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ABSTRACT

Backbone has been used extensively in various aspects (e.g., rout
ing, route maintenance, broadcast, scheduling) for wireless ad hoc

oc Networks

MobiHoc 2005

have been proposed for wireless ad hoc networks recently. The

simplest routing method is to flood the message, which not only
wastes the rare resources of wireless nodes, but also diminishes the

or sensor networks recently. Previous methods are mostly designed/"oughput of the network. One way to avoid flooding is to let each

to minimize the size of the backbone. However, in many applica-
tions, it is desirable to construct a backbone with sroafitwhen

each wireless node has a cost of being in the backbone. In this pa-

per, we first show that previous methods specifically designed to
minimize the backbone size may produce a backbone with large
cost. We then propose an efficient distributed method to construct
a weighted backbone with low cost. We prove that the total cost
of the constructed backbone is within a small constant factor of the
optimum for homogeneous networks when either the nodes’ costs
are smooth or the network density is bounded. The total number of
messages of our method @(n) when the geometry information

of each wireless node is known; the total number of messages is
O(m) otherwise for a network af devices andn communication
links. We also show that the constructed backbone is efficient for
unicast routing: the total cost (or hop) of the least cost (or hop) path
connecting any two nodes using backbone is no more 3ttanes

of the least cost (or hop) path in the original communication graph.

Categories and Subject Descriptors

C.2.1 Network Architecture and Design]: Network topology,
Wireless communication; G.2.%faph Theory]: Network prob-
lems, Graph algorithms.

General Terms
Algorithms, Design, Performance, Theory.

Keywords

Combinatorics, connected dominating set, clustering, localized al-
gorithm, wireless ad hoc networks.

1. INTRODUCTION

Wireless networks draw lots of attentions in recent years due to
its potential applications in various areas. Many routing protocols
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node communicate with only a selected subset of its neighbors [13,
15, 29, 30], or to use a hierarchical structure like Internet, e.g.,
connected dominating set (CDS) based routings [22, 41, 49, 48,
36].

Efficient distributed algorithms for constructing connected dom-
inating sets in ad hoc wireless networks were well studied [4, 7, 6,
9, 20, 22, 49, 43]. The notion of cluster organization has been used
for wireless ad hoc networks since their early appearance. Baker
et al. [7, 6] introduced a fully distributed linked cluster architec-
ture mainly for hierarchical routing and demonstrated its adaptivity
to the network connectivity changes. The notion of the cluster has
been revisited by Gerlat al. [25, 37] for multimedia communi-
cations with the emphasis on the allocation of resources, namely,
bandwidth and channel, to support the multimedia traffic in an ad
hoc environment. In [24], Gaat al. proposed a randomized al-
gorithm for maintaining the discrete mobile centers, i.e., dominat-
ing sets. They showed that it approximatemimum dominating
set(MDS) within O(1) with very high probability. Recently, Al-
zoubi, et al. [4, 45] proposed a method to approximaténimum
connected dominating s@¥CDS) within 8 whose message com-
plexity is O(nlogn) and time complexity isO(n) for wireless
networks modeled by unit disk graphs. Alzoubi [2, 3] continued
to propose a localized method approximating the MCDS within a
constant time using a linear number of messages. Existing cluster-
ing methods first choose some nodes to act as coordinators of the
clustering process, i.e., clusterhead. Then a cluster is formed by
associating the clusterhead with some (or all) of its neighbors. Pre-
vious methods differ on the criterion for the selection of the cluster-
head, which is either based on the lowest (or highest) ID among all
unassigned nodes [6, 37], or based on the maximum node degree
[25], or based on some generic weight [9] (the node with the largest
weight will be chosen as clusterhead). In [47, 1], Wang and Li pro-
posed to build the local Delaunay graph on top of an approximated
MCDS for efficient routing. Recently, Kuhn and Wattenhofer [33]
proposed a new distributed MDS approximation algorithm based
on linear programming (LP) relaxation techniques. For an arbi-
trary parametek and maximum degred, their algorithm com-
putes a dominating set of expected s2¢kA%* log A|M DS|)
in O(k?) rounds where each node has to sér{@#>A) messages of
sizeO(log A). Moreover, the authors further gave the time lower
bounds for the distributed approximation of MDS in [32].

