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Low-Cost Truthful Multicast in Selfish and Rational
Wireless Ad Hoc Networks

Weizhao Wang? Xiang-Yang Li?

Abstract—It is conventionally assumed that all wireless devices will fol-
low some prescribed routing protocols without any deviation. However, the
scarce resources in wireless devices raise a concern about this assumption.
Most often, the owners of wireless devices will try to manipulate the proto-
cols for its own benefit, instead of faithfully following the protocols. There-
fore, some new protocols intended for selfish and rational wireless devices
need to be designed.

In this paper, we specifically study the multicast in selfish and rational
wireless ad hoc networks. By assuming that each wireless node has a pri-
vate cost of forwarding data for other nodes, we give an efficient method to
construct a multicast tree, namely VMST, whose cost is5-approximation of
the optimum multicast tree cost for homogeneous wireless networks mod-
elled by unit disk graph. Based on VMST, we design a truthful payment
scheme that pays minimum for any relay node among all truthful payment
schemes based on VMST. We also conduct extensive experiments to study
the practical performances of proposed protocol.

I. I NTRODUCTION

Wireless networks have received significant attentions over
past few years due to its potential applications in various situ-
ations such as battlefield, emergency relief and environmental
monitoring, etc. Unlike wired networks and cellular networks,
which have fixed infrastructures, wirelessad hocnetworks en-
joy a more flexible composition. A wireless ad hoc network
is a collection of radio devices (transceivers) located in a geo-
graphic region. Each node is equipped with an omni-directional
antenna and has limited transmission power. One of the dis-
tinctive features of wireless networks is that the signal sent out
by each wireless device can be received by all nodes within its
transmission range, i.e., it can use a broadcasting-like manner to
distribute the message to all neighboring nodes. In this paper,
we consider a wireless ad hoc networkG = (V, E) consisting
of a setV of n nodes distributed in a two-dimensional plane,
and an edgeuv ∈ E if u andv can receive signal from each
other directly. When all nodes have the same maximum trans-
mission range, by a proper scaling, the wireless networks are
modelled by unit disk graphs in the literature: an edgeuv exits
iff ‖uv‖ ≤ 1.

In multi-hop wireless networks, a communication session is
established either through a single-hop radio transmission if the
communication parties are close enough (within the transmis-
sion range of each other), or through relaying by intermedi-
ate devices . Many existing routing protocols for wireless ad
hoc networks assume that each individual wireless node (pos-
sibly owned by individual selfish users) will follow prescribed
routing protocols without deviation – except, perhaps, for the
faulty or malicious ones However, some users may deviate from
this, or even modify the behavior of routing protocols for self-
interested reasons: a user may refuse to relay the messages for
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other nodes since it consumes its scarce energy and memory
resources. Thus, a stimulation mechanism is required to encour-
age users to provide service to other nodes and follow the de-
signed routing protocols.

Following the common assumption in the literature, we as-
sume that each wireless device isrational: it will deviate from
a protocol only if it improves its gain. We study how to de-
sign a multicast routing protocol such that every rational selfish
wireless node will follow the protocol without any deviation. In
our model, we assume that each wireless nodevk has a private
costck of forwarding data for any other node. Our protocol first
requires every node declaring a minimum monetary valuedk it
will charge for relaying a unit data. The protocol then finds a
structure for multicast based on the report costs of all nodes and
computes a paymentpk to compensate the cost for each node
vk. The profit of nodevk is thenpk−ck if it relays. Notice node
vk ’s declared costdk may be different from its actual costck.

As to our knowledge, this is thefirst paper to study how to
design a multicast protocol that istruthful in wireless ad hoc
settings. Here truthful means that every node will get maximal
non-negative utility when it declares its true cost. In addition,
the cost of multicast tree (called VMST) used in our protocol is
at most5 times of the optimum when the original communica-
tion graph is modelled by unit disk graph. We further prove that
our payment scheme based on VMST is the minimum for any re-
lay node among all truthful payment schemes based on VMST.
We also conduct extensive experiments to study the practical
performances of our protocol compared to the most often used
multicast routing protocol.

The rest of the paper is organized as follows. In Section II,
we what is a truthful mechanism design. In Section III, we first
present a method to construct a spanning tree whose total cost
is within a constant factor of the optimum, and then present a
truthful mechanism based on this multicast tree .Priori arts are
reviewed in In Section II. We conclude our paper in Section VI
by pointing out some possible future works.

II. PRELIMINARIES

A. Network Model

In a wireless ad hoc Network, if a node sends a packet, then
it will consume some energy and usually it is assumed that it
wouldn’t cost the receiving node any energy to receive the mes-
sage. We consider a wireless ad hoc network consisting of a
node setV = {v1, v2, · · · , vn} distributed in a two dimensional
plane. Each nodevi has a costci to relay a unit data for other
nodes. Here the unit data could be one packet, or the data sent
in one communication session. In this paper, we assume that
the costci is a fixed constant known only to nodevi. When
the node’s cost are dynamic, we can show that our routing pro-
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tocols still work as long as it is static for the current commu-
nication session. We usev1 to represent the access point (AP)
of the wireless network to the wired network if it presents. A
wireless network is then represented by a node weighted graph
G = (V, E, c), whereE is the set of linksuv such thatu andv
can receive the signal from each other, andc = (c1, c2, · · · , cn)
is the cost vector of all nodes. We assume that the graphG is
node bi-connected.

In this paper, we devise a truthful routing protocol for multi-
cast in a selfish and rational wireless network. In a multicast, we
assume that there is a set of nodesQ = {q1, q2, q3, · · · , qr} ⊂
V forming a group. We assume that at some moment, a node
qi ∈ Q wants to send data to all nodes in groupQ, and all nodes
in Q ∈ qi want the data. For simplicity, we assume that a set
of of receivers{q2, q3, · · · , qr} will get data from source node
q1. Since all nodes are in a same group, we assume that any
receiver nodeqj will relay the data for any other receiver nodes
for free if it is chosen as relay node, i.e.,ck = 0 for 1 ≤ k ≤ r.
In this paper, all wireless nodes are assumed to berational, i.e.,
they respond to well-defined incentives and will deviate from
the protocol only if it improves its gain.

B. Truthful Mechanism Design

Traditionally, the following model is used to analyze scenar-
ios in which the agents act according to their own self-interests.
There aren agents, i.e., there aren selfish wireless devices.
Each agenti, for i ∈ {1, · · · , n}, has some private information
ti, called itstype. In this paper, the typeti is its cost to forward
a unit data packet in a network environment. Then the set ofn
agents define a type vectort = (t1, t2, · · · , tn), which is called
the profile. There is an output specificationO that maps each
type vectort to a set of allowed outputs. Agenti’s preferences
are given by a valuation functionvi that assigns a real number
vi(ti, o) to each possible outputo. Here, we assume that the
valuation of an agent does not depend on other agents’ types.
Everything in the scenario is public knowledge except the type
ti, which is a private information to agenti. Each agenti has a
set of strategiesAi that the agent can choose from. In this paper,
we only consider direct revelation mechanisms, i.e., the strategy
of an agent is to report its type.

