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ABSTRACT
In wireless network, it is often assumed that each individual
wireless terminal or link will faithfully follow the prescribed
protocols without any deviation– except, perhaps, for the
faulty or malicious ones. Wireless terminals or links, often
owned by individuals, will likely do what is most beneficial
to their owners – act “selfishly”. Thus, it is more reasonable
to expect that each selfish terminal will try to manipulate
the algorithms or protocols for its owners’ benefit, instead
faithfully follow the designed protocols. Therefore, an algo-
rithm or protocol intended for selfish wireless terminals or
links must be designed.

In this paper, we specifically study how to conduct effi-
cient multicast in selfish wireless networks. We assume that
each wireless terminal or communication link (called agent)
will incur a cost when it transits some data, and the cost is
known to the wireless terminal or communication link itself.

For each of the widely used structures for multicast, we
design a strategyproof multicast mechanism without using
the well known VCG mechanism such that each agent has
to truthfully report its cost to maximize its profit.

Extensive simulations are conducted to study the prac-
tical performances of the proposed protocols regarding the
actually network cost and total payment.

1. INTRODUCTION
Recent years saw a great amount of researches in wireless

networks on various important problems such as routing,
Quality of Service, security, power management, and traf-
fic and mobility modelling. However, there are still many
challenges left.

While unicast in wireless network has been studied ex-
tensively in literatures and deployed in practice for years,
several important issues about multicast over wireless net-
works haven’t been explored fully. In practice, multicast-
ing is a more efficient way to support group communication
than unicasting or broadcasting, as it can transmit packets
to destination using fewer network resource. Typical wire-
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less multicast application including group-oriented mobile
commerce, military command and control, distance educa-
tion, and intelligent transportation systems. For multicast
routing, usually a tree among sources and receivers is used
because it requires less network resource than other struc-
tures. Most often, these tree structures are based on short-
est paths from the sender to the receivers or the minimum
spanning tree. During the process of building the multicast
tree, most works intrinsically assumed that each individual
wireless terminals or wireless links (possibly owned by self-
ish users) will follow prescribed protocols without deviation,
which is known as cooperative. However, this assumption is
not always true. The limitation of energy supply and scarce
resources of these mobile devices raise concerns about this
traditional belief. Following the common belief in neoclassic
economics, it is more reasonable to assume all wireless ter-
minals or links are rational : they try to maximize their ben-
efit instead of conforming to the existing protocols. Thus,
we need to design some mechanisms to assure these ratio-
nal wireless terminals or links will conform to our protocol
without deviation.

How to achieve cooperation among terminals in network
was previously addressed in [4, 12, 14, 3, 5, 17, 18]. The
key idea behind these approaches is that terminals provid-
ing a service should be remunerated, while terminals receiv-
ing a service should be charged. Each terminal maintains a
counter, called nuglet counter, in a tamper resistant hard-
ware module, which is decreased when the terminal sends
a packet as originator and increased when the terminal for-
wards a packet. Both of these methods belong to so called
credit based method. Usually, they are heuristic and need
some special hardware. In recent years, incentive based
methods have been proposed to solve the non-cooperative
problem. The most well-known and widely used incentive
based method is so called VCG mechanism family by Vickrey
[20], Clarke [6], and Groves [10]. Nisan and Ronen [15] pro-
vided a mechanism belonging to VCG family to assure the
cooperation for unicast problem in general network. Unfor-
tunately, as we will show later, if we apply VCG mechanism
to those commonly used multicast tree structures, it can’t
guarantee wireless agents’ conforming to our protocol. So
in this paper, we study how to design non-VCG truthful
mechanisms for multicast in selfish wireless networks.

The rest of the paper is organized as follows. First, we
introduce some preliminaries and related works in Section
2. We also present our communication model and the prob-
lems to be solved in this paper. We study the strategy-proof
mechanism for link weighted network in Section 3 and node



weighted network in Section 4. Simulation results are pre-
sented in Section 5. We conclude our paper in Section 6 by
pointing out some possible future work.

2. PRELIMINARIES AND PRIORI ART

2.1 Preliminaries
In designing efficient, centralized or distributed algorithms

and network protocols, the computational agents are typi-
cally assumed to be either correct/obedient or faulty (also
called adversarial). Here agents are said to be correct/obedient
if they follow the protocol correctly; agents are said to be
faulty if (1) they stop working, or (2) they drop messages,
or (3) they act arbitrarily, which is also called Byzantine
failure, i.e., they may deviate from the protocol in arbitrary
ways that harm other users, even if the deviant behavior
does not bring them any obvious tangible benefits.

In contrast, economists design market mechanisms in which
it is assumed that agents are rational. The rational agents
respond to well-defined incentives and will deviate from the
protocol only if it improves their gain. A rational agent is
neither correct/obedient nor adversarial.

A standard economic model for the design and analysis
of scenarios in which the participants act according to their
own self-interests is as follows. Assume that there are n
agents, which could be the wireless devices in a wireless
ad hoc networks, the computers in a peer-to-peer networks,
the network links in a network, or the bidders in an auction.
Each agent i, for i ∈ {1, · · · , n}, has some private informa-
tion ti, called its type. Here, the type ti could be its cost
to forward a packet in a network environment; could be a
monetary value that it is willing to pay for a good in an
auction environment. Then the set of n agents define a type
vector t = (t1, t2, · · · , tn).

A mechanism defines, for each agent i, a set of strategies
Ai. For each strategy vector a = (a1, · · · , an), i.e., agent i
plays a strategy ai ∈ Ai, the mechanism computes an output
o = o(a1, · · · , an) and a payment vector p = (p1, · · · , pn),
where pi = pi(a1, · · · , an). Here the payment pi is the
money given to the participating agent i and it depends
on the strategies used by all agents. If pi < 0, it means that
the agent has to pay −pi to participate in the action.

For each possible output o, agent i’s preferences are given
by a valuation function vi that assigns a real monetary num-
ber vi(ti, o) to output o. Everything in the scenario is public
knowledge except the type ti, which is a private information
to agent i. For example, in an instance of unicast routing,
there are n network terminals, which are n agents. Agent
i’s type is its cost ci of forwarding a given data. The space
of feasible outputs consists of all paths that connect the
source and target terminal. The valuation of terminal k for
a path connecting source and target is −ck if terminal k is
on the path and 0 otherwise. Let ui(ti, o(a), pi(a)) denote
the utility of agent i at the outcome of the game, given its
preferences ti and strategies profile a = (a1, · · · , an) selected
by agents. Let a−i = (a1, · · · , ai−1, ai+1, · · · , an) denote the
vector of strategies of all other agents except i. A strategy
ai is called dominant strategy if it maximizes the utility for
all possible strategies of all other agents, i.e.,

ui(ti, o(ai, b−i), pi(ai, b−i)) ≥ ui(ti, o(a
′
i, b−i), pi(a

′
i, b−i))

for all a′i 6= ai and all strategies b−i of agents other than i. A
strategy vector a is called Nash Equilibrium if it maximizes

the utility when the strategies of all agents are fixed, i.e.,

ui(ti, o(ai, a−i), pi(ai, a−i)) ≥ ui(ti, o(a
′
i, a−i), pi(a

′
i, a−i))

for all i, and a′i 6= ai.
A very common assumption in mechanism design, and one

which we will follow in this paper, is that agents are rational
and have quasi-linear utility functions. The utility function
is quasi-linear if ui(ti, o) = vi(ti, o) + pi. An agent is called
rational, if agent i always tries to maximize its utility ui by
finding its best strategy.

The system-wide goal in mechanism design is defined by
a social choice function g(), which, given agent types, se-
lects the optimal outcome. Given mechanism with outcome
function o(), we say that a mechanism implements social
choice function g() if the outcome computed with equilib-
rium agent strategies is a solution to the social choice func-
tion for all possible agent preferences. An output function
o of a mechanism is allocatively-efficient if it maximizes the
summation of valuations of all agents, i.e.,

∑n
i=1 vi(ti, o) ≥∑n

i=1 vi(ti, o
′) for all possible types t. A mechanism is effi-

cient if it implements an allocatively-efficient social choice
function.

A direct-revelation mechanism is a mechanism in which
the only actions available to agents are to make direct claims
about their preferences vi to the mechanism. An incentive
compatible (IC) mechanism is a direct-revelation mechanism
in which agents report their valuations vi to the mecha-
nism truthfully so as to maximize its utility. Incentive-
compatibility captures the essence of designing a mecha-
nism to overcome the self-interest of agents: in an incen-
tive compatible mechanism an agent will choose to report
its private information truthfully in order to maximize its
utility. A direct-revelation mechanism is strategy-proof if
truth-revelation is a dominant-strategy equilibrium. Let
t|ib = (t1, · · · , ti−1, b, ti+1, · · · , tn), i.e., each agent j 6= i
reports its type tj except that the agent i reports type b.
Then, in a direct-revelation strategy-proof mechanism, the
payment function should satisfy that, for each agent i,

vi(ti, o(t)) + pi(t) ≥ vi(ti, o(t|ib)) + pi(t|ib).
The strategy-proof mechanism wants each agent to re-

port its private type truthfully by providing incentives to
agents. Another very common requirement in the literature
for mechanism design is so called individual rationality or
voluntary participation: the agent’s utility of participating
in the output of the mechanism is not less than the utility
of the agent if it did not participate.

