproof multicast protocol. We then show how
the payments to those relay entities are sharedfairly among all
receivers so that it encourages collaboration among receivers. As
a running example, we show how to design the strategyproof
multicast protocol for the currently used core-based multicast
structure. We also conduct extensive simulations to study the
relations between payment and cost of the multicast structure.

Index Terms— Control theory, combinatorics, economics, non-
cooperative, multicast, payment, sharing.

I. I NTRODUCTION

Multicast has received considerable attentions over the past
few years due to its resource sharing capability. In multicast,
there is a topology, either a tree or a mesh, that connects the
source to a set of receivers, and packet is only duplicated
at the branching nodes. Numerous multicast protocols have
been proposed, and most of them assumed that the network
entities, either links or nodes, will relay the multicast packets
as prescribed by the multicast protocol without any deviation.
However, the Internet, which is composed of differenthet-
erogenousandautonomous systems(AS), raises a doubt about
this common belief. Although multicast benefits the whole
system by saving bandwidth and resource, it is dubious that
multicast will also bring benefits to every individual node or
link who relays the packet. Thus, it is more reasonable to
assume that these ASs, probably owned by some organizations
and private users, areselfish: aim to maximize their own
benefits instead of faithfully conform the prescribed multicast
protocol. A network composed of selfish ASs is generally
known as anon-cooperative network.
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Nisan and Ronen [1] studied the unicast routing problem
in non-cooperative networks and introduced the idea ofal-
gorithmic mechanism design: they proposed to give the ASs
someproper payments to ensure that every AS conforms to
the prescribed protocol regardless of all other ASs’ behavior,
which is known asstrategy-proofor truthful. They designed
the payment for unicast by using the VCG mechanism[2], [3],
[4], which is considered as one of the most positive results in
algorithm mechanism design. Unfortunately, VCG mechanism
has its own drawback. For multicast, if we want to apply VCG
mechanism, the multicast tree should have the least cost among
all trees spanning the receivers. However, finding the minimum
cost multicast tree is known to be NP-Hard for both edge
weighted networks [14], [15] and node weighted networks
[16], [17]. If we insist on applying the VCG mechanism to
a multicast topology that does not have the minimal cost,
VCG mechanism may fail [18]. Thus, some payment schemes
other than VCG mechanism should be designed for multicast.
Recently, in [18], the authors proposed several non-VCG
strategy-proof payment schemes for several commonly used
multicast trees. In this paper, instead of focusing on some
specific multicast structures, we study whether it is possible
to transform a multicast protocol based on any given multicast
topology to a strategyproof multicast protocol, and if possible,
how to design the strategyproof protocol.

Designing a truthful payment scheme is not the whole
story for many practical applications. A natural question has
to be answered is who will afford the payments. A simple
solution is that the organization to which the receivers belong
pays [18]. However, this solution is not panacea. In many
applications such as video streaming, often the individual
receivers have to pay the relay agents to receive the data.
How to charge the receiver for multicast transmission has
been studied extensively in literatures [19], [20], [21], [22],
[23], [24]. In most of their models, they assumed that 1) every
receiver has a valuation for receiving the data and the receiver
is selfish, 2) all relay agents are cooperative and reveal their
true cost, and 3) the multicast tree is formed by the union of
the shortest paths from the source to receivers. In the sharp
contrast, in this paper, we also take the selfish behavior of
the relay nodes (or links) into account. Thus, we model the
network differently by assuming that 1) the relay agents are
selfish, 2) the receivers always receive the data and pay what
they “should” pay, and 3) the multicast topology could be
any structure specified by some existing multicast protocols,
including trees and meshes. To the best of our knowledge, this
is thefirst paper to consider multicast pricing when the relay
agents are non-cooperative. Notice that there is a possible work



left for future exploration: what happens if both the receivers
and relay agents are selfish and each receiver has a valuation
and would receive the data if and only if its valuation is greater
than what it needs to pay according to a strategyproof multicast
protocol.

One thing we should point out is that algorithmic mecha-
nism design is not the only way to achieve strategyproofness.
There are lots of literatures which use Nash equilibrium, a
state at which no agent can improve its utility by unilaterally
deviating from its current strategy when other agents keep their
strategies. Since Nash equilibrium has a weak requirement for
the strategies used by the agents, it often can achieve a wider
variety of outcomes.

The main contributions of this paper are two-folded. First,
we present a general framework about whether it is possible,
and how if possible, to transform an existing multicast protocol
to a strategyproof one. We then show how the payments to
the relay agents are sharedfairly among the receivers. As
a running example, we show how to design a strategyproof
multicast protocol, and how the payments are shared among
receivers when the least cost path tree is used for multicast.
We also conduct extensive simulations to study the relations
between payment and cost of the multicast structure. Our
simulations show that by only overpaying a small amount to
the relay nodes (or links), each relay node (or link) will declare
its true cost to maximize its profit.

The rest of the paper is organized as follows. We introduce
some preliminaries, related works, our communication model,
and the problems to be solved in Section II. In Section III, we
discuss the existence of truthful payment and how to find it if
a given multicast structure is used. We show how to design a
truthful multicast protocol based on a specific routing topology
in Section IV. Several other important issues are discussed in
Section V. The performance study of our proposed truthful
core-based multicast protocol is presented in Section VI. We
conclude our paper in Section VII.

II. T ECHNICAL PRELIMINARIES

A. Algorithmic Mechanism Design

In a standard model of algorithm mechanism design, there
are n agents{1, 2, · · · , n}. Each agenti ∈ {1, · · · , n} has
someprivate information ti, called its type, e.g. its cost to
forward a packet in a network environment. All agents’ type
defines aprofile t = (t1, t2, · · · , tn). Each agenti declares a
valid type τ ′i which may be different from its actual typeti
and all agents’ strategy defines a declared type vectorτ =
(τ1, · · · , τn). A mechanismM = (O,P) is composed of two
parts: an output functionO that maps a declared type vector
τ to an outputo and apaymentfunction P that decides the
monetary paymentpi = Pi(τ) for every agenti. Each agenti
has a valuation functionwi(ti, o) that expressed its preference
over different outcomes. Agenti’s utility or called profit is
ui(ti, o) = wi(ti, o) + pi. An agenti is said to berational if
it always chooses its strategyτi to maximize its utilityui.

Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the
strategies of all other agents excepti and τ |iti =
(τ1, τ2, · · · , τi−1, ti, τi+1, · · · , τn). A mechanism isstrategy-
proof if for every agenti, revealing its true typeti will

maximize its utilityregardlessof what other agents do. In this
paper, we are only interested in mechanismsM = (O,P)
that satisfy the following three conditions:

1) Incentive Compatibility (IC) : For every agenti,
wi(ti,O(τ |iti))+pi(τ |iti) ≥ wi(ti,O(τ))+pi(τ) ∀τ.