For each strategy vectora = (a1, · · · , an), i.e., agenti plays
strategyai ∈ Ai, the mechanism= (O, p) defines anoutput
O(a) and apaymentvectorp = (p1, · · · , pn), wherepi = pi(a)
is the money given to each participating agenti. The mecha-
nism designer defines an output methodO such that an objective
function g(o(a), t) is maximized under output methodO. For
example, the objective functiong(o(a), t) =

∑n
i=1 vi(ti, o(a)),

maximizes the total valuation of all agents.
Agent i’s utility (or called profit by some researchers) is

ui = vi(ti, o) + pi. We assume that each agent isrational, i.e.,
agenti always tries to maximize its utilityui. A mechanism
satisfies theindividual compatibility(IC), if each agent maxi-
mizes its utility by reporting its typeti truthfully regardlessof
what other agents do. Clearly, an agent will not participate in a
routing if its profit is negative. A mechanism satisfies theindi-
vidual rationality(IR), (or called voluntary participation) if each
agent gets non-negative profit by reporting its typeti truthfully
regardlessof what other agents do. A mechanism istruthful (or

calledstrategyproof) if it satisfies both IR and IC properties.
Arguably the most important positive result in mechanism de-

sign is what is usually called the family of generalized Vickrey-
Clarke-Groves (VCG) mechanisms by Vickrey [1], Clarke [2],
and Groves [3]. A VCG mechanism applies to mechanism de-
sign maximization problems where the objective function is util-
itarian and the set of possible outputs is assumed to be finite.
A maximization mechanism design problem is calledutilitar-
ian if its objective function isg(o, t) =

∑
i vi(ti, o). Thus, a

mechanismM = (O(t), p(t)) belongs to the VCG family if
(1) the output methodO(t) maximizes the objective function
g(o, t) =

∑
i vi(ti, o), and (2) the payment to agenti is

pi(t) =
∑

j 6=i

vj(tj , o(t)) + hi(t−i),

wherehi() is an arbitrary function oft−i and different agent
could have different functionhi() as long as it is defined on
t−i. It is proved by Groves [3] that a VCG mechanism is truth-
ful. Green and Laffont [4] proved that, under mild assumptions,
VCG mechanisms are the only truthful implementations for util-
itarian problems.

An important observation here is that the output function of a
VCG mechanism is required to maximize the objective function.
This makes the mechanism computationally intractable in many
cases, such as the multicast problem studied in this paper. No-
tice that replacing the optimal algorithm with non-optimal ap-
proximation usually leads to untruthful mechanisms. To made
the mechanism polynomial time computable, we have to add
computational efficiency to the set of concerns that must be ad-
dressed [5].

Let a−i denote the vector of strategies of all other agents ex-
cepti, i.e.,a−i = (a1, a2, · · · , ai−1, ai+1, · · · , an). Let a|ib =
(a1, a2, · · · , ai−1, b, ai+1, · · · , an), i.e., each agentj 6= i uses
strategyaj and the agenti uses strategyb.

III. M ULTICAST

In this section, we propose a truthful multicast routing proto-
col for wireless ad hoc networks such that each selfish and ra-
tional node will follow the protocol out of its own self-interest.

A. Problem Statement

We consider a wireless ad hoc network consisting of a node
set V = {v1, v2, · · · , vn}. Every nodevi has a fixed trans-
mission range and thus transmit a unit data needs a fixed cost
ci. Usually we need to communicate among a group of nodes
Q = {q1, q2, · · · , qr} ⊂ V instead of a pair of nodes, which is
known as multicast problem. For the simplicity of notations, we
assume thatqi = vi, for 1 ≤ i ≤ r. In order for every node
qi ∈ Q to broadcast the message to the other receiving nodes
in Q, we first should construct a broadcasting treeT spanning
all nodes inQ such that, whenever an internal nodev ∈ T re-
ceiving a new message, it relays the message to all its neighbors
(except the neighboring node from which the message came).
Remember that such relaying can be done by a single message
in wireless networks. The summation of cost of every node in
T is called the weight of the treeT , denoted asω(T ). Remem-
ber that for wireless broadcasting, a leave node inT does not
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incur any cost here and it must be a receiver (otherwise, we
can shrink the tree by removing the non-receiver leaf node). To
save the energy consumption, we want to find a treeTopt whose
weight is the minimum among all trees used for multicast. It
is well-known (see e.g., [8]) that it is NP-hard to find the opti-
mal solution when given an arbitrary wireless ad hoc network
modelled by a node weighted graphG. Finding the minimum
cost multicast tree is at least as hard as to approximate the set
cover problem. Guha and Khuller [8] showed that it can be ap-
proximated withinO(ln k), wherek is the number of receivers.
Thus, we have to rely on some heuristics to approximate the
optimum multicast treeTopt. In this paper, given an arbitrary
wireless network modelled by a node weighted unit disk graph
G, we present an efficient method to construct a spanning treeT
whose total costω(T ) is at most5 times the cost of the minimum
ω(Topt).

B. Multicast Tree Construction

Our method constructing a cost efficient spanning tree for
multicast routing works as follows. First, we calculate the
pairwise shortest pathLCP(qi, qj , G) between any two nodes
qi, qj ∈ Q for a network modelled by a node weighted graph
G = (V,E, c), where the node cost vector isc. We then con-
struct a complete edge weighted graphK(G,Q, w) usingQ as
its vertices, where edgeqiqj corresponds toLCP(qi, qj , G), and
its weightw(qiqj) is the cost ofLCP(qi, qj , G), i.e.,w(qiqj) =
‖LCP(qi, qj , G)‖. For our later convenience, here the total
weight of the least cost pathLCP(qi, qj , G) does not include the
cost of two end-pointsqi andqj . For convenience of our analy-
sis, we also assume that no two edges inG = (V,E, c) have the
same length, and there are no two paths inG = (V, E, c) have
the same length. Dropping this assumption doesn’t change the
result of our analysis.

Algorithm 1: Virtual MST Algorithm
1. First, we construct the virtual weighted complete graph
K(G,Q) on the original networkG = (V,E, c).
2. Construct the minimum spanning tree (MST) onK(G,Q).
The resulting MST is denoted asV MST (G).
3. For each edgeqiqj selected inV MST (G), we find the cor-
responding least cost pathLCP(qi, qj , G) in G. We mark every
internal nodevk on the pathLCP(qi, qj , G) asrelay node.
4. In graphG, build a spanning tree using all nodes marked
with relay nodeand all receiver nodesQ, and denote the final
spanning tree onG asSV MST (G).

Notice a node is in treeSV MST (G) if and only if it is on
some virtual edges inV MST (G), thus we consider the struc-
tureV MST (G) instead ofSV MST (G).