For unicast routing, the set of strategies Ak for a terminal
k in a direct revelation mechanism is the set of possible costs
that terminal k could declare. The utility of a terminal k on
a path connecting source and target is the payment pk for
terminal k minus its cost ck.

Arguably the most important positive result in mecha-
nism design is what is usually called the generalized Vickrey-
Clarke-Groves (VCG) mechanism by Vickrey [20], Clarke
[6], and Groves [10]. The VCG mechanism applies to maxi-
mization problems where the objective function is simply the
sum of all agents’ valuations. A maximization mechanism
design problem is called utilitarian if it implements a social
choice function g(o, t) =

∑
i vi(ti, o). A direct revelation

mechanism m = (o(t), p(t)) belongs to the VCG family if (1)
the output o(t) computed based on the type vector t max-
imizes the objective function g(o, t) =

∑
i vi(ti, o), and (2)



the payment to agent i is pi(t) =
∑

j 6=i vj(tj , o(t))+hi(t−i).

Here hi() is an arbitrary function of t−i. It is proved by
Groves [10] that a VCG mechanism is truthful. Green and
Laffont [9] proved that, under mild assumptions, VCG mech-
anisms are the only truthful implementations for utilitarian
problems.

An output function of a VCG mechanism is required to
maximize the objective function. This makes the mechanism
computationally intractable in many cases. Notice that re-
placing the optimal algorithm with non-optimal approxima-
tion usually leads to untruthful mechanisms if VCG payment
method is used. In their seminal paper on algorithmic mech-
anism design, Nisan and Ronen [15] add computational effi-
ciency to the set of concerns that must be addressed in the
study of how privately known preferences of a large group of
selfish agents can be aggregated into a “social choice” that
results in optimal allocation of resources.

In summarize, we want to design strategy-proof multicast
for a selfish wireless network with the following properties.
1)Incentive Compatibility (IC): an agent will reveal its true
cost to maximize its utility no matter what the other agents
do. 2)Individual Rationality (IR): an agent is guaranteed
to have non-negative utility if it reports its type truthfully
no matter what other agents do. 3)Polynomial Time Com-
putability (PC): all computations (the computation of the
output and the payment) are done in polynomial time.

2.2 Priori Arts on Selfish Routing
Routing has been an important part of the algorithmic

mechanism-design from the very beginning. Nisan and Ro-
nen [15] provided a polynomial-time strategyproof mech-
anism for optimal unicast route selection in a centralized
computational model. In their formulation, the network is
modelled as an abstract graph G = (V, E). Each edge e
of the graph is an agent and has a private type te, which
represents the cost of sending a message along this edge.
The mechanism-design goal is to find a Least Cost Path
(LCP) LCP(x, y) between two designated nodes x and y.
The valuation of an agent e is −te if the edge e is part of
the path LCP(x, y) and 0 otherwise. Nisan and Ronen used
the VCG mechanism for payment. The payment to agent e
is DG−{e}(x, y) − DG(x, y), where DG−{e}(x, y) is the cost
of the LCP through G when edge e is not presented and
DG(x, y) is the cost of the least cost path LCP(x, y) through
G. Clearly, there must have two link disjoint paths connect-
ing x and y to prevent the monopoly. The result in [15] can
be easily extended to deal with wireless unicast problem for
arbitrary pair of terminals.

Feigenbaum et. al [7] then addressed the truthful low cost
routing in a different network model. They assume that
each node k incurs a transit cost ck for each transit packet
it carries. For any two nodes i and j of the network, Ti,j is
the intensity of the traffic (number of packets) originating
from i and destined for node j. Their strategyproof mech-
anism again is essentially the VCG mechanism. They gave
a distributed method such that each node i can compute a
payment pk

ij > 0 to node k for carrying the transit traffic
from node i to node j if node k is on the LCP LCP(i, j). An-
deregg and Eidenbenz [1] recently proposed a similar routing
protocol for wireless ad hoc networks based on VCG mech-
anism again. They assumed that each link has a cost and
each node is a selfish agent.

For multicast flow, Feigenbaum et. al [8] assumed that

there is a fixed multicast infrastructure, given any set of
receivers Q ⊂ V , connects the source node to the receivers.
Additionally, for each user qi ∈ Q, they assumed a fixed path
from the source to it, determined by the multicast routing
infrastructure. Then for every subset R of receivers, the
delivery tree T (R) is merely the union of the fixed paths from
the source to the receivers R. They also assumed that there
is a link cost associated with each communication link in the
network and the link cost is known to everyone. For each
receiver qi, there is a valuation wi that this user values the
reception of the data from the source. This information wi

is only known to qi. User qi will report a number w′i, which
is the amount of money he/she is willing to pay to receive
the data. The source node then selects a subset R ⊂ Q of
receivers to maximize the difference

∑
i∈R w′i−C(R), where

C(R) is the cost of the multicast tree T (R) to send data to
all nodes in R. The approach of fixing the multicast tree
is relatively simple to implement but could not model the
greedy nature of all network terminals in the network.

There is a vast literature on the mechanism design or im-
plementation paradigm in which some mechanisms are de-
signed to achieve the socially desirable outcomes in spite of
users’ selfishness. Some of these approaches use Nash equi-
librium rather than dominant-strategy. That is, they as-
sumed that simultaneous selfish play leads to a self-consistent
Nash equilibrium, in which no agent can improve its util-
ity by deviating from its current strategy when other agents
keep their strategies. Notice that since Nash equilibrium has
a weak requirement on the strategies used by the agents, it
often can achieve a much wider variety of outcomes.

2.3 Communication Model
In this paper, as did in the literature, we study two differ-

ent models of wireless networking: link weighted and node
weighted networking. For both models, usually the commu-
nication links are needed to be symmetric due to the follow-
ing requirement: each receiver has to send an acknowledg-
ment packet directly to the sender after it received the data.
Thus, in this paper, we consider all communication links as
undirected. Actually, our results can apply to case when the
link is directed with some minor modification.

In a link weighted network, each communication link in-
curs a cost when a message is sent over it and the commu-
nication link is an agent, e.g., the marginal cost of this link
transmitting the data. For example, in a cellular networks,
it could be the cost of using the channel. For node weighted
network each communication terminal will incur a cost when
it has to relay a message for other node. Typical example of
a node weighted network is the wireless ad hoc network with
fixed transmission range. In a wireless ad hoc network (or
sensor network) each node has some computation power and
an omni-directional antenna. This is attractive for a single
transmission of a node can be received by all nodes within its
vicinity. The main communication cost in wireless networks
is to send out the signal while the receiving cost of a mes-
sage is neglected here. Throughout this paper, we always
assume that our network is bi-connected, which implies
that if we remove the agent the network is still connected.
This assumption is necessary to prevent some nodes from
being monopoly and charging arbitrary cost, in addition to
increase network robustness.

It is well known that finding the minimum cost multi-
cast tree is NP-hard for both link weighted networks and



node weighted networks. So several multicast structures
have been proposed in the literature to approximate the
minimum cost multicast tree. In practice, there are two
types of multicast structures to meet the different requite-
ment of different application: source based multicast tree and
share based multicast tree. For those applications like online
movie, they usually has one or only a few senders and lots
of receivers. Therefore, we can use a source based multi-
cast tree in which receivers only receive messages but do
not send them. On the other hand, many applications have
lots of active senders, such as distributed interactive sim-
ulation applications, and distributed video-gaming (where
most receivers are also senders). Due to scalability reason,
share based tree has been used instead of source based tree.

In this paper, we study how to design truthful payment
schemes for the most widely used multicast trees, including
source based trees and shared trees for both edge weighted
and node weighted networks.

2.4 Problem Statement
Consider any communication network G = (V, E, c), where

V = {v1, · · · , vn} is the set of communication terminals,
E = {e1, e2, · · · , em} are the set of links, and c is the cost
vector of all agents. Here agents are terminals in a node
weighted network and are links in a link weighted network.
Given a set of receivers Q = {q0, q1, q2, · · · , qr−1} ⊂ V , the
multicast problem is to find a tree T ⊂ G spanning all re-
ceiving terminals Q. For simplicity, we assume that s = q0 is
the sender of the multicast if exist. All terminals or links are
require to declare a cost of relaying the message. Based on
the declared cost profile d, we should construct the multicast
tree and decide the payment for the agents. The utility of an
agent is its payment received, minus its cost if it is selected
in the multicast tree. Instead of reinventing the wheels, we
will still use the previously proposed structures for multicast
as the output of our mechanism. Given a multicast tree, we
will study the designing of strategyproof payment schemes
based on this tree.

Given a network H, we use ω(H) to denote the total cost
of all agents in this network. If we change the cost of any
agent i (link ei or node vi) to c′i, we denote the new network
as G′ = (V, E, c|ic′i), or simply c|ic′i. If we remove one agent
i from the network, we denote it as c|i∞. Denote G\ei as
the network without link ei, and denote G\vi as the network
without node vi and all its incident links. For the simplic-
ity of notation, we will use the cost vector c to denote the
network G = (V, E, c) if no confusion is caused.