2) Individual Rationality (IR) : It is also called Voluntary
Participation. Every participating agent must have a non-
negative utility, i.e.,wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0.

3) Polynomial Time Computability (PC): O andP are
computed in polynomial time.

VCG MECHANISM: Arguably the most important positive
result in mechanism design is what is usually called the
generalized Vickrey-Clarke-Groves (VCG) mechanism [2],
[3], [4]. A direct revelation mechanismM = (O(t),P(t))
belongs to the VCG family if (1) the outputO(t) computed
based on the type vectort maximizes the objective function
g(o, t) =

∑
i wi(ti, o), and (2) the payment to agenti is

Pi(t) =
∑

j 6=i wj(tj ,O(t))+hi(t−i). Herehi() is an arbitrary
function of t−i. It is proved in [4] that a VCG mechanism is
truthful, i.e., satisfying the IC property. Under mild assump-
tions, VCG mechanisms are the only truthful implementations
[5] for utilitarian problems, i.e.,g(o, t) =

∑
i wi(ti, o).

B. Network Model and Problem Statement

Consider any communication networkG = (V, E, c), where
V = {v1, · · · , vn} is the set of communication terminals,
E = {e1, e2, · · · , em} are the set of links. Every agenti in
the network has a private costci to transmit a unit size of
data. Here agents could be either terminals or links whoever
could behave selfishly. If agents are terminals thenG is node
weighted; if agents are links thenG is link weighted. Given
a set of terminalsQ = {q1, q2, · · · , qr} ⊂ V who are willing
to receive the data, we will design a multicast protocol that

1) constructs a topology (a tree, a mesh, a ring, etc) that
spans these receivers;

2) calculates a payment for each relay agent according to
a payment schemethat is strategy-proof;

3) charges each receiver according to apricing scheme
that is reasonable. We will formally define what is
reasonable in subsection III-C.

For the convenience of our analysis, we assume thats = q0

is the source node in one specific multicast and the size of the
data is normalized to1. We also assume throughout this paper
that agents in the network will notcollude to improve their
profits together. In order to prevent the monopoly, we assume
the network is bi-connected.

One thing we should highlight here is that instead of
reinventing the wheels by designing some new multicast
structures, we focus on how we can design a truthful payment
scheme for the existing multicast protocols to ensure that they
work correctly even in non-cooperative networks. Based on
the truthful payment scheme we designed, we further study
how we charge the receivers in a reasonable way.

Given a structureH ⊆ G, we useω(H) to denote the sum
of the costs of all agents in this network. If we change the cost
of any agenti (link ei or nodevi) to c′i, we denote the new
network asG′ = (V, E, c|ic′i), or simply c|ic′i. If we remove



one agenti from the network, we denote it asc|i∞. Denote
G\ei as the network without linkei, and denoteG\vi as the
network without nodevi and all its incident links. For the
simplicity of notations, we will use only the cost vectorc to
denote the networkG = (V, E, c) if no confusion is caused.

C. Related Work

Routing has been part of the algorithmic mechanism-design
from the very beginning. Nisan and Ronen [6] provided a
polynomial-time strategyproof mechanism for unicast routing
in a centralized computational model. Each linke of the
network is an agent and has a private costte of sending a
message. Their mechanism is essentially a VCG mechanism.
The result in [6] is extended in [25] to deal with unicast
problem for all pairs of terminals. They assume there is a
traffic demandTi,j from a nodei to a nodej. They also gave
a distributed method to compute the payment. Anderegg and
Eidenbenz [26] recently proposed a similar routing protocol
for wireless ad hoc networks based on VCG mechanism again.
In [29], Wang and Li proposed an asymptotically optimum
centralized method to compute the payment for unicast and
showed that there is truthful mechanism that can prevent
collusion.

For multicast, Feigenbaumet. al [23] assumed that there is
a universal tree spanning all receivers and for every subsetR
of receivers, the spanning treeT (R) is merely a part of the
universal tree induced by receiver setR. They also assumed
that there is a publicly known link cost associated with each
communication link and receiverqi will report a numberw′i,
which is the amount of money he/she is willing to pay to
receive the data, which may be different from its true privately
known valuationwi. The source node then selects a subset
R ⊂ Q of receivers according to some criteria. They studied
how to select receivers and proposed to useShapely value
andmarginal costto share the link cost. Maximizing profit in
strategy-proof multicast was studied in [7], [8] ([8] is based
on cancellable auction [9]). Sharing thecost of the multicast
structure among receivers was studied in [10], [27], [11], [12],
[24], [13] so some fairness is accomplished. In [18], Wanget
al. studied how to design strategyproof multicast protocols for
various multicast trees when the relay terminals or links are
selfish and the receivers will relay the data for peer receivers
for free.

III. C HARACTERIZATION OF THE TRUTHFUL MULTICAST

ROUTING

Several multicast topologies have been proposed and used
in practice and it is expected that more topologies will be
proposed in the near future. It will be difficult if not impossible
to design a strategyproof multicast mechanism for each of
these topologies individually. Thus, instead of studying some
specific multicast topologies, we present a general framework
to decide whether there is, and how to design if it exits, a
strategyproof mechanism for any given multicast topology. We
also consider how to charge the receivers to cover the total
payments to the relay agents.

Intuitively, we may still want to use the VCG payment
schemes for these multicast topologies. Notice that an out-
put function of a VCG mechanism is required to maximize
the total valuations of agents. This makes the mechanism
computationally intractable in many cases, e.g., multicast.
Notice that replacing the optimal algorithm with non-optimal
approximation usually leads to untruthful mechanisms [18].
Thus a mechanism other than VCG is needed when we cannot
find the optimal solution or the objective is not to maximize
the total valuations of all agents. This paper presents the
first generalframework to design strategyproof mechanism for
multicast in which we cannot find the structure with minimum
total cost.

A. Existence of the Truthful Payment Mechanism

Before we design some truthful payment scheme for a given
multicast topology, we should decide whether such payment
scheme exists or not. Following definition and theorem will
present a sufficient and necessary condition for the existence
of the truthful payment scheme.

Definition 1: A methodO computing a multicast topology
satisfies themonotone property (MP) if for every agenti and
fixed c−i, following condition is satisfied: If agenti is selected
as a relay agent with costci2 , then it is also selected with a
smaller costci1 .

Obviously, the above condition is equivalent to the following
condition: There exists a threshold valueκi(O, c−i) such that
if i is selected as a relay agent, then its cost is at most
κi(O, c−i). For the convenience of our presentation, we use
Oi(c) = 1 (respectively0) to denote that agenti is selected
(respectively not selected) to the multicast topology when the
cost vector isc.