Theorem 1:V MST (G) is a5-approximation of the optimal
solution in terms total cost if the wireless network is modelled
by unit disk graph.
PROOF. Assume that the optimal solution is a tree calledTopt.
Let V (Topt) be the set of nodes used in the treeTopt. Clearly,
ω(Topt) =

∑
vi∈V (Topt)

ci. Similarly, for any spanning tree
T of K(G,Q), we defineω(T ) =

∑
e∈T w(e). In order to

prove the theorem, we prove a stronger result:5 · ω(Topt) ≥
ω(V MST (G)).

First, for all nodes inTopt, when disregarding the node
weight, there is a spanning treeT ′opt on V (Topt) with node de-
gree at most5 since the wireless network is modelled by a unit
disk graph. This is due to a well-known fact that there is an
Euclidean minimum spanning tree with the maximum node de-
gree at most5 for any set of two-dimensional points. Note here
we do not need construct such spanning tree with maximum de-
gree at most5 explicitly. Obviously,ω(Topt) = ω(T ′opt). Thus,
treeT ′opt is also an optimal solution. with maximal node degree
degree at most5.

For spanning treeT ′opt, we root it at an arbitrary node and du-
plicate every link inT ′opt (the resulting structure is calledDT ′opt.
Clearly, every node inDT ′opt has even degree now. Thus, we can
find an Euler circuit, denoted byEC(DT ′opt), that visits every
vertex of DT ′opt and uses every edge ofDT ′opt exactly once,
which is equivalent to say that every edge inT ′opt(G) is used
exactly twice. Consequently, we know that every nodevk in
V (Topt) is used exactlydegT ′opt

(vk) times. HeredegG(v) de-
notes the degree of a nodev in a graphG. Thus, the total weight
of the Euler circuit is at most5 times of the weightω(T ′opt), i.e.,

ω(EC(DT ′opt)) ≤ 5 · ω(T ′opt).

Notice that here if a nodevk appears multiple times in
EC(DT ′opt), its weight is also counted multiple times in
ω(EC(DT ′opt)).

If we walk along EC(DT ′opt), we visit all receivers, and
length of any subpath between receiversqi andqj is no smaller
than |LCP(qi, qj , G)|. Thus, the cost ofEC(DT ′opt) is at
leastω(V MST (G)) sinceV MST (G) is the minimum span-
ning tree spanning all receivers and the cost of the edge
qiqj in V MST (G) corresponds the path with the least cost
‖LCP(qi, qj , G)‖. In other words,

ω(EC(DT ′opt)) ≥ ω(V MST (G)).

Consequently, we have

ω(V MST (G)) ≤ ω(EC(DT ′opt)) ≤ 5 · ω(T ′opt).

This finishes the proof.

Notice that the assumption that the receiver nodes will relay
the transit traffic for other receiver nodes for free is crucial in
the above proof. If this is not the case, then Theorem 1 does not
hold anymore. Let us assume that the receiver node does charge
for relay. Remember that we will not count the cost of all leaf
nodes (which must be receivers) when we count the cost of a
multicast treeTopt. First, we cannot guarantee any relation be-
tween the cost ofTopt and the treeT ′opt with bounded degree5.
Secondly, when we transform a treeT ′opt to an Euler circuit, we
cannot say that the weight of an virtual edgeqiqj in EC(DT ′opt)
is larger than its weight inV MST (G) anymore. It is because
we only count the cost of internal node ofT ′opt when compute
the cost ofqiqj in EC(DT ′opt), but on the other hand, we have
to count the cost of two end nodesqi andqj when compute the
cost of qiqj in K(Q,G). Figure III-B illustrates an example
thatV MST (G) does not give constant approximation when re-
ceiver nodes charge for relaying transit traffic. In the example,
nodevn has costcn = M + ε. There arer receiversq1, q2,
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Fig. 1. VMST does not approximate minimum cost multicast tree when receiver
nodes charge for relay.

· · · , qr on the unit circle centered at nodevn, each with cost
M . Clearly, the VMST tree will be formed by linksqiqi+1 for
1 ≤ i ≤ r − 1. Thus, the relay nodes chosen by VMST will be
qi, 1 ≤ i ≤ r − 1, and the total cost of all chosen relay nodes
is (r − 1) ·M . On the other hand, the minimum cost multicast
tree will be formed by linksvnqi, for 1 ≤ i ≤ r. The total cost
of the optimum tree isM + ε.

C. Payment Scheme

In the previous subsection, we show that the virtual minimum
spanning tree is a5 approximation for the minimum cost multi-
cast tree for homogeneous wireless networks modelled by unit
disk graphs. Remember a truthful multicast routing protocol is
composed of two parts: a spanning tree used for multicast and
the payment paid to each relay node. We use the spanning tree
V MST for multicast and what we remain to solve is then how
each node onV MST will be paid to compensate its cost.

In a truthful multicast routing protocol, every node is re-
quired to report his relay cost, notice a node’s declared cost
dk may be different from its actual costck. We use cost vec-
tor d = {d1, d2, · · · , dn} to denote all nodes’ declared cost.
For simplicity, we will use cost vectord to represent the graph
G = (V, E, d) if there is no confusion. Thus,LCP(s, t,G) can
be simplified asLCP(s, t, d) andV MST (G) is simply denoted
asV MST (d) whenG = (V,E, d). If we change the cost of a
nodevk ∈ V to d′k, we denote the new graph asd|kd′k. If we
remove one vertexvk from G, we denote the resulting graph as
d|k∞.

C.1 VCG mechanism Is Not Truthful

VCG mechanisms have been used to design strategy-proof
protocols to problems such as unicast [9], [10], single minded
auctions [11]. Thus, using VCG mechanism is a nature way to
design a payment scheme for multicast. The payment to a node
vk selected inV MST based on VCG mechanisms is as follows

pk
V CG = ω(V MST (d|k∞))− ω(V MST (d)) + dk.

In other words, the payment to a relay nodevk equals its de-
clared cost plus the difference between the VMST constructed
without this nodevk and the VMST constructed usingvk.

Unfortunately, if we compensate relay nodes based on the
payment computed using VCG mechanisms, a wireless node
may have incentives to lie about its cost to improve its profit,
or will refuse to relay the packets since its profit may be neg-
ative. Figure 2 illustrates such an example where nodev3 can
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Fig. 2. A node could lie to improve its utility when payment is computed
based on VMG mechanisms. Here the cost of nodes arec1 = c2 = M and
c3 = M + ε.

lie its cost to improve its utility when output is VMST structure.
The payment to nodev3 is 0 and its utility is also0 if it reports
its cost truthfully since it will not be selected. Let us see what
happens if nodev3 lies its cost toc3 = M − ε. It is easy to
see that the total payment to nodev3 whenv3 reported a cost
c3 = M − ε is ω(V MST (c|3∞))− ω(V MST (c|3c3)) + c3 =
2M − (M − ε) + M − ε = 2M and the utility of nodev3 be-
comesu3(c|3c3) = 2M − (M + ε) = M − ε, which is larger
thanu3(c) = 0. This example prevents us from using VCG
mechanism to compute payments for relay nodes. Next, we will
study how to design a payment schemep, such that the multicast
routing based on VMST and the payment schemep is truthful.