3. MULTICAST IN LINK WEIGHTED COM-
MUNICATION NETWORKS

In this section, we discuss how to conduct truthful multi-
cast when the network is modelled by a link weighed com-
munication graph. We assume the communication network
is modelled by a undirected graph G = (V, E, c). Here, the
value of ci is only known to individual link ei.

We specifically study the following three structures: least
cost path star (LCPS), pruning minimum spanning tree (PMST),
and link weighted Steiner tree (LST). Notice that the first
and the third structure belong to the family of the source
based multicast tree, while the second structure belongs to
the share based multicast tree.

3.1 Least Cost Path Star

In practice, this is the most widely used multicast distri-
bution tree. Notice that, although we only discuss the using
of least cost path star for the link weighted network (i.e., the
link will incur a cost when transmitting data), all results we
presented in this subsection can be extended to the node
weighted scenario without any difficulty.

3.1.1 Constructing LCPS
For each receiver qi 6= s, we compute the shortest path

(least cost path), denoted by LCP(s, qi, d), from the source
s to qi under the reported cost profile d. The union of all
least cost paths from the source to receivers is called least
cost path star, denoted by LCPS(d). Next we discuss how
to design a truthful payment scheme while using LCPS as
the output.

3.1.2 VCG mechanism on LCPS is not strategyproof
Intuitively, we would use the VCG payment scheme in

conjunction with the LCPS tree structure as follows. The
payment pk(d) to each link ek is

pk(d) = ω(LCPS(d|k∞))− ω(LCPS(d)) + dk.

We show by an example that the above payment scheme is
not strategyproof. In other words, if we simply apply VCG
scheme on LCPS, a link may have incentives to lie about its
cost. Figure 1 illustrates such an example where link sv3

can lie its cost to improve its utility.
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Figure 1: The cost of links are c(sq1) = c(sq2) =
c(sv3) = M , and c(q1v3) = c(q2v3) = ε. Here, q1 and
q2 are the receiving terminals.

The payment to link sv3 is 0 and its utility is also 0 if it
reports its cost truthfully. The total payment to link sv3

when sv3 reported a cost d3 = M − 2ε is ω(LCPS(c|3∞))−
ω(LCPS(c|3d3)) + d3 = 2M − (M − 2ε + 2ε) + M − 2ε =
2M − 2ε and the utility of link sv3 becomes u3(c|3d3) =
2M −2ε− (M + ε) = M −3ε, which is larger than u3(c) = 0,
when 0 < ε < M/3.

3.1.3 Strategyproof mechanism on LCPS
Now, we describe our strategyproof mechanism that does

not rely on VCG payment. For each receiver qi 6= s, we com-
pute the least cost path from the source s to qi, and compute
a payment pi

k(d) to every link ek on the LCP(s, qi, d) using
the scheme for unicast

pi
k(c) = dk + |LCP(s, qi, d|k∞)| − |LCP(s, qi, d)|.

Here |LCP(s, qi, d)| denotes the total cost of the least cost
path LCP(s, qi, d). The final payment to link ek is then

pk(d) = max
qi∈Q

pi
k(d) (1)

Theorem 1. Payment (1) based on LCPS is truthful and
it is minimum among all truthful payments based on LCPS.



Proof. Clearly, when link ek reports its cost truthfully,
it has non-negative utility, i.e., the payment scheme satis-
fies the IR property. In addition, since payment scheme for
unicast is truthful, so ek cannot lie its cost to increase its
payment pi

k(c) based on LCP(s, qi, d). Thus, it cannot in-
crease maxqi∈Q pi

k(c) by lying its cost. In other words, our
payment scheme is truthful.

We then show that the above payment scheme pays the
minimum among all strategyproof mechanism using LCPS
as output. Before showing the optimality of our payment
scheme, we give some definitions first. Consider all paths
from sender s to receiver qi, they can be divided into two
categories: with edge ek or not. The path having the min-
imum length among these paths with edge ek is denoted
as LCPek (s, qi, d); and the path having the minimum length
among these paths without edge ek is denoted as LCP−ek (s, qi, d).

Assume there is another payment scheme p̃ that pays less
for a link ek in a network G under cost profile d. Let δ =
pk(d)−p̃k(d), then δ > 0. Without loss of generality, assume
that pk(d) = pi

k(d). Thus, link ek is on LCP(s, qi, d) and the
definition of pi

k(d) implies that

|LCP−ek (s, qi, d)| − |LCP(s, qi, d)| = pk(d)− dk.

Then consider another cost profile d′ = d|k(pk(d)− δ
2
) where

the true cost of link ek is pk(d)− δ
2
. Under profile d′, since

|LCP−ek (s, qi, d
′)| = |LCP−ek (s, qi, d)|, we have

|LCPek (s, qi, d
′)| = |LCPek (s, qi, d|k0)|+ pk(d)− δ

2

= |LCPek (s, qi, d)|+ pk(d)− δ

2
− dk

= |LCP(s, qi, d)|+ pk(d)− δ

2
− dk

= |LCP−ek (s, qi, d)| − δ

2

< |LCP−ek (s, qi, d)| = |LCP−ek (s, qi, d
′)|

Thus, ek ∈ LCPS(d′). From the following Lemma 2,
we know that the payment to link ek is the same for cost
profile d and d′. Thus, the utility of link ek under profile d′

by payment scheme p̃ becomes p̃k(d′) − ck = p̃k(d) − ck =
p̃k(d)− (pk(d)− δ

2
) = − δ

2
< 0. In other words, under profile

d′, when link ek reports its true cost, it gets a negative utility
under payment scheme p̃. Thus, p̃ is not strategyproof. This
finishes our proof.

Lemma 2. If a mechanism based on a tree T with pay-
ment function p̃ is truthful, then for every agent ak in net-
work, if ak ∈ T then payment function p̃k(d) should be in-
dependent of dk.

Proof. We prove it by contradiction. Suppose that there
exists a truthful payment scheme such that p̃k(d) depends
on dk. There must exist two valid declared costs x1 and x2

such that x1 6= x2 and p̃k(d|kx1) 6= p̃k(d|kx2). Without loss
of generality we assume that p̃k(d|kx1) > p̃k(d|kx2). Now
consider agent ak with actual cost ck = x2. Obviously, it
can lie its cost as x2 to increase his utility, which violates
the incentive compatibility (IC) property.

3.1.4 Computational Complexity
Assume there are r receivers, for every terminal qi, we

calculate the payment for all nodes vk ∈ LCP(s, qi, c) based

on LCP(s, qi, c) using the fast payment scheme for unicast
problem [21]. This will take O(n log n + m) time. So for all
terminals, it will take O(rn log n + rm). Note that we can
construct the least cost path star in time O(n log n + m).
A very natural question is whether we can reduce the time
complexity from O(rn log n + rm) to O(n log n + m). We
leave it as an open question.

3.2 Pruning Minimum Spanning Tree

3.2.1 Constructing PMST
First we construct the minimum spanning tree MST (G)

on the graph G. We then root the tree MST (G) at sender
s, prune all subtrees that do not contain a receiver. The
final structure is called Pruning Minimum Spanning Tree
(PMST).

3.2.2 VCG mechanism on PMST is not strategyproof
Intuitively, we would use the VCG payment scheme in

conjunction with the PMST structure. The payment to an
edge ek ∈ PMST (G) based on VCG would be as follows

pk(d) = ω(PMST (d|k∞))− ω(PMST (d)) + dk.

We show by an example that the above payment scheme
is not strategyproof. Figure 2 illustrates such an example
where link q1v1 has a negative utility when it reveals its true
cost.
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Figure 2: Terminals S is the send and q1,q2 are re-
ceivers; c(sq1) = 1.5 and c(q1q2) = c(sv3) = c(v3q2) = 1.

If sv3 reveals its true cost, then the payment to link sv3 is
ω(PMST (G\sv3))−ω(PMST (G)+c(sv3) = 2.5−3+1 = 0.5
and the utility of link sv3 becomes −0.5, which violates IR.

3.2.3 Strategyproof mechanism on PMST
We now discuss our strategyproof payment scheme using

PMST as the output. Instead of applying the VCG mech-
anism on PMST, we apply VCG mechanism on the MST.
The payment for edge ek ∈ PMST (d) is

pk(d) = ω(MST (d|k∞))− ω(MST (d)) + dk. (2)

For edge ek 6∈ PMST (d), its payment is 0.

Theorem 3. Our payment scheme (2) is truthful and min-
imal among all truthful payment schemes based on PMST.

Proof. For link ek ∈ PMST (d) or ek 6∈ MST (d), the
payment is exactly the payment based on MST structure.
Notice the payment based on MST belongs to VCG mech-
anism, so it is truthful. Thus, if ek ∈ PMST (d) or ek 6∈
MST (d), it don’t have the incentive to lie. Now considering
when ek ∈ MST (d)−PMST (d). If ek lies its cost such that
ek 6∈ MST (d), then it still gets utility 0; else the MST will
keep unchanged which implies that ek is still not in PMST .
Thus, ek also don’t have the incentive to lie in this case. So
our payment scheme (2) is truthful.