Theorem 1:Given a methodO computing a multicast
topology, there exists a paymentP such thatM = (O,P)
is strategyproof iffO satisfies monotone property.

Proof: We first prove if there exists a truthful payment
based onO thenO satisfies the monotone property. We prove
it by contradiction by assuming there is a truthful payment
schemeP based onO that does not satisfy MP. From the
definition of MP, there exists an agenti and two cost vectors
c|ici1 andc|ici2 , whereci1 < ci2 such thatOi(c|ici2) = 1 and
Oi(c|ici1) = 0. Let pi(c|ici1) = p0

i andpi(c|ici2) = p1
i .

Consider a network with a cost vectorc|ici2 , the utility for
agenti when it reveals its true cost isui(ci1) = p0

i . When
agenti lies its cost toci2 , its utility becomesp1

i − ci1 . Since
payment schemeP is truthful, we havep0

i > p1
i − ci1 .

Similarly we consider another network with a cost vector
c|ici2 . Agent i’s utility is p1

i − ci2 when it reveals its true
cost. Similarly, if it lies its cost toci1 , its utility is p0

i . Since
payment schemeP is truthful, p0

i < p1
i − ci2 .

Thus, we havep1
i − ci2 > p0

i > p1
i − ci1 . This inequality

implies thatci1 > ci2 , which is a contradiction.
We then prove that ifO satisfies the monotone property

then there exists a truthful payment based onO. We prove it
by constructing the following payment schemeP for a given
a networkG = (V, E, c).



Algorithm 1 Payment SchemeP
1: For any agenti not selected to relay, its payment is0.
2: For any agenti selected to relay, its payment isκi(O, c−i).

From the definition of MP, the IR property is obvious. Thus
we only need to prove that the payment schemeP satisfies
IR. We prove it by cases.

Case 1: Agent i lies its cost upward toci or downward
to ci, but it does not change the output whether agenti is
selected or not. Notice for fixedc−i, when the output of agent
i does not change, its payment is the same. Thus, agenti’s
utility keeps the same which in turn implies that agenti does
not have incentive to lie in this case.

Case2: Agent i is selected when it reveals its actual cost
ci, and it lies its cost upward toci such that it is not selected.
From the property of MP, we knowci ≤ κi(O, c−i). This
ensures that agenti gets non-negative utility when it reveals
its actual costci. Wheni lies its cost toci, it gets zero payment
and zero utility. Therefore, agenti won’t lie in this case.

Case3: Agenti is not selected when it reveals its actual cost
ci, and it lies its cost downward toci such that it is selected.
Similarly, we haveci ≥ κi(O, c−i), which implies that agent
i gets a non-positive utility. Comparing with the zero utility
when agenti reveals its true cost, agenti also has no incentive
to lie in this case.

This finishes our proof.

Actually, if we require that relay agents who are not selected
should receive zero payment, our payment scheme illustrated
by Algorithm 1 is theonly strategy-proof payment scheme.
The proof is omitted here due to space limit.

B. Rules to Find the Truthful Payment Scheme

Given a multicast structure satisfying MP, it seems quite
simple to find a truthful payment scheme by applying Algo-
rithm 1. However, sometimes the process to find the threshold
value in Algorithm 1 is far more complicated. As to our
knowledge, our approach presented later is the first ever effort
to find the threshold value efficiently. Instead of trying to give
a unified approach that can find the threshold value for all
multicast topologies satisfying MP, we present some useful
techniques to find threshold value under certain circumstances.
Our general approach works as follows. First, given an output
methodO that computes a multicast structure, we decompose
it into several simpler output methods. We then find the
threshold value for each of the decomposed methods. Finally,
we calculate the original threshold value by combining the
threshold values for those decomposed methods.

1) Simple Combination:Given a multicast methodO, let
κ(O, c) denote an-tuple vector

(κ1(O, c−1), κ2(O, c−2), · · · , κn(O, c−n)).

Here,κi(O, c−i) is the threshold value for agenti when the
multicast topology is computed byO and the costsc−i of all
other agents are fixed. We then present a simple but useful
technique to find the threshold value.

Theorem 2:Given n multicast methodsO1, · · · ,On sat-
isfying monotone property, andκ(Oi, c) is the threshold
values forOi where 1 ≤ i ≤ n. Then the output method
O(c) = O1(c)

∨O2(c)
∨ · · ·∨On(c) also satisfies monotone

property. Moreover, the threshold value forO is

κ(O, c) = max
1≤i≤n

{κ(Oi, c)}.
The proof of this theorem is quite simple and is omitted

here. We will show how to use this simple combination
technique in Section IV.

2) Round-based Method:Many multicast topologies are
constructed in around-basedmanner: for each round they
select someunselectedagents, update the problem and the cost
profile if necessary. Following is a general characterization of
a round-based method that constructs a multicast topology.

Algorithm 2 A Round-Based Multicast Method

1: Setr = 1 andc(1) = c andQ(1) = Q initially.
2: repeat
3: Let Or be a deterministic method that decides in round

r whether agenti is selected or not.
4: Update the network cost vector and receiver set, i.e., we

obtain a new network cost vectorc(r+1) and receiver set
Q(r+1) according to aupdate ruleUr:

Ur : Or × [cr, Q(r)] → [c(r+1), Q(r+1)].

5: until thedesired propertyof the multicast topology is met
6: Return the union of the relay agents in all rounds as the

final output. Here, every agent can be selected at most
once.

To help the understanding of general round-based method,
we present a multicast topology that is constructed in such
way. The example we used is the polynomial time method in
[15] that finds a multicast topology whose cost is no more than
2 times of the minimum cost Steiner tree (MCST) in a link
weight network. For the completeness of our presentation, we
review their method here.

Algorithm 3 Link Weighted Multicast Structure [15]
1: repeat
2: Find one receiver in the receiver setQ, say qi, that

is closest to the sources, i.e., the LCP(s, qi, d) has
the least cost among the shortest paths froms to all
receivers.

3: Connectqi to the sources using the least cost path
between them. Update the cost of all edges on this path
as0. Removeqi from the receiver setQ.

4: until no receiver remains

Here no receiver remainscorresponds to thedesired prop-
ertiesof general round-based method;LCP (s, qi, d) in round
r corresponds toOr; updating cost of edges onLCP (s, qi, d)
to 0 and removingqi from Q is theupdate ruleUr.