C.2 Truthful Payment Based on VMST

Given a spanning treeT , and a pair of nodesp andq on T ,
clearly there is a unique path connecting them onT . We denote
such path asΠT (p, q), and the edge with the maximum length
on this path asLE(p, q, T ). For simplicity, we useLE(p, q, d)
to denoteLE(p, q, V MST (d)).

Based on the structureV MST (d), we then design a truth-
ful mechanism for calculating the payment to relay nodes on
V MST (d) as follows.

Algorithm 2: Truthful payment usingV MST (G)
1. Each nodevk ∈ V is required to report a cost, saydk.
2. For every nodevk ∈ V \ Q in G, first calculateV MST (d)
andV MST (d|k∞) according to the nodes’ declared costs vec-
tor d.
3. Find Ek(dk) which is the set of edgesqiqj such thatvk ∈
LCP(qi, qj , d) andqiqj ∈ V MST (d) when nodevk declares a
costdk.
4. For any edgee = qiqj ∈ Ek(dk) and any nodevk ∈
LCP(qi, qj , d), we define the payment to nodevk based on the
virtual link qiqj as

pk
ij(d) = ‖LE(qi, qj , d|k∞)‖ − ‖LCP(qi, qj , d)‖+ dk. (1)

Here‖Π‖ denotes the total cost of a pathΠ. The final payment
to nodevk based onV MST (d) is

pk(d) = max
qiqj∈Ek(dk)

pk
ij(d). (2)

We next show that our payment scheme is truthful, i.e., node
vk cannot lie about its cost to improve its non-negative profit.
Throughout our proofs, we fix the costd−k of all nodes other
thank.



5

Assume that nodevk is used in the least cost path
LCP(qi, qj , d) ande = qiqj ∈ V MST (d). We first show that
nodevk cannot manipulate its declared costdk 6= ck to improve
its payment based on the virtual edgeqiqj from K(G,R).

Lemma 1:Assume that nodevk ∈ LCP(qi, qj , d) with cost
dk ande = qiqj ∈ V MST (d),then the paymentpk

ij(d) does not
depend onvk ’s declared costdk.
PROOF. From the payment definition, when nodevk declares a
costdk and edgeqiqj is still in V MST (d), its paymentpk

ij(d)
based on edgeqiqj is

‖LE(qi, qj , d|k∞)‖ − ‖LCP(qi, qj , d)‖+ dk.

Notice that the first partLE(qi, qj , d|k∞) is the longest edge of
the unique path fromqi to qj on treeV MST (d|k∞). Clearly,
the spanning treeV MST (d|k∞) does not depend ondk. Thus,
LE(qi, qj , d|k∞) is independent ofdk.

Now consider the least cost pathLCP(qi, qj , d). From the
assumption we know thatvk ∈ LCP(qi, qj , d), thus, the path
LCP(qi, qj , d) remains the same regardless ofvk ’s declared cost
dk as long asvk ∈ LCP(qi, qj , d). Thus, the summation of all
nodes’ cost onLCP(qi, qj , d) except nodevk is a fixed cost,
which equals to‖LCP(qi, qj , d|k0)‖ = ‖LCP(qi, qj , d)‖ − dk.
In other word, the second part−‖LCP(qi, qj , d)‖ + dk is also
independent ofdk. This finishes the proof.

Based on the above lemma, we can rewrite the payment to
nodevk based on an edgeqiqj as

pk
ij(d) = ‖LE(qi, qj , d|k∞)‖ − ‖LCP(qi, qj , d|k0)‖,

when nodevk ∈ LCP(qi, qj , d) andqiqj ∈ V MST (d).
Given two receiversqi and qj and another nodevk, we

divide all the paths connectingqi and qj in G (denoted by
Π(qi, qj)) into two categories: the paths with nodevk (de-
noted byΠvk

(qi, qj)) and the paths without nodevk (denoted
by Π−vk

(qi, qj)). The least cost path inΠvk
(qi, qj) is denoted

asLCPvk
(qi, qj , d), and the least cost path inΠ−vk

(qi, qj) is de-
noted asLCP−vk

(qi, qj , d). Clearly, the pathLCP−vk
(qi, qj , d)

is independent of the declared costdk of node vk. Notice
LCPvk

(qi, qj , d) andLCP−vk
(qi, qj , d) doesn’t depend on node

vk ’s declared costdk. For simplicity, we denote the total cost of
nodes on the least cost pathLCPvk

(qi, qj , d), other than node
vk, asck

ij .
In our proof of the the truthfulness, we consider two cases:

(1) whether the node has the incentive to lie its cost upward; (2)
whether the node has the incentive to lie its cost downward. In
order to simplify and clarify our proofs, we use the following
notations.

If a nodevk lies its cost upward, we denote the new cost asck,
and the VMST calculated fromck asV MST (d|kck). Similarly,
if nodevk lies its cost downward, we denote the new cost asck,
and the VMST calculated fromck asV MST (d|kck).

We first consider the case when the nodevk declares a cost
ck. In this case, we have the following lemma.

Lemma 2:Ek(ck) ⊆ Ek(ck).
PROOF. Consider any edgeqiqj from Ek(ck). We show that
this edgeqiqj is still kept inEk(ck).

We first show thatvk is still in the least cost path con-
necting qi and qj when vk declares a costck. Since
vk ∈ LCP(qi, qj , d|kck), we have‖LCP−vk

(qi, qj , d|kck)‖ >
‖LCPvk

(qi, qj , d|kck)‖ > |LCPvk
(qi, qj , d|kck)|. Remem-

ber that|LCP−vk
(qi, qj , d|kck)| = |LCP−vk

(qi, qj , d|kc)| >

|LCPvk
(qi, qj , d|kck)|, so we gotvk ∈ LCP(qi, qj , d|kck).

We then show thatqiqj ∈ V MST (d|kck). Here we consider
the node partition{Qi, Qj} introduced by removing linkqiqj

from V MST (d), whereqi ∈ Qi andqj ∈ Qj . Remember that
the least cost path corresponding to virtual edgeqiqj contains
nodevk and keeps the same, so the weight of virtual edgeqiqj

decreased byck − ck. Whenvk changes its cost fromck to ck,
all virtual edges inK(Q,G) decreases at mostck − ck. Thus,
qiqj is still the bridge over{Qi, Qj}. From the Observation 1,
we haveqiqj ∈ V MST (d|kck). This finishes the proof.

Observation 1:If {V1, V2} is a partition of vertices in graph
G = (V, E) andvsvt is the bridge overV1 andV2 with minimum
length, thenvsvt ∈ MST .

Similar to Lemma 2, we have the following lemma.
Lemma 3:Ek(ck) ⊆ Ek(ck).