All of above methods try to minimize the number of cluster-
heads, i.e.,, the number of nodes in the backbone. However, in
many applications of wireless ad hoc networks, minimizing the size



of the backbone is not sufficient. For example, different wireless [34] presented a centralized approximation algorithm for weighted
nodes may have different costs for serving as a clusterhead, due tanaximum independent set for some special graphs.
device differences, power capacities, and information loads to be In this paper, we propose a novel distributed method to generate
processed. Therefore, in the remaining of the paper, for the suc-weighted backbone with a good approximation ratio while using
cinctness of our presentation, we assume that each wireless nodesmall communication cost. Our methods work not only for homo-
has ageneric cos{or weigh). The cost may also represent tite geneous networks, but also for heterogeneous networks. We prove
nessor priority of each node to be a clusterhead. The lower cost that the total cost of the constructed backbone is within (46 +
means the higher priority. In practice, the cost could represent the 1, 18 log d) + 10 times of the optimum for homogeneous networks
power consumption rate of this node if backbone with small power when all nodes have the same transmission range. Hesghe
consumption is needed; the robustness of this node if fault-tolerant maximum ratio of costs of two adjacent wireless nodesaisdthe
backbone is needed; or a function of its security level if a secure maximum node degree in the communication graph. Notice that
backbone is needed. We study how to construct a sparse backbon¢he advantage of our backbone is that the total cost is small com-
efficiently for a set of weighted wireless nodes such that the to- pared with the optimum when either the costs of wireless nodes are
tal cost of the backbone is minimized and there is a cost (or hops) smooth, i.e., two neighboring nodes’ cost differ by a small constant
efficientroute connecting every pair of wireless nodes via the con- factor, or the network density is low. The total number of mes-
structed network backbone. Here a route is cost (or hops resp.)sages of our method i©(n) when the geometry information of
efficientif its cost (or hops resp.) is no more than a constant factor each wireless node is known and the network is modeled by unit
of the minimum cost (or hops resp.) needed to connect the sourcedisk graph; the total number of message®ign) otherwise for
and the destination in the original communication graph when all any network composed of wireless devices anch total pairs of
possible physical communication links are considered. nodes that can directly receive signals from each other. We also

Recently, many proposed clustering algorithms [44, 10, 18, 16, show that the constructed backbone is efficient for unicast: the to-
17,12, 27,9, 31, 42,5, 26, 19, 40, 38, 8] also considered different tal cost (or hop) of the least cost (or hop) path connecting any two
weights as goriority criterion to decide whether a node will be a  nodes using backbone is no more thatimes of the least cost (or
clusterhead. Notice, the ultimate goal of the majority protocols is hop) path in the original communication graph. This is significant
still to minimize the size of the cluster (or backbone), not the to- since our backbone structure only uge&:) total communication
tal weight of the cluster (or backbone). For example, methods in links, which significantly reduces the cost of routing without losing
[12, 9, 40] considered the stability or mobility of each node as the much ground on the performance of unicast.
weight. They preferred the node with high stability and low mo- The rest of the paper is organized as follows. In Section 2, we
bility to be the clusterhead. However, the definitions of stability or provide preliminaries necessary for describing our new algorithms,
the evaluation methods used are different. In [31, 5], authors also and show the possible bad performances of several proposed meth-
combined the stability with the degree of each node as the weight. ods. Section 3 presents our new weighted backbone formation al-
The higher priority is given to relatively stable and high degree gorithms, and Section 4 gives the theoretical performance analy-
nodes. Methods in [27, 26, 42] considered clustering in heteroge- sis of the proposed algorithms. In Section 5, we discuss several
neous sensor networks, where each node has different energy levelpossible network applications of our proposed weighted backbone
Most of them use the remaining energy or energy consumption rate formation algorithms. Section 6 presents the experimental results.
as the weight. Both [38] and [8] considered two factors in the prior- We conclude our paper in Section 7 by pointing out some possible
ity: available energy and the speed, though they use different equa-future research directions.
tion to combine them. In [18, 16, 17, 44], Chatter@eal. consid-
ered a combined weight metric for their clustering algorithm, that 2. PRELIMINARIES AND RELATED WORKS
:?;ﬁ:nlwriggiggcsgv?/tefe;/ni;lli?;s;ﬁ? tﬁ?igﬁ?fpﬁ;ﬁ;}gfntﬁger']ﬂzgfe’ In this secf[ion, we first givc_a some definitions and notation_s that
Similarly, Nocettiet lal [19] also combined these four facts to be will be usedlln our presentatlonllate.r. we assume that all wireless
the weights for their ciustering method. A nice literature review of nodes are given as a setof n points in & two dlmen5|onal_ space.

' . Each wireless node has an omni-directional antenna. This is attrac-

cluster methods can be found in Section 1 of [19]. In [11], Basagni _; f inal o f d b ived by all nod
et al. also showed the performance comparison of some proposedt'\{e for a single transmission of a node can be received by all nodes
: within its vicinity. Each node has some computational power. We

protocols for clustering and backbone formation. Most of these g
roposed weiahted clustering alaorithms aoplied the simole areed always assume that the nodes are almost-static in a reasonable pe-
brop 9 gag P peg Yiod of time. A communication grapty = (V, E) over a sel’ of

algorithms where the nodes with highest priority (Io_west cost) be- wireless nodes has an edge between nodes andw iff  andwv
come clusterheads. For example, cluster method in [18] selects a

node with the lowest cost amona its unchosen neighbors to servecan communicate directly with each other, i.e., inside the transmis-
9 L ghbo - “sion region of each other. Hereafter, we always assumeilisia
as a clusterhead. These greedy heuristics work well in practice,

but as we will show in Section 2 that they may generate a back- connected graph. Lelc (u) be the degree of nodein a graph(:

bone with a high cost compared with the obtimum. Some of these andd be the maximum degree of all wireless nodes. The average
9 par ° op ' node degree is calledensityof the network. We assume that each
methods [27, 42] are randomized algorithms, nodes become clus-

terheads randomly with a weighted election probability. In [44] wireless node has a cost(u) of being in the backbone. Here
y . gnt 'p Y- ' the coste(u) could be the value computed based on a combination