For ek ∈ PMST (d) our payment is same as the payment
for MST , which is a VCG mechanism. Thus, our payment is
minimal among all truthful payment scheme if the output is
PMST. Detailed proof is omitted here due to space limit.

3.2.4 Computational Complexity
Obviously, we can construct the PMST in time O(n log n+

m). We then analyze the time complexity of computing all
links’ payment in PMST. Let G\MST (G) be the graph after
removing the edges of MST (G) from G. Call the minimum
spanning tree of G\MST (G) the second minimum spanning
tree, denoted by MST2(G). It was shown that the total
payment to all links in the MST equals to the actual cost
of the MST2(G) in [2]. Also, it is not difficult to calculate
payment for every link in PMST in time O(n log n + m),
which is optimal.

3.3 Link Weighted Steiner Tree (LST)
It is well-known [16, 19] that it is NP-hard to find the

minimum cost multicast tree when given an arbitrary link
weighted graph G. For LCPS and PMST structure, while
they usually work well in practice, in some extreme situa-
tion, the cost of these structures could be arbitrary larger
than the optimal cost. From a computer science view, it
is desirable that we can find a structure such that even in
worst case, the cost of structure is at most α times of the
optimal. In literature, this structure is said to have a α-
approximation of the optimal and α is called approximation
ratio.

Takahashi and Matsuyama [19] first gave a polynomial
time algorithm that can output 2-approximation of the mini-
mum cost Steiner tree (MCST). Then a series of results have
been developed to improve the approximation ratio. The
current best result is due to Robins and Zelikovsky [16], in
which the authors presented a polynomial time method with
approximation ratio 1+ ln 3

2
. Takahashi and Matsuyama’s al-

gorithm is simpler and can be implemented in a distributed
way, which fits the need of wireless networks. Thus, we use
this algorithm instead of the algorithm with the best ap-
proximation ratio to construct multicast tree.

3.3.1 Constructing the LST
We first review the algorithm by Takahashi and Mat-

suyama:

Algorithm 1. (Takahashi and Matsuyama [19])

Repeat the following steps until no receiver remains:

1. Find one of the remaining receiver, say qi, that is clos-
est to the source s, i.e., the LCP(s, qi, d) has the least
cost among the shortest paths from s to all receivers.

2. Connect qi to s using the least cost path between them
and contract this least cost path to one virtual vertex.
Remove some edges during contracting if necessary.
This is virtual source terminal for next round.

For each iteration in Algorithm 1, we call it a round. Let
Pi be the path found in round i, and ti be the receiver it
connects with the virtual source terminal. Given r receivers,
the method terminates in r rounds. Hereafter, let LST (d)
be the final tree constructed by Algorithm 1. The authors
of [19] proved that ω(LST (d)) ≤ 2ω(MCST (d)).

3.3.2 VCG mechanism on LST in not strategy-proof
Given a tree LST (d) approximating the minimum cost

Steiner tree, a natural payment scheme would be to pay
each edge based on VCG scheme, i.e., the payment to an
edge ek ∈ LST (G) is

pk(d) = ω(LST (d|k∞))− ω(LST (d)) + dk.

We give an example to show that this payment scheme does
not satisfy IR property, i.e., it is possible that some edges
have negative utility. Figure 3 illustrates the example with
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Figure 3: Terminals qi, 1 ≤ i ≤ k are receivers; the
cost of each link vk+1qi and vk+1s is 1+ ε, where ε is a
sufficiently small positive real number. The cost of
each link qiqi+1 and sq1 is 2.

terminal s being the source terminal. It is not difficulty to
show that, in the first round, link sq1 is selected to con-
nect terminals s and q1 with cost 2; in round r, we will
select link qr−1qr to connect to qr with cost 2. Thus, the
tree LST (G) will be just the path sq1q2 · · · qk, whose cost is∑k−1

i=1 c(qiqi+1) + c(sq1) = 2k.
When link e1 = q1q2 is not used, it is easy to see that the

final tree LST (G\e1) will only use terminal vk+1 to connect
all receivers with total cost (k + 1)(1 + ε). Thus, the utility
of link e1 = sq1 is ω(LST (G\e1)) − ω(LST (G)) = (k +
1)(1+ ε)− 2k = kε− k +2, which is negative when ε < k−2

k
.

Thus, the payment to link sq1 does not satisfy the incentive
rationality property.

3.3.3 Strategy-proof mechanism based on LST
In this subsection we describe our strategyproof mecha-

nism (without using VCG) based on LST . Instead of paying
the wireless link based on the final structure LST, we will
calculate a payment for each round and choose the maxi-
mum as the final payment. Let wi(d) be the cost of the
path Pi selected in the ith round if the cost profile is d.

Algorithm 2. Truthful payment to ek based on LST

1. Use Algorithm 1 to find LST (d|k∞). The graph used

in the beginning of round i is denoted as G
−ek
i .

2. For every round i, considering graph G
−ek
i

⋃
ek, find

LCP from s to every remaining receivers and choose
the LCP with the minimum weight. For simplicity, we
denote this LCP as P′i(d).

3. Define the payment for edge ek in round i as

pi
k(d) = wi(d|k∞)− |P′i(d)|+ dk

4. The final payment to link ek on LST (d) is

pk(d) =
r

max
i=1

pi
k(d) (3)



Theorem 4. Our payment scheme based on LST is strategy-
proof and minimum among all truthful payment schemes
based on LST.

Proof. First, for every round i, the payment scheme
pi

k(d) belongs to VCG mechanism, so ek gets maximum and
non-negative utility from round i if reveals its true cost ck.
Notice the final payment scheme is the maximal of pi

k(d)
over all round i, so ek gets maximum and non-negative un-
der payment scheme (3) when it reveals its true cost ck.
Thus, our payment scheme is strategy-proof.

Now we prove the optimality of our payment scheme. We
prove by contradiction. Suppose there exists a payment
scheme p̃ such that for profile d, p̃k(d) < pk(dk), which
equals p̃k(d) = pk(dk) − δ (δ > 0). From the IR prop-
erty, we can assure that ek is selected under profile d. Here
we argue that if dk < pk(dk), then ek ∈ LST (d). Without
loss of generality, we can assume pk(dk) = pi

k(dk). If ek is
selected before round i, then done. Else, in round i, we have
dk < pk(dk) = pi

k(dk) = wi(d|k∞)−|P′i(d|k0)|. This implies
that wi(d|k∞) > |P′i(d|k0)|+dk, which guarantees that ek is
selected in round i. Considering profile d|kpk(dk) − δ

2
with

ek’s true cost ck = pk(dk)− δ
2
. From lemma 2, ek’s payment

under p̃ equals to p̃k(d|ipk(dk) − δ
2
) = pk(dk) − δ, which is

smaller than the true cost ck = pk(dk)− δ
2

of link ek. This
violates the assumption that payment scheme p̃ is truthful,
which finishes our proof.

3.3.4 Computational Complexity
For every round, the payment pi

k(d) could be calculated
in time O(n log n + m). There are r rounds, where r is the
number of receivers, so overall complexity is O(rn log n +
rm). The question left unsolved is can we reduce the time
complexity to O(n log n+m), which should be optimal if we
can achieve that.

4. MULTICAST IN NODE WEIGHTED COM-
MUNICATION NETWORKS

In this section, we discuss in detail how to conduct truth-
ful multicast when the network is modelled by a node weighed
communication graph. We specifically study the following
two structures: virtual minimum spanning tree (VMST)
and node weighted Steiner tree (NST). Although LCPS is
a very commonly used structure in node weighted wireless
networks, but its construction and strategy-proof payment
scheme are nearly the same as in the link weighted networks,
so we omit the discussion of this structure here. Notice both
VMST and NST are source based multicast trees, which im-
plies that the receivers could also be the sender. In practice,
for those shared based trees, receivers/senders in the same
multicast group are usually belong to the same organization
or company, so their behavior can be expected to be coop-
erative instead of uncooperative. Thus, we assume every
receiver will relay the packet for free.

4.1 Virtual Minimum Spanning Tree

4.1.1 Constructing the VMST
We first describe our method to construct the virtual min-

imum spanning tree.

Algorithm 3. Virtual MST Algorithm

1. First, calculate the pairwise least cost path LCP(qi, qj , d)
between any two terminals qi, qj ∈ Q when the cost
vector is d.

2. Construct a virtual complete link weighted network K(d)
using Q as its terminals, where the link qiqj corre-
sponds to the least cost path LCP(qi, qj , d), and its weight
w(qiqj) is the cost of the path LCP(qi, qj , d), i.e., w(qiqj) =
|LCP(qi, qj , d)|.

3. Build the minimum spanning tree (MST) on K(d).
The resulting MST is denoted as V MST (d).

4. For every virtual link qiqj in V MST (d), we find the
corresponding least cost path LCP(qi, qj , d) in the orig-
inal network. Combining all these paths can generate
a subgraph of G, say V MSTO(d).