In order to prove the truthfulness (IC and IR property) of this
mechanism, we first give some related definitions. Consider
any spanning treeT of graphK(G,Q). Removing any edge
qiqj ∈ T will partition the treeT into two trees. All nodes of
the two trees form two disjoint vertex setsQi(T ) andQj(T )
such thatqi ∈ Qi(T ) andqj ∈ Qj(T ). An edgeqsqt satisfying
the following property is called bridge overQi(T ) andQj(T ):
qs ∈ Qi(T ) andqt ∈ Qj(T ) or qs ∈ Qi(T ) andqt ∈ Qj(T ).

Definition 1: Considering the graphK(G,Q) (G =
(V, E, d)) and a node partition{Qi, Qj} of Q, we define the
follows:
1. All bridges qsqt over node partitionQi, Qj of graph
K(G,Q) satisfying vk 6∈ LCP(qs, qt, d) forms a set
B−vk(Qi, Qj), and the one with the minimum length is denoted
asBM−vk(Qi, Qj , d) when the nodes’ cost vector isd.
2. All bridges qsqt over node partitionQi, Qj satisfyingvk ∈
LCP(qs, qt, d) form a setBvk(Qi, Qj), among them the bridge
with the minimum length is denoted asBMvk(Qi, Qj , d) when
the nodes’ cost vector isd.
3. All bridges qsqt over node partitionQi, Qj form a set
B(Qi, Qj), among them the bridge with the minimum length
is denoted asBM(Qi, Qj , d) when the nodes’ cost vector isd.

Some observations regarding the bridges are listed as follows
(proofs are omitted due to space limit or its simplicity). For a
disjoint node partition{Qi, Qj}, we have
1. BM(Qi, Qj , d) = min(BMvk(Qi, Qj , d), BM−vk(Qi, Qj , d)).
2. The pathsBMvk(Qi, Qj , d) andBM−vk(Qi, Qj , d) in the
graphG = (V,E, d) are independent ofvk ’s declared costdk.
In other words, nodevk cannot change these two paths inG by
merely changing its declared costdk.

We are now ready to prove that the payment scheme described
in Algorithm 2 satisfies the IR and IC property.

Theorem 2:Our payment scheme satisfies IR property, i.e.,
for any nodevk

uk(d|kck) ≥ 0.
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PROOF. First of all, if nodevk is not chosen as relay node,
then its paymentpk(d|kck) is clearly0 and its valuation is also
0. Thus, its utilityuk(d|kck) is 0.

When nodevk is chosen as a relay node, we show that its
payment is non-negative by showingpk

ij(d|kck) ≥ ck for any
edgeqiqj ∈ V MST (d|kck) andvk ∈ LCP(qi, qj , d|kck). Let
{Qi, Qj} be the node partition introduced by removing link
qiqj from V MST (d|kck). Consider the unique path connect-
ing qi and qj in the spanning treeV MST (d|k∞). Clearly,
there is at least one edge, sayqIqJ , that crossesQi and Qj

in this unique path. HereqI ∈ Qi and qJ ∈ Qj . Clearly,
‖LCP−vk

(qI , qJ , d|kck)‖ > ‖LCP(qi, qj , d|kck)‖ since edge
qiqj has the minimum weight among all bridge edges over
{Qi, Qj} when the node cost vector isd|kck. By definition,
‖LE(qi, qj , d|k∞)‖ ≥ ‖LCP−vk

(qI , qJ , d|kck)‖. The theo-
rem then follows frompk

ij(d|kck) = ‖LE(qi, qj , d|k∞)‖ −
‖LCP(qi, qj , d|kck)‖+ ck > ck. This finishes the proof.

We then prove that no node can lie about its cost to improve
its utility.

Theorem 3:Our payment scheme satisfies the incentive com-
patibility (IC).
PROOF. We prove the theorem by showing that a node will
neither lie up its cost, nor lie down its cost. We consider them
case by case as follows.

Case 1: nodevk lies up its cost tock. We prove thatvk

doesn’t have any incentive to lie upward. IfV MST (d|kck) =
V MST (d|kck), then nodevk gains nothing since the payment
to nodevk is independent of its declared cost in this situation
(from Lemma 1). IfV MST (d|kck) 6= V MST (d|kck), from
Lemma 3, we know thatEk(ck) ⊆ Ek(ck). In addition, from
Lemma 1, we havepk

ij(d|kck) = pk
ij(d|kck) for any edgeqiqj ∈

Ek(ck). This means thatvk can’t increase its payment by lying
upward.

Case 2: nodevk lies down its cost tock. We further divide
this case into two subcases: whether nodevk is originally se-
lected as relay node or not.

Subcase 2.1: node vk is not originally selected as relay
node. Obviously, nodevk can possibly improve its utility when
V MST (d|kck) 6= V MST (d|kck) andvk is on some edge of
V MST (d|kck) after vk lies its cost downward. Assume that
vk ∈ LCP(qi, qj , d|kck) ande = qiqj ∈ V MST (d|kck). The
paymentpk

ij(d|kck) to nodevk based onqiqj is

‖LE(qi, qj , d|k∞)‖ − ‖LCP(qi, qj , d|kck)‖+ ck

= ‖LE(qi, qj , d|k∞)‖ − ‖LCPvk
(qi, qj , d|kck)‖+ ck

We then prove thatpk
ij(d|kck) ≤ ck.

From the assumption thatvk 6∈ V MST (G), we
have V MST (d|kck) = V MST (d\vk). Remember that
LE(qi, qj , d|k∞) is the longest edge (sayqk

I qk
J ) of the

unique path connectingqi and qj in V MST (d|k∞). Thus,
LE(qi, qj , d|k∞) is also inV MST (d|kck). We will then prove
that ‖LE(qi, qj , d|k∞)‖ ≤ ‖LCP(qi, qj , d|kck)‖ by contra-
diction. Assume‖LE(qi, qj , d|k∞)‖ ≥ ‖LCP(qi, qj , d|kck)‖.
Then we can replaceqk

I qk
J with qiqj in V MST (d|k∞) and get

a tree with smaller weight, which is a contradiction. Thus,

‖LE(qi, qj , d|k∞)‖ ≤ ‖LCP(qi, qj , d|kck)‖
= ‖LCPvk

(qi, qj , d|kck)‖.
Applying this to our payment scheme, the paymentpk

ij(d|kck) to
nodevk is ‖LE(qi, qj , d|k∞)‖−‖LCPvk

(qi, qj , d|kck)‖+ck ≤
ck. This finishes the proof for this subcase.