Turgut proposed a genetic algorithm to optimize cluster process- fi ining b . bility. i de d in th
ing. All of these cluster methods do not guarantee any approxima- of its remaining battery power, its mobliity, its node degree in the
tioﬁ ratio of the weighed cluster (or backbone) compared with the communication graph, and so on. We will discuss several possible
optimum. Notice thgt in [10], Basagni gave an al o?ithm 10 solve weight functions for different applications in Section 5 in detail. In

pumum. o - basaghi g 9 general, smallet(u) means that the node is more suitable of being
maximal weighted independent setwireless networks, but here _ ) ; .

. . o S : in the backbone. Lef = max; jer c(i)/c(j), whereE is the set

our solution for cluster is a distributed approximation algorithm ’

for maximum weighted independent satd minimum connected of communication links in the wireless netwotk We call$ the
L '9 P ' cost smoothnessf the wireless networks. Whehis bounded by
dominating setvhich are well-known NP-hard problems. &i al.

some small constant, we say the node costsar@oth



When the transmission region of every wireless node is modeled

by a unit disk centered at itself, the communication graph is often s

called aunit disk graph denoted by DG(V), in which there is an

edge between two nodes if and only if their distance is at most one. v

We also call such wireless networkstasmogeneous networks

We call all nodes within a constaithops of a node: in the
communication grapty as thek-local nodeor k-hop neighborsf
u, denoted byVi (1), which includes: itself. Thek-local graph of
a nodeu, denoted byG, (u), is the induced graph @& on Ny (u),
i.e., G (u) is defined on vertex se¥; (u), and contains all edges
in G with both end-points inVy (u).

A subset of vertices in a grafgh is anindependent sét for any
pair of vertices, there is no edge between them. It maximal
independent saf no more vertices can be added to it to generate
a larger independent set. It isnaaximum independent s@l1S)

of u, v, andw areoo, 1, and1 — e respectively. The dominators
elected by the first method are nodesindw, and the total cost

of the solution isco. However, the optimal solution is formed by
with a total costl. Our method presented later does produce a
dominating set of total co&t — .

v
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Figure 1: An example why the first method fails to produce low
cost weighted connected dominating set.

The second method of constructing a dominating set [22, 23] is
based on minimum weighted set cover [21]. The method can be

if no other independent set has more vertices. The independence?escribed in a centralized way as follows: in each round, we se-

number, denoted as(G), of a graphG is the size of the max-
imum independent set @i. The k-local independence number
denoted bya[*1(@), is defined as/*!(G) = max,cv (G (u)).

It is well-known that for a unit disk graply™(UDG) < 5 and
P(UDG) < 18.

A subsetS of V' is adominating seif each node: in V' is either
in S or is adjacent to some nodein S. Nodes fromS are called
dominators, while nodes not ifi are called dominatees. Clearly,
any maximal independent set is a dominating set. A sub'set
V is aconnected dominating s€EDS) if C' is a dominating set
andC induces a connected subgraph. Consequently, the nodes in
C can communicate with each other without using node¥ in
C. A dominating set with minimum cardinality is calledinimum
dominating se{MDS). A connected dominating set with minimum
cardinality is thaninimum connected dominating $stCDS).

In wireless ad hoc networks, assume that each nolkes a cost
¢(u). Then a connected dominating s&tis calledweighted con-
nected dominating s€WWCDS). A subseC of V' is aminimum
weighted connected dominating $BWCDS) if C' is a WCDS
with minimum total cost.

Several methods have been proposed in the literature to find a
small dominating set for homogeneous networks. Most of them are

based on greed algorithms. Since, in this paper, we are interested in

distributed methods, we will thus mainly discuss the priori distrib-

uted greedy methods here. If we insist on applying these distrib-
uted methods to approximate the minimum weighted dominating
set, they may produce a backbone that is arbitrarily worse than the
optimum. We will show by examples that three classical methods

do not generate a dominating set whose cost is always comparable

with ours in the worst case.

The first method to generate a dominating set is to generate a
maximal independent set as follows [47, 18]. First, assume that
all nodes are marked a&HITE originally, which represents that
the node is not assigned any role yet. A nadsends a message
lamDominator to all its one-hop neighbors if it has the smallest
cost (ID is often used if every node has a unit cost) among all its
WHITE neighbors. Node: also marks itselDominator. When a
nodev received a messag@mDominator from its one-hop neigh-
bors, nodev then marks itselDominatee. Nodew then sends a
messagéamDominatee to all its one-hop neighbors. Clearly, the
nodes marked witbominator indeed form a dominating set.