Figure 1 shows how to apply Algorithm 3. Initially, the
receiver set isQ = Q1 = {q1, q2} and the link costs are shown
in Figure 1. The first round selects the nearest receiverq2 from



s, and its corresponding pathsv3q2 is selected. Removeq1

from Q1 and set cost of linksv3 andv3q2 to 0. The network
in the end of first round is shown in Figure 1 (b). In the second
round, the receiver set isQ2 = {q1}, and the least cost path
from s to q1 is sv3v4v5q1 instead of the least cost pathsq1

in original network. The final multicast tree, shown as solid
lines in Figure 1, is the union of the two paths.
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Fig. 1. Illustration of Algorithm (3). Here,s is the source node.

Definition 2: An updating ruleUr is said to becrossing-
independentif for any unselected agenti:
• c

(r+1)
−i andQ(r+1) do not depend onc(r)

i .

• Fixed c
(r)
−i , if d

(r)
i ≤ c

(r)
i thend

(r+1)
i ≤ c

(r+1)
i .

Theorem 3:A round-based multicast methodO satisfies
MP if, for every roundr, methodOr satisfies MP and the
updating functionUr is crossing-independent.

Proof: For an agenti, fix the original costc−i of all
other agents. We prove that ifi is selected when theoriginal
cost vector isa = {c−i, ci}, then it is also selected when
the original cost vector isb = {c−i, c

′
i} such thatc′i < ci.

Without loss of generality assume thati is selected in round
r under cost vectora. Then under cost vectorb, if agent i is
selected before roundr, our claim holds. Otherwise, in round
r, a

(r)
−i = b

(r)
−i and a

(r)
i > b

(r)
i since agenti is not selected

in the previous rounds. Noticei is selected in roundr under
cost vectora(r)

i , thus i is also selected in roundr under cost
vector b

(r)
i from the monotone property of the methodOr.

This finishes the proof.

Theorem 3 presents a sufficient condition for the exis-
tence of truthful payment scheme for a round-based multicast
method. Following, we show how to find the threshold value
for any selected agentk.

The proof of the correctness of this algorithm is omitted here
due to the space limit, refer to the full version for details.
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Fig. 2. Payment calculation based on LST found by Algorithm (3).

We use the same network in Figure 1 to illustrate how to
find the threshold value for edgev3v4 based on the multicast

Algorithm 4 Computing payment for selected agentk based
on round-based multicast methodO

1: Initially set the cost ofk to ∞ andr = 1.
2: repeat
3: Find the threshold value for agentk based onOr

under cost vectorc(r)
−k and receiver setQ(r). Let `r =

κk(Or, cr
−k) be the threshold value found. Here we set

`r = 0 if agent k cannot be selected in this round for
any cost.

4: Update cost vector and receiver set to obtain the new
cost vectorc(r+1) andQ(r+1). Setr = r + 1.

5: until a valid output is found
6: Fix c−k and assumex is the payment for agentk. Let

xr be the cost for agentk in round r if the original
cost isc|kx. Thenx the minimum value that satisfies the
following inequations:xi ≥ `i for 1 ≤ i ≤ r.

tree found by Algorithm 3. In the first round,v3v4 can not be
selected, thus̀1 = 0. In second round, it is easy to observe
that whenv3v4’s cost is smaller than0.9, the pathv3v4v5q1

is selected and whenv3v4’s cost is greater than0.9, pathsq1

is selected. Thus, the threshold value forv3v4 in this round is
`2 = 0.9. Notice the updating by Algorithm 3 does not change
the cost of an unselected agent, thus the final threshold value
is simply the maximum of̀ 1 and `2, which is 0.9. In other
words, we have to pay linkv3v4 0.9. Similarly, we can find
all selected edge’s threshold value as shown in Figure 2 (b):
the numbers in the parenthesis are the threshold values.

C. Reasonable Charging Scheme

For a given set of receivers, after we calculate the payment
pk(d) for every relay agentk based on a declared cost vectord,
it is natural to ask who will pay these payments. Two possible
payment models have been proposed in the literature.

1) Outside bankor Group payment model: an outside bank
or an organization to which the receivers belong will
pay all these relay agents.

2) Payment sharing model: each receiveri should pay a
reasonablesharingSi of the total payment. We will
address what reasonable means later.

For outside bank model, the only thing we should care
is how to find the truthful payment scheme for the given
multicast topology, which has been addressed in the previous
subsections. In practice, it is often the case that the receivers
have to share the payments among themselves. Thus, we
will study how to share the payments fairly. Notice that the
payment sharing is different from the traditional cost sharing.
How to share the multicast cost among the receivers has been
studied previously in [27], [20], [23], [19], in which the cost
of relay agents are public and the multicast topology is a
fixed tree. Most of the literatures used theEqual Link Split
Downstream(ELSD)pricing scheme to charge receivers: the
cost of a link is sharedequally among all its downstream
receivers. As we will show later, if we simply use the ELSD
as our charging scheme to share the payment, it usually is not
reasonable in common sense.



Given a set of receiversR, let P(R, d) =
∑

k pk(R, d)
denote the total payments to all relay agents. For a charging
schemeS, let Si(R, d) denote the charge (or called sharing)
to receiveri. We call a charging schemeS reasonableor fair
if it satisfies the following criteria.

1) Nonnegative Sharing (NNS): Any receiverqi’s sharing
should not be negative. In other words, we don’t pay the
receiver to receive.

2) Cross-Monotone (CM): For any two receiver setsR1 ⊆
R2 containing qi: Si(R1, d) ≤ Si(R2, d). In other
words, for a given network, receiveri’s sharing does
not increase when more receivers require service.

3) No-Free-Rider (NFR): The sharingSi(R, d) of a re-
ceiverqi ∈ R is never less than1

|R| of its unicast sharing
Si(qi, d). This guarantees that the sharing of any receiver
will not be too small.

4) Budget Balance (BB): The payment to all relay agents
should be shared by all receivers, i.e.,P(R, d) =∑

qi∈R Si(R, d).
Notice the definition of reasonable can be changed due to

different requirements. For example, a common criterion for
multicast charging scheme is to maximizenetwork welfare:
select a subset of receivers such that the network welfare
is maximized. Here, thenetwork welfareis defined as the
total valuations of all selected receivers minus the cost of
the network providing service. Since in our model we do not
consider receiver’s valuation, we will only focus on budget
balance instead of maximizing the network welfare.

In literature, the Shapely value [28] is one of the most
commonly used charging schemes to achieve BB and CM. By
assuming a universal multicast tree and the publicly known
link costs, Feigenbaumet al. [23] proved that ELSD charging
scheme is a Shapely Value. Unfortunately, the ELSD charging
scheme is not always fair if we want to share the payment.