Subcase 2.2:nodevk is originally selected as relay node. We
prove thatvk doesn’t have any incentive to lie downward. From
Lemma 2, we know thatEk(ck) ⊆ Ek(ck). Thus, we only need
focus our attention on these edges inEk(ck)−Ek(ck). Consider
any such edgee = qiqj ∈ Ek(ck) − Ek(ck). Let qk

I qk
J be the

edge with the largest weight among all edges on the unique path
connectingqi andqj in V MST (d|k∞). In the spanning tree
V MST (d|k∞), if we remove the edgeqk

I qk
J , we have a vertex

partition{Qk
I , Qk

J}, whereqi ∈ Qk
I andqj ∈ Qk

J .
In the graph K(G,Q), we consider the bridge edge

BM(Qk
I , Qk

J , c) whose weight is minimum when the nodes
cost vector isc. There are two cases here: 1)vk 6∈
BM(Qk

I , Qk
J , d|kck) or 2) vk ∈ BM(Qk

I , Qk
J , d|kck). We dis-

cuss them individually.
The first situation isvk 6∈ BM(Qk

I , Qk
J , d|kck) which im-

pliesBM−vk(Qk
I , Qk

J , d|kck) = BM(Qk
I , Qk

J , d|kck). Notice
edgeqk

I qk
J has the minimum weight among all bridge edges over

{Qk
I , Qk

J} when graphd|k∞ is considered. From assumption
vk 6∈ BM(Qk

I , Qk
J , d|kck), we know that‖LCP(qk

I , qk
J , d|k∞)‖

is still minimum among all bridge edges over{Qk
I , Qk

J} when
graphG is considered. In other words,BM(Qk

I , Qk
J , d|kck) =

‖LCP(qk
I , qk

J , d|k∞)‖. Sinceqiqj is also a bridge edge over
{Qk

I , Qk
J}, we have

‖LE(qi, qj , d|k∞)‖ = ‖LCP(qk
I , qk

J , d|k∞)‖
≤ ‖LCP(qi, qj , d|kck)‖

Consequently,

pk
ij(d|kck) = ‖LE(qi, qj , c|k∞)‖ − ‖LCP(qi, qj , d|kck)‖+ ck ≤ ck,

which implies thatvk will not benefit from lying its cost down-
ward.

The second situation is thatvk ∈ BM(Qk
I , Qk

J , d|kck).
From the assumption thatqiqj 6∈ V MST (d|kck), we
know edge qiqj cannot be BM(Qk

I , Qk
J , d|kck). Thus,

there exists an edgeqsqt 6= qiqj such that vk ∈
LCP(qs, qt, d|kck) = BM(Qk

I , Qk
J , d|kck), which is guaran-

teed to be inV MST (d|kck). Obviously,‖LCP(qi, qj , d|kck)‖ ≥
‖LCP(qs, qt, d|kck)‖. Notice thatqsqt is also a bridge edge over
Qk

I andQk
J . Thus,qk

I qk
J is on the path fromqs to qt on graph

V MST (d|k∞), which implies that‖LCP(qk
I , qk

J , d|k∞)‖ =
‖LE(qi, qj , d|k∞)‖ ≤ ‖LE(qs, qt, d|k∞)‖. Using Lemma 2,
we haveLCP(qs, qt, d|kck) ∈ V MST (G|kck). Thus,

pk
ij(d|kck)

= ‖LE(qi, qj , d|k∞)‖ − ‖LCP(qi, qj , d|kck)‖+ ck

= ‖LE(qi, qj , d|k∞)‖ − ‖LCPvk
(qi, qj , d|kck)‖+ ck

≤ ‖LE(qs, qt, d|k∞)‖ − ‖LCPvk
(qi, qj , d|kck)‖+ ck

≤ ‖LE(qs, qt, d|k∞)‖ − ‖LCP(qs, qt, d|kck)‖+ ck

= pk
st(d|kck)
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This inequality concludes that even ifvk lies its cost down-
ward to introduce some new edges inV MST (d|kck) that con-
tain vk, the payment based on these newly introduced edges is
not larger than the payment on some edges already contained in
V MST (d|kck). This finishes the proof.

D. Mechanism Optimality

We have already proved that our payment scheme is truthful.
In this section, we will prove that it is optimal, i.e., the pay-
ment to any individual relay node is minimum among all truth-
ful mechanisms based on VMST structure. Before we prove
this, we prove the following lemma regarding all truthful pay-
ment schemes based on VMST.

Lemma 4: If a mechanism based on VMST with payment
function p̃ is truthful, then for every internal nodevk, if vk ∈
V MST (d) and all other nodes do not change their declared
costs, the payment functioñpk(d) should be independent ofdk.
PROOF. We prove it by contradiction. Suppose that there exists
a truthful payment scheme such thatp̃k(d) depends ondk. There
must exist two valid declared costsa1 anda2 such thata1 6=
a2 and p̃k(d|ka1) 6= p̃k(d|ka2). Without loss of generality we
assume that̃pk(d|ka1) > p̃k(d|ka2). Now consider a nodevk

with actual costck = a2. Obviously, it can lie its cost asa2

to increase his utility, which violates the incentive compatibility
(IC) property. This finishes the proof.

Lemma 5: If we have vk ∈ V MST (d) for graph G =
(V, E, d), then as long asd′k < pk(d), vk ∈ V MST (d′) where
d′ = d|kd′k.
PROOF. We prove by contradiction by assuming thatvk 6∈
V MST (d′), which impliesV MST (d′) = V MST (d|k∞).
Sincevk ∈ V MST (d), we haveEk(d) 6=. Thus, we can as-
sume there exists some edgeqiqj such thatpk(d) = pk

ij(d
′),

i.e., its payment is computed based on edgeqiqj in V MST (d).
Let qIqJ be the longest edgeLE(qi, qj , d|k∞). Let {Qi, Qj}
be the vertex partition introduced by removing edgeqIqJ from
the treeV MST (d|k∞), whereqi ∈ Qi andqj ∈ Qj . From
the assumptiond′k < pk(d), we rewrite d′k = pk(d) − δ
where δ > 0. The payment to nodevk in V MST (d)
is pk(d) = ‖LCP(qI , qJ , d|k∞)‖ − cvk

ij , where cvk
ij =

LCPvk
(qi, qj , d|k0). Thus, cvk

ij = ‖LCP(qI , qJ , d|k∞)‖ −
pk(d). When vk ’s cost becomesd′k, the length of the
original path LCP(qi, qj , d) in G becomescvk

ij + d′k =
‖LCP(qI , qJ , d|k∞)‖−pk(d)+d′k = ‖LCP(qI , qJ , d|k∞)‖−δ.
In other words,‖LCPvk

(qi, qj , d
′)‖ = ‖LCP(qI , qJ , d|k∞)‖ −

δ. Thus,

‖LCP(qi, qj , d
′)‖ ≤ ‖LCPvk

(qi, qj , d
′)‖

< ‖LCP(qI , qJ , d|k∞)‖.

Now consider the spanning treeV MST (d′). Remem-
ber we assume thatvk 6∈ V MST (d′), i.e., V MST (d′) =
V MST (d|k∞). Thus, among the bridge edges overQi, Qj ,
edgeqIqJ has the least cost when graph isd|k∞. However,
this is a contradiction to we just proved:‖LCP(qi, qj , d

′)‖ <
‖LCP(qI , qJ , d|k∞)‖. This finishes the proof.