5. In V MSTO(d), build a LCPS rooted at s and span-
ning all receivers. The final tree is called LCPS −
V MST (d).

Notice terminal vk is in LCPS − V MST (d) iff vk is on
some virtual links in the V MST (d), so we can focus our
attention on these terminals in V MST (d).

4.1.2 VCG mechanism on VMST is not strategy-proof
In this subsection, we show that a simple application of

VCG mechanism on VMST is not strategy-proof. Figure
4 illustrates such an example where terminal v3 can lie its
cost to improve its utility when output is VMST. The pay-
ment to terminal v3 is 0 and its utility is also 0 if it re-
ports its cost truthfully. The total payment to terminal v3

when v3 reported a cost d3 = M − ε is ω(V MST (c|3∞))−
ω(V MST (c|3d3))+d3 = 2M−(M−ε)+M−ε = 2M and the
utility of terminal v3 becomes u3(c|3d3) = 2M − (M + ε) =
M − ε, which is larger than u3(c) = 0. Thus, VCG mecha-
nism based on VMST is not strategy-proof.
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Figure 4: The cost of terminals are c4 = c5 = M and
c3 = M + ε.

4.1.3 Strategyproof Mechanism on VMST
Before discussing the strategyproof mechanism based on

VMST, we give some related definitions first. Given a span-
ning tree T and a pair of terminals p and q on T , clearly there
is a unique path connecting them on T . We denote such path
as ΠT (p, q), and the edge with the maximum length on this
path as LE(p, q, T ). For simplicity, we use LE(p, q, d) to de-
note LE(p, q, V MST (d)) and use LE(p, q, d|kd′k) to denote
LE(p, q, V MST (d|kd′k)).

Following is our truthful payment scheme when the output
is the multicast tree V MST (d).

Algorithm 4. Truthful payment scheme based on VMST



1. For every terminal vk ∈ V \ Q in G, first calculate
V MST (d) and V MST (d|k∞) according to the termi-
nals’ declared costs vector d.

2. For any edge e = qiqj ∈ V MST (d) and any terminal
vk ∈ LCP(qi, qj , d), we define the payment to terminal
vk based on the virtual link qiqj as follows:

pij
k (d) = |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d)|+ dk.

Otherwise, pk
ij(d) is 0. The final payment to terminal

vk based on V MST (d) is

pk(d) = max
qiqj∈V MST (d)

pij
k (d). (4)

Theorem 5. Our payment scheme (4) is strategyproof
and minimum among all truthful payment schemes based on
VMST structure.

Instead of proving Theorem 5, we prove Theorem 6, The-
orem 9 and Theorem 11 in the remaining of this subsection.

Before the proof of Theorem 5, we give some related no-
tations and observation. Considering the graph K(d) and
a node partition {Qi, Qj} of Q, if an edge’s two end nodes
belong to different node set of the partition, we call it a
bridge. All bridges qsqt over node partition Qi, Qj in the
graph K(d) satisfying vk 6∈ LCP(qs, qt, d) form a bridge set
B−vk (Qi, Qj , d). Among them, the bridge with the mini-
mum length is denoted as MB−vk (Qi, Qj , d) when the nodes’
declared cost vector is d. Similarly, All bridges qsqt over
node partition Qi, Qj in the graph K(d) satisfying vk ∈
LCP(qs, qt, d) form a bridge set Bvk (Qi, Qj , d). The bridge
in Bvk (Qi, Qj , d) with the minimum length is denoted as
BMvk (Qi, Qj , d). Obviously, we have

BM(Qi, Qj , d) = min{BMvk (Qi, Qj , d), BM−vk (Qi, Qj , d)}.
We then state our main theorems for the payment scheme

discussed above.

Theorem 6. Our payment scheme satisfies IR.

Proof. First of all, if terminal vk is not chosen as relay
terminal, then its payment pk(d|kck) is clearly 0 and its
valuation is also 0. Thus, its utility uk(d|kck) is 0.

When terminal vk is chosen as a relay terminal when re-
veals its true cost ck, from the following observation 1 about
MST we have |LE(qi, qj , d|k∞)| ≥ |LCP(qi, qj , d|kck)|. The
lemma immediately follows from

pk
ij(d|kck) = |LE(qi, qj , d|k∞)|−|LCP(qi, qj , d|kck)|+ck > ck.

This finishes the proof.

Observation 1. For any cycle C in graph G, assume ec

is the longest edge in the cycle, then ec 6∈ MST (G).

From the definition of the incentive compatibility (IC), we
assume the d−k is fixed throughout this proof. For our con-
venience, we will use G(dk) to represent the graph G(d|kdk).
We first prove a series of lemmas that will be used to prove
that our payment scheme satisfies IC.

Lemma 7. If vk ∈ qiqj ∈ V MST (d), then pij
k (d) doesn’t

depends on dk.

Proof. Remember that the payment based on link qiqj

is pij
k (d) = |LE(qi, qj , d|k∞)|−|LCP(qi, qj , d)|+dk. The first

part LE(qi, qj , d|k∞) is the longest edge of the unique path
from qi to qj on tree V MST (d|k∞). Clearly, it is indepen-
dent of dk. Now considering the second part LCP(qi, qjd)−
dk. From the assumption we know that vk ∈ LCP(qi, qj , d),
so the path LCP(qi, qj , d) remains the same regardless of vk’s
declared cost dk. Thus, the summation of all terminals’ cost
on LCP(qi, qj , d) except terminal vk equals to

|LCP(qi, qj , d|k0)| = |LCP(qi, qj , d)| − dk.

In other word, the second part is also independent of dk.
Now we can write the payment to a terminal vk based on
edge qiqj as following:

pij
k (d) = |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d|k0)|,

Here terminal vk ∈ LCP(qi, qj , d) and qiqj ∈ V MST (d).

If a terminal vk lies its cost ck upward, we denote the lied
cost as ck. Similarly, if terminal vk lies its cost ck downward,
we denote the lied cost as ck. Let Ek(dk) be the set of edges
qiqj such that vk ∈ LCP(qi, qj , d) and qiqj ∈ V MST (d)
when terminal vk declares a cost dk. From the lemma 7 the
non-zero payment to vk is defined based on Ek(dk). Follow-
ing lemma reveals the relationship between dk and Ek(dk):

Lemma 8. Ek(dk) ⊆ Ek(d′k) when d′k ≤ dk.

We now state the proof that payment scheme 4 satisfies
IC.

Theorem 9. Our payment scheme satisfies the incentive
compatibility (IC).

Proof. For terminal vk, if it lies its cost from ck to ck,
then Ek(ck) ⊆ Ek(ck), which implies that payment

pk(d|kck) = max
qiqj∈Ek(ck)

pij
k (d|kck)

≤ max
qiqj∈Ek(ck)

pij
k (d|kck) = pk(d|kck).

Thus, terminal vk won’t lies it cost upward, so we fo-
cus our attention on the case when terminal vk lies its cost
downward.

From Lemma 8, we know that Ek(ck) ⊆ Ek(ck). Thus,
we only need to consider the payment based on edges in
Ek(ck) − Ek(ck). For edge e = qiqj ∈ Ek(ck) − Ek(ck), let

qk
I qk

J = LE(qi, qj , d|k∞) in the spanning tree V MST (d|k∞).
If we remove the edge qk

I qk
J , we have a vertex partition

{Qk
I , Qk

J}, where qi ∈ Qk
I and qj ∈ Qk

J . In the graph
K(d), we consider the bridge BM(Qk

I , Qk
J , d) whose weight

is minimum when the terminals cost vector is d. There are
two cases need to be considered about BM(Qk

I , Qk
J , d): 1)

vk 6∈ BM(Qk
I , Qk

J , d|kck) or 2) vk ∈ BM(Qk
I , Qk

J , d|kck). We
discuss them individually.

Case 1: vk 6∈ BM(Qk
I , Qk

J , d|kck). In this case, edge qk
I qk

J

is the minimum bridge over Qk
I and Qk

J . In other words, we
have |LE(qi, qj , |k∞)| ≤ |LCP(qi, qj , d|kck)|. Consequently

pij
k (d|kck) = |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d|kck)|+ ck

= |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d|kck)|+ ck

≤ ck,



which implies vk will not get benefit from lying its cost down-
ward.

Case 2: vk ∈ BM(Qk
I , Qk

J , d|kck). From the assumption
that qiqj 6∈ V MST (G(d|kck)), we know edge qiqj cannot be
BM(Qk

I , Qk
J , d|kck). Thus, there exists an edge qsqt 6= qiqj

such that vk ∈ LCP(qs, qt, d|kck) and qsqt = BM(Qk
I , Qk

J , d|kck).
This guarantees that qsqt ∈ V MST (d|kck).