Lemma 4:For tree LST, ELSD sharing is not fair.
Proof: As a running example, we will use the multicast

tree, denoted by LST, found by Algorithm 3 to show that
ELSD is not fair. We still use the same network shown in
Figure 1 (a). LetQ = q1, q2 be receivers. The multicast tree
LST (Q) is shown in Figure 1 (c). TreeLST (q1) andLST (q2)
are shown in Figure 3 (a) and (b) respectively.
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Fig. 3. LST (q1) andLST (q2) and their corresponding payment(3).

We now show that ELSD is not fair in this situation.
Figure 3 (a) and (b) illustrate the paymentP1(q1) = 2.5 and

P2(q2) = 2.9. If we use ELSD as our charging scheme, the
sharing byq1 is S1(q1

⋃
q2, c) = 1.4

2 + 0.9 + 1.1 + 1.5 = 4.2
which is larger than its sharingS1(q1, c) = 2.6 when q1 is
the only receiver. Thus, it violates the property CM. It implies
that ELSD is not a fair charging scheme for multicast topology
LST.

Furthermore, using the same example, we show by contra-
diction that there is no charging scheme satisfying both CM
and BB.

Lemma 5:For multicast topology LST, there is no charging
scheme that satisfies both CM and BB for a truthful payment
scheme.

Proof: For the sake of contradiction, we assume that
a charging schemeS ′ satisfies both CM and BB. From the
property of BB, we haveS ′1(q1, c) = 2.6, S ′1(q2, c) = 2.9
and S ′1(q1

⋃
q2, c) + S ′2(q1

⋃
q2, c) = 6.4. From CM, we

haveS ′1(q1

⋃
q2, c) ≤ S ′1(q1, c) = 2.6 andS ′2(q1

⋃
q2, c) ≤

S ′2(q2, c) = 2.9. Combining these two inequalities, we obtain
6.4 = S ′1(q1

⋃
q2, c) + S ′2(q1

⋂
q2, c) ≤ 2.9 + 2.6 = 5.5,

which is a contradiction.
Thus, given an arbitrary multicast topology and its corre-

sponding truthful payment scheme, a fair charging scheme
may not exist at all. It is attractive and important to find the
necessary and sufficient condition for the existence of a fair
charging scheme for a given multicast topology.

IV. CASE STUDY: CORE-BASED MULTICAST

In this section, we illustrate how to design a truthful
multicast protocol for the currently used core-based multicast
which uses the least cost path tree (LCPT) as its topology.
Here, we assume that the network is modelled as a link
weighted graph. All our results presented in this section also
apply to the case when the network is modelled as a node
weighted graph.

Given a set of receiverR, we first compute the least cost
path, denoted byLCP(s, qi, d), between the sources and every
receiverqi ∈ Q under the reported cost profiled. The union
of all least cost paths between the source and the receivers is
called least cost path tree, denoted byLCPT (R, d).

A. Payment Scheme

Intuitively, we may use the VCG payment scheme in con-
junction with the LCPT tree structure as follows. The payment
pk(d) to each linkek that is not in LCPT is0 and the payment
to each linkek on LCPT is

pk(d) = ω(LCPT (R, d|k∞))− ω(LCPT (R, d)) + dk.

In other words, the payment is its declared cost plus the
difference between the cost of the least cost path tree without
usingek and the cost of the least cost path tree.

We show by example that the above payment scheme is
not strategyproof. In other words, if we simply apply VCG
scheme on LCPT, a link may have incentives to lie about its
cost. Figure 4 illustrates such an example where linksv3 can
lie its cost to improve its utility.

The payment to linke4 = sv4 is 0 and its utility is also
0 if it reports its cost truthfully. The total payment to link
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Fig. 4. VCG mechanism is not truthful for LCPT

e4 whene4 lies its cost down to4 is ω(LCPT (R, c|4∞))−
ω(LCPT (R, c|4d4))+d4 = 20−8+4 = 16 and the utility of
link sv4 becomesu4(c|4d4) = 16−8 = 8, which is larger than
u4(c) = 0. Thus link e4 has incentive to lie, which implies
that VCG mechanism is not truthful.

With the failure of the VCG mechanism, we may doubt
whether there exists a truthful payment scheme based on
LCPT. Remember LCPT is formed by union of least cost
paths. By applying Theorem 2, we conclude that LCPT
satisfies MP. Thus, there exists a truthful payment scheme and
the truthful payment can be found according to Theorem 2 as
following.

For each receiverqi ∈ R, we find the least cost path from
the sources to qi, and compute an intermediate paymentpi

k(d)
to link ek on LCP(s, qi, d) using the VCG payment scheme
for unicast

pi
k(d) = dk + |LCP(s, qi, d|k∞)| − |LCP(s, qi, d)|.

Here |LCP(s, qi, d)| denotes the total cost of the least cost
pathLCP(s, qi, d). The final payment to linkek ∈ LCPT is

pk(d) = max
qi∈Q

pi
k(d) (1)

The payment to a link is zero if it is not on LCPT.
Let us illustrate the above payment scheme for LCPT by

a running example in Figure 4. If linksv4 reports its cost8
truthfully, then it gets payment0 since it is not in the LCPT.
If link sv4 reports a cost4, it is now in the LCPT, as shown in
Figure 3 (c). Its payment then becomesmax(p1

sv4
, p2

sv4
, p3

sv4
),

wherep1
sv4

= |LCP(s, q1, d|sv4∞)| − |LCP(s, q1, d)| + 4 =
7−5+4 = 6. Similarly,p2

sv4
= 6 andp3

sv4
= 7. Then the utility

of link sv4 becomesmax(p1
sv4

, p2
sv4

, p3
sv4

)− 8 = 7− 8 = −1,
which is less than what it gets by reporting its truth cost.

B. Distributed Payment Algorithm

Remember that LCPT is based on the union of the least cost
paths from the source to all receivers. For unicast, Feigenbaum
et al. [25] gave a distributed method such that each nodei can
compute a numberpk

ij > 0, which is the payment to nodek
for carrying the transit traffic from nodei to nodej if nodek
is on LCP(i, j, d). The algorithm converges to a stable state
after d′ rounds, whered′ is the maximum of diameters of
graphG removing a nodek, over allk. We then briefly discuss
how to compute the payment for multicast using LCPT. Our
distributed algorithm uses the algorithm in [25] as the first
phase and is shown as follows.

Algorithm 5 Distributed payment computing
1: Apply the distributed algorithm in [25] to compute the

payment pk
sqi

. After this step, every receiverqi will
compute the paymentpi

k to each upstream edgeek on
the least cost path betweens andqi.

2: Every receiverqi sends the payment information it com-
puted to its parent.