We then show by example that the produced dominating set may
be arbitrarily larger than the optimum solution. Although the in-
stance illustrated here uses UDG as communication graph, it is not
hard to extend this to general communication graph. See Figure 1
for an illustration. Assume tha& wireless nodes, v andw are
distributed along a line with one unit interval. The nodes’ costs

lect an unselected nodewith the minimum ratioc(z)/d;, where

d; is the number of nodes not covered by previously selected dom-
inators. It is well-known that this centralized method produces a
dominating set whose total cost is no more thand times of the
optimum, wherel is the maximum original degree of all nodes. In
[4], Alzoubi et al. gave an example (as in Figure 2) with a fam-
ily of instances for which the size of the solution computed by the
second method is larger than the optimum solution by a logarithm
factor when all nodes have the same weight. Although the instance
illustrated here uses UDG as communication graph, obviously, we
can extend this to a general communication graph. In this example,
all nodes have a unit weight. For the detail of this example, see [4].
Moreover, this method is expensive to implement in a distributed

way. First, it is expensive to find the nodeith the minimum ratio

¢(i)/d; among all unchosen nodes. Second, it is also expensive to
updated;, which is the number of neighbors that are not covered
by previously selected dominators. Our method described later will
produce a dominating set whose size is no more thimes of the
optimum for unit weighted UDG. More importantly, our method is

a fully distributed method.
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Figure 2: An example [4] why the second method fails to pro-
duce low cost weighted connected dominating set.

The third method to select the dominating set is proposed by
Bao and Garcia-Luna-Aceves [8]. Unlike the previous two meth-
ods, this is a fully localized method and it can be executed in
rounds using synchronous communication model. A node decides
to become a dominator if either one of the following two criteria
are satisfied: 1) the node has the smallest cost in its one-hop neigh-
borhood; 2) the node has the smallest cost in the one-hop neigh-
borhood of one of its one-hop neighbors. We show by an example
that the produced dominating set may be arbitrarily larger than the
optimum solution. See Figure 3 for an illustration of an instance in
UDG. Assume tha2n + 1 wireless nodes are distributed as shown
in Figure 3. The nodes’ costs af, v;, andw arel, 1 — ¢, and



1 — 2¢, respectively. The dominators selected by the third method method first constructs a maximal independent set (MIS) using

are nodesw andwv; (0 < ¢ < n), the total cost of the solution
isn(l —e€) + 1 — 2e. However, the optimal solution formed by
nodew and seven nodes from has total cos® — 2e. Itis easy to
show that seven unit disks centered atodes among some can
cover allu;. Our method described later will produce an optimal
dominating set in this special case.
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Figure 3: An example why the third method fails to produce
low cost weighted connected dominating set.

3. EFFICIENT LOW-COST BACKBONE
FORMATION ALGORITHMS

In this section, we will propose a distributed algorithm that can

construct a low-cost backbone (weighted connected dominating set) .

for a wireless ad hoc network' by assuming that each wireless
nodew has a cost(u) of being on the backbone. We will prove
that the total cost of the constructed backbone is no more than

min(al®(G) logd, (o!"(G) = 1)5 + 1) + 2a(G)

times of the optimum solution. Hekrgis the maximum degree of
all wireless nodes, andl = max;,jer c(i)/c(j), whereE is the
set of communication links in the wireless network. Notice that,

node weight as selection criterion. Then for each noteMIS, we
run local greedy set cover method loeal neighborhoodV (v) to
find some node&/ RDY,, to cover all one-hop neighbors of If
GRDY, has a total cost smaller than then we us&xRDY, to
replacev, which will further reduce the cost of MIS. Our method
works as follows.

Algorithm 1 Construct Low-cost Dominating Set

1: First assume that all nodes are originally markédITE.

2: A nodewu sends a messaggyDominator to all its one-hop
neighbors if it has the smallest cost among alVits 1 TE neigh-
bors. Nodeu also marks itselPossibleDominator.

3: When a nodev received a messagéyDominator from its
one-hop neighbors, node then marks itselfDominatee.
Nodewv then sends a messaggmbDominatee to all its one-
hop neighbors.

4: When a nodew receives a messagamDominatee from its
neighborv, nodew removes node from its list of WHITE
neighbors.

5: Each nodeu marked with PossibleDominator collects the
cost and ID of all of its two-hop neighbors; (u).

6: Using the greedy method for minimum weighted set cover (like

the second method), nodeselects a subset of its two hop-

neighbors to coveall the one-hop neighbors (including of
nodeu. If the cost of the selected subset, denotedRDY,,,

is smaller than the cost of nodethen node: sends a message

YouAreDominator(w) to each nodev in the selected subset.