Obviously, qsqt can’t appear in the same set of Qk
I or

Qk
J . Thus, qk

I qk
J is on the path from qs to qt in graph

V MST (d|k∞), which implies that |LCP(qk
I , qk

J , d|k∞)| =
|LE(qi, qj , d|k∞)| ≤ |LE(qs, qt, d|k∞)|. Using Lemma 8, we
have LCP(qs, qt, d|kck) ∈ V MST (d|kck)). Thus,

pij
k (d|kck) = |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d|kck)|+ ck

= |LE(qi, qj , d|k∞)| − |LCP(qi, qj , d|kck)|+ ck

≤ |LE(qs, qt, d|k∞)| − |LCP(qi, qj , d|kck)|+ ck

≤ |LE(qs, qt, d|k∞)| − |LCP(qs, qt, d|kck)|+ ck

= pst
k (d|kck)

This inequality concludes that even if vk lies its cost down-
ward to introduce some new edges in Ek(ck), the payment
based on these newly introduced edges is no larger than the
payment on some edges already contained in Ek(ck). In
summary, node vi don’t have the incentive to lie its cost
upward or downward, which proves the IC.

Before proving Theorem 11, we prove the following lemma
regarding all truthful payment schemes based on VMST.

Lemma 10. If vk ∈ V MST (d|kck), then as long as dk <
pk(d|kck) and d−k fixed, vk ∈ V MST (d).

Proof. Again, we prove it by contradiction. Assume
that vk 6∈ V MST (d). Obviously, V MST (d) = V MST (d|k∞).
Assume that pk(d|kck) = pij

k (d|kck), i.e., its payment is com-

puted based on edge qiqj in V MST (d|kck). Let qIqJ be the
LE(qi, qj , d|k∞) and {Qi, Qj} be the vertex partition intro-
duced by removing edge qIqJ from the tree V MST (d|k∞),
where qi ∈ Qi and qj ∈ Qj . The payment to terminal vk

in V MST (d|kck) is pk(d|kck) = |LCP(qI , qJ , d|k∞)| − c
vk
ij ,

where c
vk
ij = |LCP(qi, qj , d|k0|. When vk’s declare its cost as

dk, the length of the path LCP(qi, qj , d) becomes cvk
ij + dk =

|LCP(qI , qJ , d|k∞)| − pk(d|kck) + dk < |LCP(qI , qJ , d|k∞)|.
Now consider the spanning tree V MST (d). We have as-

sumed that vk 6∈ V MST (d), i.e., V MST (d) = V MST (d|k∞).
Thus, among the bridge edges over Qi, Qj , edge qIqJ has the
least cost when graph is G\vk or G(d|kdk). However, this
is a contradiction to we just proved: |LCP(qi, qj , d|kdk)| <
|LCP(qI , qJ , d|k∞)|. This finishes the proof.

We now ready to show that our payment scheme is optimal
among all truthful mechanisms using VMST.

Theorem 11. Our payment scheme is the minimum among
all truthful payment schemes based on VMST structure.

Proof. We prove it by contradiction. Assume that there
is another truthful payment scheme, say A, based on VMST,
whose payment is smaller than our payment for a terminal
vk under cost profile d. Assume that the payment calculated
by A for terminal vk is p̃k(d) = pk(d)− δ, where pk(d) is the
payment calculated by our algorithm and δ > 0.

Now consider another profile d|kd′k, where terminal has
the true cost ck = d′k = pk(d) − δ

2
. From Lemma 10, we

know that vk is still in V MST (d|kd′k). Using Lemma 2, we
know that the payment for terminal vk using algorithm A
is pk(c)− δ, which is independent of terminal vk’s declared
cost. Notice that dk = pk(d)− δ

2
> pk(d)−δ. Thus, terminal

vk has a negative utility under payment scheme A when it
reveals it true cost under cost profile d|kd′k, which violates
the incentive compatibility (IC). This finishes the proof.

By summarizing Theorem 6, Theorem 9 and Theorem 11,
we get Theorem 5.

4.1.4 Computational Complexity
We now discuss how to compute the payment to every

relay terminal efficiently. Assume that the original commu-
nication graph G has n vertices and m edges.

One naive method of computing the payment works as fol-
lows. We first construct the complete graph K(d) and then
construct the spanning tree V MST (d) on K(d). It is easy to
show the overall time complexity to construct V MST (d) is
O(r2+rn log n+rm) = O(rn log n+rm), where r is the num-
ber of receivers. In order to calculate the payment for termi-
nal vk ∈ LCP(qi, qj , d) ∈ V MST (d), we should construct the
tree V MST (d|k∞), which will take time O(rn log n + rm).
Finding the longest edge LE(qi, qj , d|k∞) takes only O(r)
time. In the worst case, terminal vk may appear on O(r)
edges of V MST (d). Thus, we can calculate the payment for
the single terminal vk in time O(r2) + O(rn log n + km) =
O(rn log n + rm). In the worst case, there could be O(n)
terminals on V MST (d), so we can calculate the payment for
all relay terminals in tree V MST (G) in time O(rn2 log n +
rmn).

Our improvement uses the fast payment for unicast as
a subroutine. For a pair of terminals qiqj , we calculate the
path LCP(qi, qj , d|k∞) for every terminal vk ∈ LCP(qi, qj , d),
which can be done in time O(n log n+m). It takes O(r2n log n+
r2m) to find the complete graph K(d|k∞) for every termi-
nal vk. Finding the MST on each such complete graph takes
time O(r2). Thus, we can construct VMSTs for all these n
complete graphs in time O(r2n). Based on these n VMSTs,
it takes O(r2) to calculate the payment for one terminal.
Thus, in the worst case, it also takes O(r2n) to calculate
the payment to every relay terminal. Overall, the time com-
plexity of this approach is O(r2n log n + r2m) + O(r2n) +
O(r2n) = O(r2n log n + r2m). When r = o(

√
n), this ap-

proach outperforms the naive approach with time complex-
ity O(n2 log n + mn). When r is a constant, the time com-
plexity of the above approach becomes O(n log n+m), which
is optimum.

4.2 Node Weighted Steiner Tree (NST)
Compared with LST in link weighted network, the struc-

ture of node-weighted Steiner tree (NST) in a node weighted
network is even tough. It is well-known [11, 13] that it is NP-
hard to find the minimum cost multicast tree when given an
arbitrary node weighted graph G, and it is at least as hard to
approximate as the set cover problem. Klein and Ravi [13]
showed that it can be approximated within O(ln r), where r
is the number of receivers.

4.2.1 Constructing NST
We review the method used in [13] to find a NST. We first

introduce some definitions that are essential to construct the
NST. A spider is defined as a tree having at most one node
of degree more than two. Such a node (if exists) is called the



center of the spider. If the degree of the center node is m,
then we call this spider is a m spider. It is easy to observe
that a m spider has m leaves. Each path from the center to
a leaf is called a leg. The cost of a spider S is defined as the
sum of the cost of all nodes in spider S, denotes as ω(S).
The number of terminals or legs of the spider is denoted by
t(S), and the ratio of a spider is defined as

ρ(S) =
ω(S)

t(S)
.

Contraction of a spider is the operation of contracting all
terminals of the spider to form one virtual terminal. Con-
tracted virtual terminal has zero weight, and we make it a
terminal with degree one.

Algorithm 5. Construct NST

Repeat the following steps until no receivers left and there
is only one virtual terminal left.

1. Find the spider S with the minimum ρ(S) that connect
some receivers and virtual terminals.1

2. Contract the spider S by treating all nodes in it as one
virtual terminal. We call this as one round.

All nodes belong to the final unique virtual terminal form
the NST.

Theorem 12. [13] The tree constructed above has cost at
most 2 ln k times of the optimal.

4.2.2 VCG mechanism on NST in not strategy-proof
Again, we may want to pay terminals based on VCG

scheme, i.e., the payment to a terminal vk ∈ NST (d) is

pk(d) = ω(NST (d|k∞))− ω(NST (d)) + dk.

We show by an example that the payment scheme does not
satisfy IR property: it is possible that some terminal has
negative utility. Figure 5 illustrates such an example. It

k+i

q iq

2k−1v

kv 2k−2v

1

v

qk−1
s

Figure 5: Terminals qi, 1 ≤ i < k are receivers; the
cost of terminal v2k−1 is 1. The cost of each terminal
vi is 2

k+1−i
− ε, where ε is a sufficiently small positive

number.

is not difficulty to show that, in the first round, terminal
vk is selected to connect terminals s and q1 with cost ratio
1
k
− ε

2
(while all other spiders have cost ratio at least 1

k
).

Then terminals s, vk and q1 form a virtual terminal. At the
beginning of round r, we have a virtual terminal, denoted by
Vr formed by terminals vk+i−1, 1 ≤ i ≤ r − 1, and receivers
qi, 1 ≤ i ≤ r; all other receivers qi, r < i < k are the

1For simplicity of the proof, we assume there doesn’t have
two spiders with the same ratio. Dropping the assumption
won’t change our results.

remaining terminals. It is easy to show that we will select
terminal qk+r−1 at round r to connect Vr and qr+1 with cost
ratio 1

k+1−r
− ε

2
. Thus, the total cost of the tree NST (G)

is
∑k−1

i=1 ( 2
k+1−i

− ε) = 2H(k)− 2− (k − 1)ε.
When terminal vk is not used, it is easy to see that the

final tree NST (G\u1) will only use terminal v2k−1 to con-
nect all receivers with cost ratio 1

k
when 1

k−1
− ε

2
> 1

k
. No-

tice that this condition can be trivially satisfied by letting
ε = 1

k2 . Thus, the utility of terminal vk is p1(d) − c(vk) =
ω(NST (G\vk)) − ω(NST (G)) = −2H(k) + 3 + (k − 1)ε,
which is negative when k ≥ 8, and ε = 1/k2.