3: Upon receiving a packet containing the payment from its
child which originated from receiverqi, link ek only keeps
paymentpi

k and sends all remaining payment information
to its parent if exists.

4: When link ek receivespi
k from all its downstream re-

ceiversqi, it computes the maximum of them as the its
own final payment.

C. Payment Sharing

Intuitively, we may want to use ELSD as the charging
scheme. Unfortunately, we will show by example that ELSD
is not fair when coupled with LCPT. Consider the network
shown by Figure 5 (a). There are two receiversq1, q2. Path
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Fig. 5. ELSD charging scheme does not work for LCPT

LCPT (q1, d) is shown in Figure 5 (b) and the payment to
links is shown beside the link cost in parenthesis. The total
payment to links onLCPT (q1, d) is 2+2 = 4. If we consider
LCPT (q1

⋃
q2, d), the payment to links is shown in Figure 5

(c). If we apply ELSD to share payment, the payment to link
sv4 (which is 6) is split equally betweenq1 andq2. Thus, the
shared payment of receiverq1 is 3 + 2 = 5 when the receiver
set is {q1, q2}, while its payment is only4 when q1 is the
only receiver. Thus, ELSD sharing method violates the CM
property here, i.e., ELSD is not a fair charging scheme for
LCPT. Therefore we should find some reasonable charging
scheme other than ELSD. In this paper, we give one fair
payment sharing method. The basic idea behind our method
is that a receiver should only pay a proportion of the payment
that is due to its existence.

Roughly speaking, our payment sharing scheme works as
follows. Notice that a final payment to an agentj is the
maximum of paymentspi

j by all receivers. Since different
receivers may have different value of payment to agentj,
the final paymentPj should be sharedproportionally to their
values, notequally among them as cost-sharing. Figure IV-C
illustrates the payment sharing scheme that follows. Without
loss of generality, assume that0 ≤ p1

j ≤ p2
j ≤ · · · ≤ pn

j , i.e.,
pj = pn

j . We then divide the paymentpj into n portions:p1
j ,

p2
j−p1

j , · · · , pi
j−pi−1

j , · · · , pn
j −pn−1

j . Each portionpi
j−pi−1

j
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Fig. 6. Share the payment to service providers among receivers fairly.

is then equally shared among the lastn−i+1 elements, which
have the largestn− i + 1 payments toSj .

Algorithm 6 Fair charging scheme for LCPT.

1: for edgeek ∈ LCPT (R, d) do
2: Let R(ek) be the set of downstream receivers ofek,

i.e., pk(d) = maxqi∈R(ek) pi
k(d) = maxqi∈R pi

k(d).
3: Sort the receivers inR(ek) according topi

k(d) in an
ascending order. If two or more receivers have the same
value, the receiver with smaller ID ranks first. Letσ =
{σ0, σ1, · · · , σ|R(ek)|} be the ranking. Here, we add a
dummy paymentpσ0

k (d) = 0 to rankingσ.
4: For receivers not inR(ek), its sharing of the payment

pk(d) of link ek is 0.
5: For a receiverqσa ∈ R(ek), its sharing of the payment

pk(d) to link ek is:

fk
σa

(R, d) =

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
(2)

In other word, for two receiversqσx , qσx+1 who are
consecutive in rankingσ, the differencep

σx+1
k (d) −

pσx

k (d) is shared by all receivers who rank afterqσx−1 .
6: end for
7: The total charge for receiverqi in LCPT is

Si(R, d) =
∑

ej∈LCPT (R,d)

f j
i (R, d) (3)

We first illustrate how to calculate the charge for receiver
q1 using Algorithm 6 for a network represented by Figure 5.
For link sv4, the two intermediate payments arep1

sv4
= 2

and p2
sv4

= 6. First, we obtain a rank of these receivers
based on the intermediate payment{q1, q2}. Then p1

sv4
= 2

is equally split betweenq1 and q2 and p2
sv4

− p1
sv4

= 4 is
charged toq2 alone. Thus, receiverq1 is charged2 + 1 = 3
totally in LCPT (q1

⋃
q2, d), which is smaller than the price

4 when q1 is the only receiver. This shows that charging
scheme described by Algorithm 6 is reasonable for this specific
network. Following theorem shows that it is reasonable for
LCPT generally.

Theorem 6:The charging scheme defined in Algorithm 6
for LCPT satisfies NNS, CM, NFR and BB.

Proof: A link is called an upstream link of a receiver
qi if it is on the unique simple path between the source and

the receiverqi in the multicast tree. Obviously, our charging
scheme satisfies NNS sincepσx

k (d) − p
σx−1
k (d) ≥ 0 for any

two receiversqσx andqσx−1 . Remember for a receiverqσa ∈
R(ek), its sharing of the payment to its upstream linkek is:

fk
σa

(R, d) =

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1

≥
aX

x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)|

=
pσa

k (d)− pσ0
k (d)

|R(ek)| =
pσa

k (d)

|R(ek)|
Thus, the total charge to receiverqσa is

Sσa(R, d) =
X

ek∈LCPT (R,d)

fk
σa

(R, d) =
X

ek∈LCP (s,qσa ,d)

fk
σa

(R, d)

≥
P

ek∈LCP (s,qσa ,d) pσa
k (d)

|R(ek)| =
Sσa(qσa , d)

|R(ek)| .

It implies that the charging scheme 6 satisfies NFR.
Summingfk

σa
(R) for a from 1 to |R(ek)|, we obtain

|R(ek)|X
a=1

fk
σa

(R) =

|R(ek)|X
a=1

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1

=

|R(ek)|X
a=1

aX
x=1

pσx
k (d)

|R(ek)| − x + 1
−
|R(ek)|X

a=1

aX
x=1

p
σx−1
k (d)

|R(ek)| − x + 1

=

|R(ek)|X
a=1

pσa
k (d)−

|R(ek)|−1X
a=0

pσa
k (d) = p

σ|R(ek)|
k (d) = pk(d)

Thus, we obtain

S(R, d) =
X
qi∈R

Si(R, d) =
X
qi∈R

X
ej∈LCPT (R,d)

f j
i (R, d)

=
X

ej∈LCPT (R,d)

X
qi∈R

f j
i (R, d)

=
X

ej∈LCPT (R,d)

pj(d) = P(R, d)

This proves that our charging scheme (6) satisfies BB.
We then show that our scheme does satisfy CM. Notice a

necessary and sufficient condition for CM is that for anyR ⊂
Q andqj ∈ Q−R we haveSi(R, d) ≥ Si(R