Otherwise, node just marks itselDominator.

7: When a nodew received a messagéuAreDominator(w),
nodew marks itselfDominator.

For example illustrated by Figure 1, the MIS will be two nodes
w andu, whose cost is large. Nodeis PossibleDominator and
thus performs the local set cover. CleaNy(u) = {u,v,w} and
Ni(u) = {u,v}. The local set cover will seleet and thernwv to
cover all nodes inVi (u). The final dominating set is thefv, w},

for homogeneous wireless networks modeled by UDG, it implies Which is close to optimungu}.

that the backbone produced by our method has a cost no more thal

min(18logd, 46 + 1) + 10 times of the optimum solution.

3.2 Finding Connectors

Here, we assume that each node knows the IDs and costs of all_ The second step of weighted connected dominating set formation
its 1-hop neighbors, which can be achieved by requiring each nodeS to find someconnectors(also calledgatewayy among all the

to broadcast its ID and cost to its 1-hop neighbors initially. This dom@natees to connect the domingtor_s. Then the connectors and the
protocol can be easily implemented using synchronous communi- dominators form &onnected dominating sédr called backbone_).
cations as did in [7, 6]. If the number of neighbors of each node is  Several methods [25, 7, 6, 3, 2, 47] have been proposed in the
known a priori, then this protocol can also be implemented using literature to find the connectors. However, all of these methods
asynchronous communications. Our method has the following two Only consider the unweighted scenario. We can show by examples
phases: the first phase (clustering phase) is to find a set of wirelesghat these methods generally do not produce a weighted connected
nodes as the dominatdrand the second phase is to find a set of dominating set with good approximation ratio. _

nodes, callectonnector to connect these dominators to form the ~ Given a dominating sef, let VirtG be the graph connecting all
final backbone of the network. Notice that these two phases could Pairs of dominators, andw if there is a path in the original graph

interleave in the actual construction method. We separate them justG' connecting them with at mosthops. It is well-known that the
for the sake of easy presentations. graphVirtG is connected. It is natural to form a connected domi-

o ] nating set by finding connectors to connect any pair of dominators
3.1 Finding Dominators u andw if they are connected iivirtG. This strategy was used in
We then propose our method of constructing a dominating set Several previous methods, such as [4, 2, 7, 6, 37, 47, 1].
whose total cost is comparable with the optimum solution. Our  Our new connector selection method for weighted connected dom-
inating set is also based on this observation. First, we define two

1we will interchange the terms cluster-head and dominator. The

node that is not a cluster-head is also caiedinary node ordom-
inatee A node is calledvhite node if its status is yet to be decided

by the clustering algorithm. Initially, all nodes are white. The status

of a node, after the clustering method finishes, coulddmainator
or dominatee

dominatorsu andv asneighboring dominators they are at most
3 hops away, i.e., they are neighbors in the graphtG. Let
LCP(u, v, G) denote the least cost path; v - - - vy v between ver-
ticesu andv on a weighted grapliz, and £(u, v, G) denote the
total cost of nodes on pathCP(u, v, G) excludingu andv, i.e.,



L(u,v,G) =3, ., c(vx). For every pair of neighboring domi-  clustering, one dominator node can be connected to many domina-
natorsu, andwv, our method will find the shortest path with at most  tees. However, it is well-known that a dominatee node can only be
3 hops to connect them. The nodes on this shortest path will be connected to at mosiveindependent nodes in the unit disk graph
assigned a role of connector. model. In other words, thé-local independence numbef UDG,

Our method uses the following data structures and messages. a[”(UDG), is 5. Generally, it is well-known that, for each node,
there are at most a constant numbeW(UDG)) of independent
nodes that are at mostunits away. The following lemma which
bounds the number of independent nodes withinnits from a
nodev is proved in [47, 1] by using a simple area argument.

1. Dy (v) is the list of dominators that ade-hops away from a
nodewv.

2. Py(v,u) is the least cost path fromto « using at mostk-

hops. Noticen andv may be less thah-hops away. LEMMA 1. For every nodey, the number of independent nodes
inside the disk centered atwith radius k-units, o!*/(UD@), is

3. OneHopDominatorList(v, D1 (v)): nodesD; (v) are the dom- bounded by a constat — (2k + 1)°.

inators of node that arel-hop fromo.
The bounds o, can be improved by a tighter analysis. In [46],
Wanet al. gave the detailed proof to show that for unit disk graph
the number of independent nodes2iiops neighborhood (not in-
cluding thel-hop neighbors) is at modt3 while the number of
independent nodes ithop neighborhood is at most Therefore,

Algorithm 2 LO_W'COSt Connector Selectlo!q _ there are at most8 independent nodes inside the disk centered at
1. Every dominatee node broadcasts to its 1-hop neighbors the 5 hodey with radius2, i_e_,am(UDg) — 18.