4.2.3 Strategy-proof mechanism based on NST
Notice, the construction of NST tree is by rounds. Fol-

lowing, we show that if terminal vk is selected as part of the
spider with minimum ratio under cost profile d in a round
i, then vk is selected before or in round i under cost profile
d′ = d|kd′k for d′k < dk. We prove this by contradiction,
which assumes terminal vk won’t appear before round i+1.
Notice that the graph remains the same for round i after
the profile changes, so spider Si(d) under cost profile d is
still a valid spider under cost profile d′. Its ratio becomes
ωk

i (d)− dk + d′k < ωk
i (d) while all other spiders’ ratio keeps

the same if they don’t contain vk. Thus, spider Sk
i (d) has

the minimum ratio among all spiders under cost profile d′,
which is a contradiction. So for terminal vk, there exists a
real value Bi

k(d−k) such that terminal vk selected before or
in round i iff dk < Bi

k(d−k). If they are r rounds, we have
an increasing sequence

B1
k(d−k) ≤ B2

k(d−k) ≤ · · · ≤ Br
k(d−k) = Bk(d−k)

Obviously, terminal vk is selected in the final multicast tree
iff dk < Bk(d−k). Following is our payment scheme based
on NST. For a node vk, if vk is selected then it gets payment

pk(d) = Bk(d−k). (5)

Otherwise, it gets payment 0.
Regarding this payment we have the following theorem:

Theorem 13. Our payment scheme (5) is truthful, and
among all truthful payment schemes for multicast tree based
on NST, our payment is minimal.

Proof. From our conclusion that vk is selected iff dk <
Bi

k(d−k), we have uk(d) = Bk(d−k)− dk > 0, which implies
IR. Now we prove our payment scheme (5) satisfies IC by
cases. Notice when vk is selected, its payment doesn’t de-
pend on dk, so we only need to discuss the following two
cases:

Case 1: When vk declares ck, it is selected. What hap-
pens if it lies its cost upward as dk to make it not selected?
From the IR property, vk gets positive utility when it reveals
its true cost while it gets utility 0 when it lies it cost as dk.
So vk has better not to lie.

Case 2: When vk declares ck, it is not selected. What
happens if it lies its cost downward as dk to make it se-
lected? When vk reveals ck, it has utility 0, after lying it
has utility Bk(d−k) − ck. From the assumption that vk is
not selected under cost profile d|kck, we have Bk(d−k) ≤ ck.
Thus, vk will get non-positive utility if it lies, which ensures
vk revealing its true cost ck.

So overall, vk will always choose to reveal its actual cost
to maximize its utility (IC property).



Next we prove that our payment is minimal. We prove it
by contradiction, suppose there exists such payment scheme
P̃ such that for terminal vk under cost profile d, the payment
to P̃i(d) is smaller than our payment. Notice in order to
satisfies the IR, the terminal must be selected, so we assume
P̃i(d) = Bk(d−k) − δ, while δ is a positive real number.
Now considering the profile d′ = d|k(Bk(d−k)− δ

2
) with vk’s

actual cost ck = Bk(d−k)− δ
2
. Obviously, vk is selected, from

lemma 2 the payment to vk is Bk(d−k)−δ. Thus, the utility
of vk becomes uk(d′) = Bk(d−k)−Bk(d−k)−δ+ δ

2
= − δ

2
< 0,

which violates the IR. This finishes our proof.

With Theorem 13, we only need focus our attention on
how to get the value Bi

k(d−k). Before we present our al-
gorithm to find Bi

k(d−k), we first review in details how to
find the minimum ratio spider. In order to find the spider
with the minimum ratio, we find the spider centered at ter-
minal vj with the minimum ratio over all terminals vj ∈ V
and choose the minimum among them. The algorithm is as
follows.

Algorithm 6. Find the minimum ratio spider

Do the following process for all vj ∈ V :

1. Calculate the shortest path tree rooted at vj and span-
ning all terminals. We call each shortest path a branch.
The weight of the branch is defined as the length of the
shortest path. Notice that the weighted of the shortest
path doesn’t include the weight of the center node vj of
the spider.

2. Sort the branches according to their weights.

3. For every pair of branches, if they have terminals in
common then remove the branch with larger weight.
Assume the remaining branches are

L(vj) = {L1(vj), L2(vj), · · · , Lr(vj)}
sorted in ascending order according to their weights.

4. Find the minimum ratio spider with center vj by linear
scanning: the spider is formed by the first t branches

such that
cj+

∑t
k=1 Lk

t
≤ cj+

∑h
k=1 Lk

h
for any h 6= t.

Assume that the spider with minimum ratio centered at
terminal vj is S(vj) and its ratio is ρ(vj). Then the spider
with minimum ratio is S = {S(vj)|vj ∈ V and ρ(vj) =
minvi∈V ρ(vi)}.
In Algorithm 6, ω(Li(vj)) is defined as the sum of the termi-

nals’ cost on this branch, and Ωi(L(vj)) =
∑i

s=1 ω(Ls(vj))+
cj . If we remove node vk, the minimum ratio spider cen-
tered at vj is denoted as S−vk (vj) and its ratio is denoted

as ρ−vk (vj). Let L−vk
1 (vj), L

−vk
2 (vj), · · · , L−vk

r (vj) be those
branches in ascending order before linear scan.

From now on, we fix d−k and graph G to study the re-
lationship between minimum ratio of spider centered at vj

ρ(vj) and dk. First, we have the following observation.

Observation 2. The number of the legs of minimum ra-
tio spider decreases over dk.

If the minimum ratio spider with terminal vk has t legs,
then its ratio will be a line with slope of 1

t
. So the ratio-

cost function is several line segments. From Observation 2,

these line segments have decreasing slopes and thus it has
at most r segments, where r is the number of receivers. So
given a real value y, we can find corresponding cost of vk in
time O(log r). The algorithm to find these line segments is
as follows.

Algorithm 7. Find the ratio-cost function y = Rvj (x)

If j = k then apply the following procedures:

1. Apply step 1, 2, 3 of algorithm 6 to get L(vk).

2. Set number of legs to t = 2, lower bound lb = 0 and
upper bound ub = 0.

3. While t < r

(a) ub = t× ω(L(vk))− Ωt(L(vk)).

(b) y = Ωt(L(vk))+x
t

for x ∈ [lb, ub).

(c) Set lb = ub and t = t + 1.

(d) y = Ωr(L(vk))+x
r

for x ∈ [lb,∞).

Otherwise, we do as follows:

1. Remove terminal vk, apply algorithm 6 to find S−vk (vj).

2. Find the shortest path with terminal vk from vj to ev-
ery receiver, sort these paths according to their length
in a descending order, say sequence

Lvk (vj) = {Lvk
1 (vj), L

vk
2 (vj), · · · , Lvk

r (vj)}.

Here, r is the number of terminals, and ω(L
vk
i (vj)) is

the sum of terminals on path Lvk
i (vj) excluding termi-

nal vk.

3. t is the index for branches in Lvk (vj) and l is the index
for paths in L−vk (vj).

4. For L
vk
t (vj) (1 ≤ t ≤ r), there exists at most one

branch L−vk
l (vj) such that they have terminals in com-

mon. If such branch exists, define upper bound uct

for L
vk
t (vj) equals ω(L

−vk
l (vj)) − ω(L

vk
t (vj)); else set

uct = ∞. Linear scan uct for t = 1 to r − 1, if uct ≥
uct+1, then remove Lt+1(vj) from sequence Lvk (vj).

5. Initialize t = 1, l = 1, lower bound lb = 0 and upper
bound ub = 0. Then apply the following algorithm:

While L
vk
t (vj) ∈ Lvk (vj) and t ≤ r do:

(a) while ω(L
−vk
l (vj)) ≥ Ωl(L

−vk (vj))+ω(L
vk
t (vj))+lb

l
and

l < r:

i. Set ub = l×ω(L
−vk
l (vj))−Ωl(L

−vk (vj))−ω(L
vk
t (vj)).

ii. If ub ≥ uct break;

iii. Set y =
Ωl−1(L−vk (vj))−ω(L

vk
t (vj))+x

l
for x ∈

[lb, ub).

iv. Set lb = ub.

v. Set l = l + 1.

(b) Set y =
Ωl−1(L−vk (vj))−ω(L

vk
t (vj))+x

l
for x ∈ [lb, uct).

(c) Set lb = uct and t = t + 1.

6. The ratio-cost function is a collection of line segments in
x − y coordinate, find the value xk such that R(xk) =
ω(S−vk (vj)). Replace the function for x ≥ xk as y =

ω(S−vk (vk)).