We then show that our payment scheme is optimal among all
truthful mechanisms using VMST.

Theorem 4:For structureV MST , the payment based on (2)
to any nodevk is minimum among all truthful mechanisms
based on VMST.
PROOF. We prove it by contradiction. Assume that there is an-
other truthful payment scheme, sayA, based on VMST, whose
payment is smaller than our payment for a nodevk on a graph
G = (V, E, d). Assume that the payment calculated byA for
nodevk is p̃k(d) = pk(d)− δ, wherepk(d) is the payment cal-
culated by our algorithm andδ > 0.

Now consider another graphG′ = (V, E, d′) whered′ =
d|kd′k andd′k = pk(d)− δ

2 . From Lemma 5, we know thatvk is
still in V MST (d′). Using Lemma 4, we know that the payment
for nodevk using algorithmA should bepk(d) − δ, which is
independent of nodevk ’s declared cost. Here, nodevk ’s utility
is pk(d) − δ − (pk(d) − δ

2 ) = − δ
2 < 0. Thus, nodevk has a

negative utility under payment schemeA for graphG′, which
violates the incentive compatibility (IC). This finishes the proof.

E. Fast Payment Computing

We continue to discuss how to compute the payment to every
relay node efficiently. Assume that the original communication
graphG hasn vertices andm edges.

One method of computing the payment works as follows.
First we construct the complete graph from the original graph
G = (V, E, d): for every nodeqi ∈ Q, we construct the short-
est path tree rooted atqi, which will take timeO(n log n + m).
Notice that‖Q‖ = r. Thus, we needO(rn log n + rm) time
to construct the complete weighted graphK(G, Q). Secondly,
we construct the spanning treeV MST (d) on K(G,Q), which
takes timeO(r log r+r2) = O(r2). Thus, the overall time com-
plexity to constructV MST (G) is O(r2 + rn log n + rm) =
O(rn log n + rm).

Next, we study how to find the payment for a single node
vk ∈ V MST (d) efficiently. In order to calculate the payment
for nodevk, we should construct the treeV MST (d|k∞), which
will take time O(rn log n + rm). If vk ∈ LCP(qi, qj , d) ∈
V MST (d), then we need to calculate the paymentpk

ij(d). Find-
ing the longest edgeLE(qi, qj , d|k∞) will take time O(r).
In the worst case, nodevk may appear onO(r) edges of
V MST (G). Thus, we can calculate the payment for the single
nodevk in timeO(r2)+O(rn log n+km) = O(rn log n+rm).
In the worst case, there could beO(n) nodes onV MST (d), so
we calculate the payment for all relay nodes in treeV MST (d)
in timeO(rn2 log n+ rmn). It is natural to ask whether we can
compute it more efficiently?

Our improvement is to use the fast payment for unicast as
a subroutine. For a pair of nodesqiqj , we calculate the path
LCP(qi, qj , d|k∞) for every nodevk ∈ LCP(qi, qj , d), which
can be done in timeO(n log n + m) [10], [12]. It will take
O(r2n log n + r2m) to find the complete graphK(d|k∞, Q)
for every nodevk. Finding the MST on each such complete
graph will take timeO(r2). Thus, we can construct VMSTs for
all thesen complete graphs in timeO(r2n). Based on these
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n VMSTs, it will take O(r2) to calculate the payment for one
node. Thus, in the worst case, it will also takeO(r2n) to cal-
culate the payment to every relay node. Overall, the time com-
plexity of this approach isO(r2n log n + r2m) + O(r2n) +
O(r2n) = O(r2n log n + r2m). Whenr = o(

√
n), this ap-

proach outperforms the naive approach with time complexity
O(n2 log n + mn). Whenr is a constant, the time complex-
ity of the above approach becomesO(n log n + m), which is
optimum.

F. Truthful Payments based on Other Structures

Although we proved that our payment scheme is optimal
among all truthful payment schemes based on VMST, there are
many other structures for multicast.

One example of multicast structures is the least cost path star
(LCPS). For each receiverqi, we compute the least cost path
from the source toqi, the union of all paths to all receivers is
called the least cost path star. We can show that the payment
based on VCG mechanisms using LCPS as output is not truthful.
Details are omitted here due to space limit. We instead define a
truthful payment as follows. First, we compute a paymentpk

i (d)
to every nodevk on the least cost path using the scheme for
unicast [10], [12]. The total payment to a nodevk is pk(d) =
maxqi∈Q pk

i (d). This payment scheme is truthful since nodevk

cannot lie about its cost to improve anypk
i (d).

Notice that the payment based onpk(d) = minqi∈Q pk
i (d) is

not truthful since a node may lie its cost upward so it can discard
some low payment from some receiver. In addition, the payment
pk(d) =

∑
qi∈Q pk

i (d) is not truthful neither.
Although the above payment based on the union of least

cost paths is truthful, the structure LCPS could have costΘ(r)
times the cost of VMST. Figure III-F illustrates such an exam-
ple. In the example, nodes is the source andqi, 1 ≤ i ≤ r

q
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Fig. 3. LCPS could have costΘ(r) times of the cost of VMST.

are receivers. Nodeui, vi and xi, 1 ≤ i ≤ r are relay
candidates. Nodeui and vi, 1 ≤ i ≤ r, each has cost1,
and eachwi has a sufficiently small costε > 0. Clearly,
LCP(s, qi, G) = sviuiqi and it has cost2. Thus, the total cost of
LCPS is2r. On the other hand, VMST is pathsv1u1q1 followed
by pathq1x1q2x2 · · · qr−1xr−1qr, and its cost is2 + (r− 1) · ε.
Consequently, in this case, LCPS has costΘ(r) times of the
cost of VMST. Notice that for any graphG, we will show
that LCPS has cost at mostr times of the cost of VMST. For

any nodeqi, clearly, ‖LCP(s, qi, G)‖ ≤ ω(V MST ). Thus,
ω(LCPS) =

∑r
i=1 ‖LCP(s, qi, G)‖ ≤ r · ω(V MST ).

Let PA(c) be the total payment to all relay nodes under a
payment schemeA. Although our payment scheme is based
on a structure VMST whose total cost is within5 times of the
minimum cost spanning tree for UDG, we cannot guarantee any
relations between the total paymentsPV MST (c),PLCP (c), and
PV CG(c).

IV. EXPERIMENTAL RESULTS

Remember no matter the underline structures is VMST or
LCPS, the payment is always greater or equals the actual cost.
For a structureH, letc(H) be its cost andps(H) be the payment
of schemes based on this structure. We define the overpayment
ratio of the payment schemes based on structureH as

ORs(H) =
ps(H)
c(H)

. (3)

When it is clear from the context, we often simplify the notation
asOR(H).

In [?], Archer and Tardos presented a simple example to show
that the overpayment for unicast could be as large asΘ(n). With
a little modification of their example, it is not difficult to show
that the overpayment ratio for We conducted extensive simula-
tions to study the overpayment ratio of various schemes pro-
posed in this paper.