list of its one-hop dominator®: (v) using messagéneHop-
DominatorList(v, D1(v)). When a nodev receivesOneHop- THEOREM 2. Algorithm 1 constructs a dominating set whose
DominatorList(v, D1 (v)) from one-hop neighbar, itputsthe  total cost is no more thamin(18log d, 45 + 1) times of the opti-
dominatoru € D1(v) t0 Dz(w) if u ¢ Di(w). Update the  mum for networks modeled by UDG.
ath P as if it has a smaller cost. . . .
2 \F;Vhenda(lgé)irginatleb:?;lode received messag@neHopDomi- PROOF First, we prove the total cost of the maximal indepen-
) . : Y P dent setV/ IS formed by allPossibleDominator nodes is no more

natorList from all its one-hop nodes, for each dominator node ih5n 45 + 1 times of the optimum. Assume nodeis a node

4. TwoHopDominator(v, u, w, c(w)): nodeu is a2-hop dom-
inator of nodev and the pathuwv has the least cost.

u € Ds(w), nodew sends out messagavoHopDomina- from the optimumOPT. If v is not aPossibleDominator node
tor(w, u, z, c(z)), wherewzu is the least cost path: (w, u). then there are at mostPossibleDominator nodes around. Let

3: When a dominator: receives a messagivoHopDomina- vi',v3, -, v5 denote them. The cost of one of these five nodes
tor(w, u, z, c(z)) from its neighborw, it puts u to Ds(z) is smaller than the cost af, otherwise node: will be selected as

a PossibleDominator node. W.l.o.g., let(v}') < c(u). We also
know thatc(v;*) < 6-c(u)for2 <4 <5.Thus,3 ;5 c(vi’) <

(46 4+ 1)c(u). If we summarize the inequations for all nodes in the
optimum dominating sed PT', we get

if u ¢ D2(z), and updates the paths(w,u) asuwzz if
¢(w) + c¢(x) has a less cost.

4: Each dominaton: builds a virtual edgewv to connect each
neighboring dominatoo. The length ofuv is the cost of path

Ps;(u,v). Notice that here the cost of end-nodesand v is uy < (45 4 1 — (45 + De(OPT
not included. All virtual edges forms atge weightedirtual Z Z i) < (5+1) Z e(w) = (484 1)e( )

. . - : : u€OPT 1<i<5 u€EOPT
graphVirtG in which all dominators are its vertices.
5: Run a distributed algorithm to build a MST on graplirtG. Notice that every node in MIS will appear a§ for at least one
Let VM ST denoteM ST (VirtG). nodeu € OPT sinceOPT is a dominating set. Thug(MIS) =

6: For any virtual edge € VM ST, select each of the domina- >, cp75¢(v) <3 copr Z1<ics c(vl). Itfollows that
tees on the path correspondingetas a connector. o
P ponding’ (MIS) < (45 + 1)e(OPT).

- . Then, we prove the total cost of the nodes selected by the greed
The graph constructed by combining all of dominators and the o 04" in Srt)ep 6 of Algorithm 1 is no more thas log dytimeg y

connectors selected by the above algorithm is called a weighted of the optimum. Assume that noderuns the greedy algorithm

connected dominating set (WCDS) graph lfackbong and gets the subset 88RDY,,, and the cost of the selected subset
c¢(GRDY,) is at mostc(u). It is well known that the dominat-
ing set generated by the greedy algorithm for set cover is no more
4. PERFORMANCE GUARANTEE thanlog f times of the optimum if every set has at mgsitems.

In this section, we will study the performances of the proposed Here, we know that every dominator can cover at mbsiomi-

weighted backbone structure in terms of the total node cost in the Natees, thus;(GRDY.,) < logd - ¢c(LOPT.). Here LOPT, is
backbone and the unicast routing cost. the local optimum dominating set in tRehops neighborhood af.

Assg;)n_lc_a ]tcha}\?‘};/TCugSthehs'uﬁ?eltl of thﬁ opgmum sgllrJ]tti)onr,]degotfed
as , for which falls in the2-hops neighborhood o
4.1 Total Cost of the Backbone wie. OPTy = OPTA\NS(U), ObviouslyOPT, is & domi:
First, we would like to build a weighted backbone whose total nating set forN; (u). Thus, we have:(LOPT,) < c¢(OPT,),
node cost is as less as possible. We will show that the backbonesince LOPT, is the local optimum. Therefores(GRDY.,) <
constructed by our method is comparable to the optimum when the log d - «(LOPTy) < logd - ¢(OPT,). Consider all nodes in the
network is not dense, or the costs of the nodes do not have a dra-MIS, We get
matic change, i.e., being smooth. Our analysis following is on the
homogeneous networks, but it can be extended to general hetero-
geneous networks without difficulty. Before describing our result,
we first review an important observation of tieminating sebn Remember that for each nodethe number of independent nodes
UDG, which will play an important role in our proofs later. After in the 2-hops neighborhood ofis bounded by 8. Therefore, each

¢(GRDY) < Y ¢(GRDY,) <logd- Y c(OPT).
ueEMIS ueEMIS



dominator is counted at mo$8 times (once for each node € LEMMA 5. There exists a tre€, ,; in G’ spanning all domina-
MIS that selects it taZRDY,). Thus, . .6 c(OPTy) < tors selected in Algorithm 1 and connectors in this tree has degree
18¢(OPT). at mosta(@).