⋃
qj , d) for every

qi ∈ R. To prove this, it is sufficient to prove thatfk
i (R) ≥

fk
i (R

⋃
qj). Assumeqi is rankeda in ranking σ when the

receiver set isR. We prove it by discussing all possible cases:
Case 1: pj

k(d) ≥ pi
k(d). Let σ′ be the new ranking for

receiver setR
⋃

qj , thenqj ranked afterqi in σ′. Thusσx = σ′x
for 1 ≤ x ≤ a. In other words, all receivers ranked before or
at a in rankingσ still has the same rank inσ′. Therefore,

fk
i (R

[
qj) =

aX
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)|+ 1− x + 1

=

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 2

≤
aX

x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
= fk

i (R)

Case2: pj
k(d) < pi

k(d). In this case,qj is ranked beforeqi

in σ′ andqi rankeda+1 in σ′. Without loss of generality, we
assumeqj rankedb in rankingσ′. Thus, we haveσx = σ′x for



x < b andσx = σ′x+1 for x > b. Therefore,

fk
i (R

[
qj) =

a+1X
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)|+ 1− x + 1

=

bX
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2
+

a+1X
x=b+1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2

For the first part of the equality we have

bX
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2

=

b−1X
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2
+

p
σ′b
k (d)− p

σ′b−1
k (d)

|R(ek)| − b + 2

=

b−1X
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 2
+

p
σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 2

≤
b−1X
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
+

p
σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 1

For the second part of the equality we have

a+1X
x=b+1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2

=

a+1X
x=b+1

p
σx−1
k (d)− p

σx−2
k (d)

|R(ek)| − x + 2
− p

σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 1

=

aX
x=b

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
− p

σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 1

Combining the above two, we obtain

fk
i (R

[
qj)

=

bX
x=1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2
+

a+1X
x=b+1

p
σ′x
k (d)− p

σ′x−1
k (d)

|R(ek)| − x + 2

≤
b−1X
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
+

p
σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 1
+

aX
x=b

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
− p

σ′b
k (d)− p

σb−1
k (d)

|R(ek)| − b + 1

=

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(ek)| − x + 1
= fk

i (R)

This immediately implies that our charging scheme satisfies
CM. This finishes the proof of Theorem 6.

D. Distributed Charge Calculation

Notice, if we implement the payment sharing scheme in
a centralized way, for every link, it needs to store up to
|Q| = r intermediate payments. Thus the total space needed
is O(nr). In practice, it may be more desirable to implement
a distributed payment sharing scheme. In the following, we
present a distributed algorithm that implements our payment
sharing scheme that requires at mostO(r) space for each link
and total messages at mostO(r · h), whereh is the height of
the tree.

In our distributed algorithm, for any linkek in LCPT (d),
we not only need its final paymentpk(d), but also need the

intermediate paymentpj
k(d) for every downstream receiverqj .

We assume that this is already available through our distributed
payment computing method. In our distributed charge scheme,
at every linkek we useMDk[i] to store the payment it and
all its upstream agents will receive from the receiverqi. Our
distributed charging scheme is implemented in a top-down
fashion from the source to all receivers.

Algorithm 7 Distributed charging scheme
1: Initially, the source nodes sends all its children in the

multicast tree a vectorMD = 0 for all receivers.
2: Every link ek in LCPT (d), upon receiving a charging

vector M̃D from its parent, updates the charge for each
of its downstream receiversqi as MDk[i] = M̃D[i] +
f i

k(R(ek)). Here, f i
k(R(ek)) is calculated according to

Algorithm 6.
3: If link ek has more than one downstream receivers, it

constructs a new charge vector

MDj = {MD[i1],MD[i2], · · · ,MD[i|R(ej)|]}
for every downstream adjacent linkej . Here, the charge
MD[it] (1 ≤ t ≤ |R(ej)|) is for receiverqit

who is a
downstream receiver of linkej . Then send vectorMDj

to link ej .
If link ek has only one downstream receiverqi then ek

simply sends the modified chargeMDk to its downstream
link.

4: Every receiverqi will finally receive a charge which is
equal to equation (3).

V. OTHER ISSUES ANDOPEN QUESTIONS

As we mentioned early, this paper is the first step to explore
the general network protocol design when relay agents are
non-cooperative. There are many interesting and important
issues that have been untouched and left for further study.
We just list a few here.

Collusion: Throughout this paper, we assume all agents will
not collude together to manipulate the protocol. It is interesting
to study what will happen when agents will collude and how
to find truthful mechanisms that are resistent to collusion.
Our conjecture is that no truthful multicast protocol that can
prevent the collusion from an initial work proved in [29] for
unicast.

Distributed Computing : One thing we should notice is that
these agents running the distributed algorithms are indeed non-
cooperative. How to ensure they implement thecorrectdistrib-
uted algorithm we designed also is an important question we
have to consider.

Receiver Valuation: So far, we assume that the receivers
will pay the fair amount of sharing of payment to receive
data using multicast. In practice, the receivers often have
a valuation to indicate how much it is willing to pay to
receive the information. Receiver will choose to receive the
information if and only if the charge is at most its valua-
tion. Furthermore, receiver could also benon-cooperativeand
selfish: it will always maximize its profit by manipulating



its reported valuation. This makes the multicast design even
harder. It is well-known that a cross-monotone cost sharing
scheme implies agroup-strategyproofmechanism [?]. Thus,
when each receiverqi has a valuationδi for receiving the data,
i.e., it is willing to pay at mostδi for the data. We can design
a strategyproof mechanism as follows. For all receivers, we
construct the tree LCPT and compute the payment sharingSi

for each receiverqi. A receiverqi is removed ifSi > δi. If
there is a receiver removed, then for all remaining receivers
we repeat the above steps (construct LCPT again and compute
the payment sharing). All receivers remaining, sayQ′ ⊆ Q,
are receivers to receive the multicast data and the payment by
a receiverqi ∈ Q′ is the sharingSi(Q′, d). Notice that this
scheme is strategyproof. However, it is easy to construct an
example that this scheme may produce an emptyQ′ although
there is a feasible charging scheme for non-empty set of
receivers. Thus, it is still an open question on how to design
strategyproof mechanism that also (approximately) maximizes
some criteria such as the number of receivers served or the
total welfare.

VI. PERFORMANCESTUDY

We conduct extensive simulations to study the performance
of strategy-proof multicast routing based on LCPT. Remember
that the payment of LCPT is at least the actual cost of LCPT.
For a LCPTT , let c(T ) be its cost andP(T ) be the total
payment to all relay agents. We define theoverpayment ratio
(OR) of T as

OR(T ) =
P(T )
c(T )

. (4)

In the worst case, the ratioOR(T ) could be as large asO(n)
for a network ofn nodes [30], even for the unicast special case.
Notice there are some other definitions about overpayment
ratio in the literature. In [30], the authors proposed to compare
the total paymentP(T ) with the cost of the new LCPT
obtained from the graphG\T , i.e., removingT from the
original graphG.