In our experiments, we compare the performance of structure
LCPS and VMST according to three different metrics: actual
cost, total payment and overpayment ratio. Figure 4 shows the
LCPS and VMST structure when the original graph is a unit disk
graph (UDG). Here, the grey nodes are receivers.

LCPS VMST

Fig. 4. LCPS and VMST structure

In our experiment, we randomly generaten terminals uni-
formly in a 2000ft × 2000ft region. The transmission range
range of each terminal is set to300ft. The costci of a terminal
vi is c1 + c2 ∗ 300κ, wherec1 takes value from300 to 500, c2

takes value from10 to 50. The ranges ofc1 andc2 we used here
reflects the actual power cost in one second of a node to send
data at2Mbps rate.

A. Fixed receiver number and varies total node number

In our first experiment, we vary the number of terminals in
this region from150 to 480, and fix the number of sender to
1 and receivers to20. For a specific number of terminals, we
generate500 different networks, and compare the performance
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of different structures according to six different metrics: aver-
age cost (AC), maximum cost (MC), average payment (AP) and
maximum payment (MP), average overpayment ratio (AOR)
and maximum overpayment ratio (MOR).

As shown in figure 5, both network cost, payment and over-
payment ratio decreases when the number of nodes increases.
It is also clear in the figure that our proposed multicast struc-
ture VMST is better than the commonly used LCPS structure
for all six performance metrics. But we should point out that
more computational power is needed to carry out the payment
for VMST than for LCPS.

B. Fixed total node number and varied receiver number

In this experiment, we vary the number of receivers in this
region from5 to 45, and fix the number of sender to1 and total
node number to350. When the number of receivers increases,
it is very natural to expect the network cost and total payment
will increase. Thus, we define two new metrics that is mean-
ingful to measure the performance: one is Average Cost Per re-
ceiver (ACP) which is the network cost divided by the number
of receivers and another is Average Payment Per receiver (APP).
Notice in this paper, we didn’t discuss how to share the payment
among all receivers, but these two metrics reflects how much
each receivers need to contribute in some extent. For a specific
number of terminals, we generate500 different networks, and
also compare the performance of different structures according
to six different metrics: AC, ACP, AP, APP, AOR and MOR.

The second part in figure 6 shows that when the number of
the receivers increases, the network cost and payment divided
by the number of receivers is decreased. It is just what we ex-
pected because in wireless ad hoc networks, very node use a
broadcast manner to distribute the packet. One interesting ob-
servation in the first part of figure 6 is that the network cost
and payment doesn’t increase when the number of receiver in-
creases. Instead, it display a bimodal manner such that when the
number of receivers is greater than some threshold, the total net-
work cost and payment will decrease. We guess this is because
of our assumption that all receivers will relay for free. Consider-
ing when all nodes are receivers, the network cost and payment
will become0. Another thing deserve attention is in the third
part of figure 6, both MOR and AOR for LCPS increase when
the number of receivers increase. This interesting phenomena
needs future study.

V. PRIORI ARTS

Routing has been part of the algorithmic mechanism-design
from the beginning. Nisan and Ronen [5] provided a
polynomial-time strategyproof mechanism for optimal unicast
route selection in a centralized computational model. In their
formulation, the network is modelled as an abstract graphG =
(V, E). Each edgee of the graph is an agent and has a pri-
vate typete, which represents the cost of sending a message
along this edge. They used the least cost path between two
nodesx and y to routing the packet. Their payment scheme
is a VCG mechanism. The payment to agente is 0 if e is not
onLCP(x, y,G), and the payment isDG−{e}(x, y)−DG(x, y)
if e is on LCP(x, y, G). HereDG−{e}(x, y) is the cost of the
LCP throughG when edgee is not presented andDG(x, y) is

the cost ofLCP(x, y, G) throughG. In addition, the result in
[5] can be easily extended to deal with all-to-all traffics instead
of the fixed source and destination node.

Feigenbaumet. al [9] then addressed the truthful low cost
routing in a different network model. They assumed that each
nodek incurs a transit costck for each transit packet it carries.
For any two nodesi andj of the network,Ti,j is the total traffic
(number of packets) fromi to j. Their payment scheme again
is essentially the VCG mechanism. They also gave a distributed
method such that each nodei can compute a numberpk

ij > 0,
which is the payment to nodek for carrying the transit traffic
from nodei to nodej if nodek is onLCP(i, j). The algorithm
converges to a stable state afterd′ rounds, whered′ is the max-
imum of diameters of graphG removing a nodek, over allk.
Since the mechanism is truthful, any node cannot lie its cost to
improve its profit in their distributed algorithm. However, as
they pointed [9], it is unclear how to prevent these selfish nodes
from running a different algorithms in computing a payment that
is more favorable to themselves since we have to rely on these
nodes to run the distributed algorithm, although we know that
the nodes will input their true values.

For multicasting flow, Feigenbaumet. al [17] assumed that
there is a multicast infrastructure, given any set of receivers
Q ⊂ V , connects the source node to the receivers. Additionally,
for each userqi ∈ Q, they assumed afixedpath from the source
to it, determined by the multicast routing infrastructure. Then
for every subsetR of receivers, the delivery treeT (R) is merely
the union of the fixed paths from the source to the receiversR.
They also assumed that there is a link cost associated with each
communication link in the network and the link cost isknownto
everyone. For each receiverqi, there is a valuationwi that this
node values the reception of the data from the source. This in-
formationwi is only known toqi. Nodeqi will report a number
w′i, which is the amount of money he/she is willing to pay to
receive the data. The source node then select a subsetR ⊂ Q of
receivers to maximize the difference

∑
i∈R w′i − C(R), where

C(R) is the cost of the multicast treeT (R) to send data to all
nodes inR. The approach of fixing the multicast tree is rela-
tively simple to implement but could not model the greedy na-
ture of all wireless nodes in the network since it requires that the
link costs of the tree are known priori to every node.

VI. CONCLUSION

In this paper, we studied how to design a multicast routing
protocol for selfish and rational wireless ad hoc networks, in
which each wireless node will relay the data packets for other
nodes when it receives a payment to compensate its cost. We
proposed the first truthful mechanism that is based on a multi-
cast structure whose total cost is within5 times of the optimum
when the wireless networks are modelled by unit disk graphs.
We also gave efficient method to compute the payment for all
relay nodes on the constructed multicast tree. We proved that
each node will follow the protocol and will maximize its profit
when it declares its true cost. Our payment scheme also works
when the network is modelled by a general graph, but we can-
not prove that the total cost of the routing structure is within a
constant factor of the optimum. It remains an open problem to
design an efficient truthful mechanism that can be computed in
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polynomial time when the network is modelled by an arbitrary
node weighted graph. Here a protocol is efficient if the total
cost of the output structure is within a constant factor of the best
possible among any polynomial time computable outputs.
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