Given a real value x, the corresponding cost for terminal
vk is denoted by R−1

vj
(x). Finally, we give the algorithm to

find value Bk(d−k).

Algorithm 8. Algorithm to find Bk(d−k)

1. Remove terminal vk and find the multicast tree by us-
ing spider structure.

2. For every round i in the first step, we have a graph
called Gi and a selected spider with ratio ρ

−vk
i . Adding

node vk and all its incident edges to Gi get graph G′i.

3. Find the function y = R−1
vj

(x) for every terminal vj in

graph G′i using algorithm 7.

4. Calculate Br
k(d−k) = maxvj∈V (G′i){R

−1
vj

(ρ−vk
i )}.

5. Bk(d−k) = max1≤i≤r Bi
k(d−k)

The correctness of the algorithm is omitted due to space
limit, please refer to the full version of this paper for details.

4.2.4 Computational Complexity
If we use Algorithm 5 to find NST (d), every round we

need time O(rn log n + rm), where r is the number of re-
ceivers. Notice there at most r rounds, so the overall time
complexity is O(r2 log n+r2m). For every node vk ∈ NST (d),
if we apply Algorithm 6 to calculate the payment, it is not
very difficult to get time complexity O(rn log n + rm) for
each round. Thus, it takes time O(r2n log n + r2m) to find
the payment for a single node vk ∈ NST (d). In the worst
case, there could be up to O(n) terminals in NST (d), so
overall time complexity is O(r2n2 log n + r2nm), which is
quite expensive. Finding a more efficient way to reduce the
time complexity will be one of our future works.

5. EXPERIMENTAL STUDIES
Remember that the payment of our structure is always

larger than or equals the structure’s actually cost. For a
structure H, let c(H) be its cost and ps(H) be the payment
of scheme s based on this structure. We define the overpay-
ment ratio of the payment scheme s based on structure H
as

ORs(H) =
ps(H)

c(H)
. (6)

When it is clear from the context, we often simplify the
notation as OR(H).

Actually, there are some other definitions about overpay-
ment ratio in the literature. In [2], the authors propose to
compare the payment p(H) with the cost of the new struc-
ture obtained from the graph G−H, i.e., removing H from
the original graph G. Here, we only focus our attention on
the overpayment ratio defined in (6).

We conducted extensive simulations to study the over-
payment ratio of various schemes proposed in this paper.
In our experiments, we will compare the performance of
different structures proposed according to three different
metrics: actual cost, total payment and overpayment ratio.
Notice that, it is meaningless to compare the performance
of structures for link weighted network with these struc-
tures for node weighted networks. Therefore, we consider
LCPS(link weighted version), PMST and LST as one group

for link weighted networks and LCPS(node weighted ver-
sion), VMST and NST as another group for node weighted
networks. Figure 6 and Figure 7 show the different multi-
cast structures when the original graph is a unit disk graph
(UDG). Here, the grey nodes are receivers.

5.1 Fixed Transmission Range and Fixed Num-
ber of Receivers

In the first experiment, we randomly generate n terminals
uniformly in a 2000ft × 2000ft region. The transmission
range range of each terminal is set to 400ft. For a link
weighted graph, we assume the power needed to deliver a

packet on ei is ci(
|ei|
100

)κ, where κ is a value between 2 and
5. In our experiment κ = 2.5 and ci is randomly drawn
from the uniform distribution between 1 and 10. For a node
weighted network, the weight of a node i is ci ∗ 3κ where ci

is randomly selected from a power level between 1 and 10.
We vary the number of terminals in this region from 100 to
320, and fix the number of sender to 1 and receivers to 15.
For a specific number of terminals, we generate 100 different
networks, and compare the performance of different struc-
tures according to six different metrics: average cost(AC),
maximum cost(MC), average payment(AP) and maximum
payment(MP), average overpayment ratio(AOR) and maxi-
mum overpayment ratio(MOR).

For link weighted network, as shown in the upper figures
of Figure 8, all structures’ cost and payment decrease dra-
matically as the number of terminals increase. The PMST
structure is the maximum for both cost, payment and over-
payment ratio. But one advantage is that PMST is a shared
based tree, which means it can be shared by all receivers/senders
on the tree. LCPS is the most commonly used structure for
source based tree, and it does win over the other two struc-
tures regarding AOR and MOR in our experiment. But in
practice, people tend to care more about the actual cost
(the so called ”social efficiency”) and the total payment.
From this aspect, LST is the best candidate. Similar to
LCPS, LST only needs information of LCP between termi-
nals which can be obtained from the routing table for uni-
cast. Thus, LST can also be implemented in a distrusted
way but with more computational cost compared to LCPS.

For node weighted network, as shown in the lower figures
of Figure 8, all structures’ cost and payment also decrease as
the number of terminals increase. Notice for VMST struc-
ture, we assume all receivers(senders) will relay message for
free, so in order to compare the performance of these struc-
ture in a fair way, we set all receivers’ private cost to 0 for
both LCPS and NST structure. Unlike in link weighted net-
work, the cost and payment of VMST and NST are much
lower than the cost and payment of LCPS although the pre-
vious two are shared based tree. Like we expected, due to
the lowe cost of the VMST and NST structures, the max
overpayment ratio of these two structures are very unsteady
and much high than the max overpayment ratio of LCPS.

5.2 Random Transmission Range and Fixed
Number of Receivers

In our second experiment, we vary the transmission range
of each wireless node from 100ft to 500ft.

For link weighted network, the cost ci of a link ei is (c1 +

c2(
|ei|
100

)κ)/10, where c1 takes value from 300 to 500 and c2

takes value from 10 to 50. For node weighted network, the
cost ci of a terminal vi is (c1 + c2(

ri
100

)κ)/10, where c1 takes



UDG LCPS PMST LST

Figure 6: Multicast Structures for Link Weighted Network

UDG LCPS VMST NST

Figure 7: Multicast Structures for Node Weighted Network
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Figure 8: Results when the number of nodes in the networks are different (from 100 to 320) for link weighted
structures and node weighted structures . Here, we fix the transmission range to 400ft.
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Figure 9: Results when the number of nodes in the networks are different (from 100 to 320) for link weighted
structures and node weighted structures. Here, we randomly set the transmission range from 100ft to 500ft.

value from 300 to 500, c2 takes value from 10 to 50 and ri

is vi’s transmission range. The ranges of c1 and c2 we used
here reflects the actual power cost in one second of a node
to send data at 2Mbps rate.

Similar to the fixed transmission experiment, we vary the
number of terminals in the region from 100 to 320, and fixed
number of sender to 1 and receivers to 15. For a specific
number of terminals, we generate 100 different networks,
and compare the average cost, maximum cost, average pay-
ment and maximum payment, average overpayment ratio
and maximum payment ratio.

Figure 9 shows the similar result for both link weighted
network and node weighted network as the fixed transmis-
sion range experiments.

5.3 Random Transmission Range and Vari-
able Number of Receivers

For structure H, we define cost density CD(H) = c(H)
r

and payment density PD(H) = p(H)
r

, where r is the number
of terminals in structure H.

In this experiment, we study the relationship between
average cost(AC), average payment(AP), average overpay-
ment ratio(AOR), average cost density(CD), average pay-
ment density(PD) and the number of the terminals. We use
the same power cost model in the previous experiment and
the number of nodes in the region is set to 200. We vary the
number of receivers from 5, 10, 20, · · · to 50.

Figure 10 shows that when the number of the receivers in-
creases, under most circumstance, the overall payment and
cost increase while the cost and payment for every terminal

decrease. One exception is for node weighted network. No-
tice in node weighted network, we set all terminals’ cost to
0, so it is naturally to expected that when the number of ter-
minals larger than some threshold, even the total cost and
payment will decrease. This experiment shows that more
terminals in a multicast group can incur a lower cost and
payment per terminal, which is one of the attractive prop-
erties of multicast.

6. CONCLUSION
In this paper, we studied how to conduct efficient multi-

cast in selfish wireless networks by assuming that each wire-
less terminal or communication link will incur a cost when it
has to transit some data, and the cost is privately known to
the wireless terminal or communication link. For each of the
widely used structures for multicast, we designed a strate-
gyproof multicast mechanism such that each agent has to
truthfully report its cost to maximize its profit. The struc-
tures studied in this paper are least cost path star, pruning
minimum spanning tree, virtual minimum spanning tree and
the edge(node) weighted Steiner tree. Extensive simulations
were conducted to study the practical performances of the
proposed protocols.

There are several unsolved challenges we left as future
works. First, we would like to design algorithms that can
compute these payments in asymptotically optimum time
complexities. Second, in this paper, we only studied the
tress-based structures for multicast. Practically, mesh-based
structures maybe more needed for wireless networks to im-
prove the fault tolerance of the multicast. We would like
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Figure 10: Results when the number of receivers in the networks are different (from 10 to 50) for both link
weighted and node weighted structures. Again, we randomly set the transmission range from 100ft to 500ft.

to know whether we can design a strategyproof multicast
mechanism for some mesh-based structures used for multi-
cast. Third, all of our tree construction and payment calcu-
lation are performed in a centralized way, we would like to
study how to design some distributed algorithm for it.
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