For each node: in MIS, we either use: as a dominator or use PROOF. We prove this by construction. Consider any optimum
GRDY, as dominators, whichever has a smaller cost. Then, the cost treeT,,; spanning all dominators. In trég,,;, assume there
total weight of the final dominating set is at most exist some connectors whose degrees are greatenthd(?). We

choose any one of them as the root. The depth of a connector is de-

> min(e(u),((GRDY.)) fined as the hops from this connector to the rodEjp,. We process

wEeMIS all connectors: in T, whose degree is greater thal! (G) in an

< min( Z c(u), Z ¢(GRDY..)) increasing order of their depths. Notice that, as we will see later,

weMIS weMIS the depth of a node does change in our construction, but it will only
< min(46 + 1,18log d) - ¢(OPT). increase. Assume that currently we are processing a nagih

o more tham!*/(G) neighbors. Clearly, there are at least two neigh-
This finishes our proof. [] bors ofu in treeT,; that are connected, say q. Notice either

or ¢’s depth is greater than sincew only has one parent. With-
out loss of generality, we assume thég depth is bigger tham’s
depth. We then remove edge and add edggq. Then,u's degree
decreases by while all other connectors whose depth is less than
or equal tou’s remains unchanged ands degree increases iy
Notice this will result in a new tree spanning all dominators while

Notice that here the approximation ratimisn (18 log d, 46+1).
So if one oflog d andé is a constant, the approximation ratio is a
constant. Our analysis is also pessimistic. As our simulation shows
that the practical performance is much better than this theoretical
bound. It is easy to generalize the above result to heterogeneou

networks. keep the cost of the tree unchanged. Update the depth of pode
THEOREM 3. For a network modeled by a gragh, Algorithm and all nodes of the subtree rooted;dthe depths will increase by
1 constructs a dominating set whose total cost is no more than 0ne). Repeat the above iteration until all nodes are processed. It is
min(am (@) log d, ol (G)d + 1) times of the optimum. obvious that the above process will terminate. The resulting tree is
Tope- O

Now, we need to prove the total cost of connectors selected by , o ) y
Algorithm 2 is also bounded. The following lemma about the re-  For treeTc,,, we define its weight(T,,,,) as the sum of the

lationship betweett (u, v, G) and L (u, v, VirtG) will be used in cost of all connectors. We also defin€l’) = - ., cc for an
the proof. edge weighted tre@&'. The above lemma implies that there is an
optimum tree connecting all dominators with node degree at most
LEMMA 4. For any pair of dominators, and v, 5 for networks modeled by UDG.
L(u,v,VirtG) < 2- L(u,v,G). THEOREM 6. The connectors selected by Algorithm 2 have a

total cost no more thag - o!')(G) times of the optimum for net-
works modeled by,

PROOF. Let K¢ be another virtual complete graph whose ver-
tices are all dominators selected in Algorithm 1 and edge length
equal the cost of least cost path between two dominators on origi-

PrROOF Notice that the original graph is node weighted while
the virtual graphVirtG is edge weighted. We assume that path
uv1v2 - - - i v IS the least cost path connectingandv in the orig-
inal graph G, as shown in Figure 4.

u w2 w3 w s e uk nal graphG. Following we argue the weight of MST on grapfx:

‘ ‘ ‘ : ‘ ' o . is at mosta!! (@) times the weight of tre@?,,,,.

s s : > - e ‘1< For spanning tred,,, we root it at an arbitrary node and du-
vl v2 v3 v4 v5 v6 v