In addition to the overpayment ratio, we propose another
metric to measure the performance of the strategy-proof mul-
ticast based on LCPT. Remember that the payments to relay
agents are shared among receivers. Thus, for each receiver, it is
more interested in how much extra it should pay to guarantee
the truthfulness of the links. Given the LCPTT for a set
of receiversR, let mi(R, T ) be the price that receiverqi is
charged to receive the information if the links are cooperative.
Notice thatSi(R, T ) is the amount that receiverqi is charged
to receive the data if the links are non-cooperative. We define
the Price-Cost-Ratio (PCR) as

PCR(qi, T ) =
Si(R, T )
mi(R, T )

. (5)

In our experiment, we generate random networks withn
nodes, wheren is a parameter. In order to ensure the network
is bi-connected, the average node degree should be greater
than log n with high probability. First, for every nodeu, we
randomly draw a number from[α log n, 5α log n] as its degree
du, whereα ≥ 1 is a parameter. A random graph satisfying

these degree requirement is then generated. The length of each
edge is then uniformly drawn from distribution[20, 100]. By
choosing different parameters, we study what aspects of the
network affect the OR and PCR. To compute the probability
distribution, we generate104 different networks and compute
the number of instances that fall in some specific intervals. For
other simulations, given all fixed parameters, we generate103

different network instances and computes the performances
accordingly.

A. Effect of Network Size

In this simulation, we fix the parameterα to 10
3 log n , which

means that node’ degrees are drawn from a uniform distribu-
tion [ 103 , 50

3 ] with average20. We also fix the size of receiver
set R to 15. We measure the performances of our strategy-
proof multicast protocol based on the following four metrics:
Average Overpayment Ratio (AOR), Maximum Overpayment
Ratio (MOR), Average Price-Cost-Ratio (APCR) and Maxi-
mum Price-Cost-Ratio (MPCR). Figure 7 (a) and (b) plot the
distribution of the average overpayment ratio and the average
PCR when the number of nodes are100 and250. Observe that
the probability distributions of AOR (also APCR) for different
network size are similar. Figure 7 (c) shows that the AOR,
MOR and APCR do not change when the number of network
nodes grows from100 to 500. On the other hand, MPCR
fluctuates and is much larger than the other three metrics.
Thus, we conclude that the number of nodes do not affect
the overpayment ratio and price-cost-ratio in random network.

B. Effect of Network Density

Since the difference in the network size do not affect the
performances of our strategy-proof protocol, we then study
other effects by fixing the network size (100 in the results
reported here). We specifically study the effect of the network
density by changing the node degree parameterα. Figure 8 (a)
and (b) show the distributions of AOR and APCR respectively
when the node degrees are drawn from two uniform distrib-
utions [log 100, 5 log 100] and [2 log 100, 10 log 100]. Figure 8
(c) shows that the AOR, MOR and APCR change when the
network density changes. It is interesting to observe that both
AOR and APCR first decrease when the network density (i.e.,
the average node degree) increases from10 to 32, and then
increase slightly when the network density increases from30
to 42. They both become steady when the network density is
greater than42. It is interesting to analyze this phenomenon
theoretically.

C. Performance Comparison with Unicast

In this simulation, we compare the average cost and pay-
ment per receiver in multicast based on LCPT with those of
unicast. We randomly generaten terminals wheren varies
from 100 to 500. The degree of each node is randomly drawn
from the uniform distribution[log n, 5 log n]. For a specific
network, we average the cost and payment for all receivers.

Figure 9 (a) plots the cost and payment for multicast
and unicast per receiver when the number of receiver is15,
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Fig. 7. The average overpayment ratio and price cost ratio do not depend on the network density.
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Fig. 8. The overpayment ratio and price cost ratio depend on the network density.
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Fig. 9. The cost and payment per receiver for unicast and multicast based on LCPT.

while Figure 9 (b) shows the results when10% of nodes
are receivers. Observe that the average cost and payment per
receiver for multicast based on LCPT issmaller than the
average cost and payment per receiver for unicast respectively.
Furthermore, under most of the cases, the payment per receiver
for LCPT payment is even smaller than the cost per receiver
for unicast. This ensures us that multicast not only saves the
total resources, but also benefits the individual receiver even
in selfish networks. We then vary the network size among
100, 200, 300, 400, 500 and the number of receivers from1 to
30. Figure 9 (c) shows the unicast cost (the red surface) and
the LCPT based multicast payment (the blue surface).

From the results of previous three simulations, we observe
that AOR and APCR are both quite small for a random

network, and even the MOR is smaller than1.7 generally.
Thus, we conclude that the theoretical worst case almost surely
will not happen in a random network.

VII. C ONCLUSION AND FUTURE WORKS

In this paper we give a strategyproof payment and charging
mechanism that stimulates cooperation for multicast in a
selfish network. We assumed that a group of receivers is
willing to pay to receive the data. Each possible relay agent
has a privately known cost of providing the relay service. In
a multicast scheme, each selfish relay agentk first is asked to
declare a cost for relaying data for other nodes. In return,
it will get a payment based on the reported costs of all
relay agents that can provide the service. The objective of



every individual relay agent is then to maximize its profit. A
multicast protocol is said to be strategyproof if no speculation
and counter speculation happens, i.e., every relay agent will
maximize its profit when it truthfully reports its cost.

It is well-known that the traditional protocols designed
for conforming agents cannot prevent the selfish agents from
manipulating its cost to its benefit. Instead of redesigning the
wheels, it is preferred to enhance an existing multicast protocol
to deal with selfish agents. In this paper, we specifically gave
a general rule to decide whether it is possible, and how to if
possible transform an existing multicast protocol to a strate-
gyproof multicast protocol. We then showed how the payments
to all the relay agents are sharedfairly among all receivers so
that it encourages collaboration among receivers. As a running
example, we showed how to design a strategyproof multicast
protocol when the least cost path tree is used for multicast. We
also discussed in detail how to implement this scheme on each
selfish node in a distributed manner. Extensive simulations
have been conducted to study the relations between payment
and cost of the multicast structure. As all strategyproof mech-
anisms, the proposed scheme pays each relay agent more
than its declared cost to prevent it from lying. Our extensive
simulations showed that the overpayment is small when the
cost of each agent is a random value between some range.

As we mentioned early, this paper is the first step to explore
the general network protocol design when relay agents are
non-cooperative. There are many interesting and important
issues that have been untouched and left for further study, such
as collusion, distributed computing of payments and charging.
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