plicate every link inT,, (the resulting structure is callefiT?,,).
Clearly, every node iDT,,; has an even degree now. Thus, we
can find an Euler circuit, denoted ByC(DT,;), that uses every
For any dominatee nodein original communication graph, it edge pr,T‘gPt e>§actly once, WhiCh. Is equivalent to say that every
must be dominated by at least one dominator. Thus, we can assumé&dge inT,: (&) is used exactly twice. Consequently, every node
that nodeu; is nodev;’s dominator as shown in Figure 4. For dom- vk in V(T¢,,) is used exactlyl;, (vx) times. Heredg(v) de-
inatorsu; andu;41, we argue that the length @fo is at mostthe  notes the degree of a noden a graphG:. Thus, the total weight
summation of the cost of; andwv;1. Notice thatu;vivit1ui+1 i of the Euler circuit is at most!*! () times of the weight(7%,,),
a3-hops path between; andu; +1 whose length ig(v;) +c(vit1). ie P
Thus, the length ofiv is at mostc(v;) + ¢(vi+1). Thus we have =
c(uittiz1) < c(vi) + c(vig1) for 1 < 4 < k — 1. Similarly, we c(EC(DTyy)) < olN(G) - o(T5,0).
also havex(uui) < c(v1) ande(urv) < e(vr). Summing allthese  Notice that here if a node, appears multiple times iBC/(DT7,,),
inequalities, we get its weight is also counted multiple timesdQEC (DTy,;)).
k—1 k If we walk along EC(DT,,;), we visit all dominators, and the
L(u,v,VirtG) < c(auq) + c(vp0) + Z c(izuiz1) < 22 c(vg). length of any subpath between dominatergndu; is not smaller
i=1 i=1 than £(u;, u;, G). Therefore, the cost aBC(DT,,,) is at least
c(MST(K¢g)) sinceMST(Kg) is the minimum cost tree span-
ning all dominators and the edgeu; in M ST (K ) corresponds
In graphG, we set all dominators’ cost tbto obtain a new graph  to the path with the least cost betwegnandw;. In other words,

Figure 4: L(u,v,G) > 2 - L(u,v, VirtG).

This finishes our proof. (]

G’'. AssumeT,,; is the tree with the minimum cost that spans all EC(DT' > o(MST(K.
dominators selected by Algorithm 1. Following lemma shows that c(BC(DTop)) = (Kupg)).
there exists a tre€,,, whose cost equals the costBf,; and every Consequently, we have

dominatee node in 77,,, has a node degree at mest!(G). e(MST(Kg)) < e(EC(DTs,,)) < alW(G) - e(Th,). (1)



Now we prove the weight a#/ ST (VirtG) is at most two times
the weight ofM ST (K ¢). For any edge = u;u; € MST(Kg),

every route in the constructed network topology is efficient. Re-
member a route isfficientif its total cost (or total hop number) is
no more than a constant factor of the minimum total cost (or total

from Lemma 4, we have hop number) needed to connect the source and the destination in
the original communication graph. The constant is called cost (or
hops) stretch factor.

We first prove the backbone has a bounded cost stretch factor.

L(us,uz, VirtQ)

—

For each edge = u;u; € MST(K¢), we connect them in graph
VirtG using pathLCP(u;,u;, VirtG). This constructs a con-

nected subgraph/ ST’ on graphVirtG whose cost is not greater
than twice of the weight oM ST (K¢). Thus, we have

ce > L(usz,uj,G) >

THEOREM 9. For any communication graph, the cost stretch
factor of UWCDS is at most

PrROOF Consider any source nodeand target node that are
not connected directly in the original communication graphAs-
sume the least cost patiCP(s, t, G) fromstotin Gisllg, (s, t) =
v1v2...0,, Wherev; = s andvy, = ¢, asillustrated by Figure 4. We
construct another path in UWCDS fromto ¢ and the total cost
of this path is at mosB times of the cost of the least cost path
LCP(s,t,G).

For any dominatee nodein original communication graptv,
we will show that there must exist one dominatowhose cost is
not greater thamp’s cost. First, from our selection procedure of
the maximal independent set, naglis not selected to MIS implies
that, at some stage, there is a neighbor,:sayith smaller cost se-
lected to MIS, which will bedPossibleDominator. Notice that, this
PossibleDominator nodew may not appear in our final structure.
However, this node is not selected onlycfGRDY,) is smaller
thanc(u). Notice that clearly, there is at least one node, sayn
GRDY, that dominates nodg sincep is a one-hop neighbor of

THEOREM 7. For any communication grap&’, our algorithm nodeu andG RDY,, covers all one hop neighbors of(including
constructs a weighted connected dominating set whose total cost isu). Clearly, all dominators iz RDY,, has cost no more thar{u)
no more than from ¢(GRDY,) < c(u). If nodeuw is in final structure, we set

2 {1 {1 asu, otherwise, sef as nodev. We call node; as nodep’s small
min(a™(G)logd, (@ (G) = 1)6 + 1) + 2a7(G) dominator Notice thaty andp can be the same node.

For each node; in the pathLCP(s, t,G), let u; be its small
dominator ifv; is not a dominator, else let; be v; itself. Notice

Specifically, when the networks are modeled by a unit disk graph, that there is a 3-hop path;v;v;+1u;+1 in the original communi-
we have the following corollary. cation graphG. Then from Algorithm 2, we know there must exist

) one or two connectors connecting andu;11, and also the cost

COROLLARY 8. For homogeneous wireless networks, our al-  symmation of these connectors is at most the cost summation of
gorithm constructs a weighted connected dominating set whose to-,,, andv;,.. We define a path, denoted bgP(s, t, UWCDS),
tal cost is no more thamin(18logd, 44 + 1) 4 10 times of the 5 connects and¢ in UWCDS as the concatenation of all paths
optimum. LCP(ui, uit1, VirtG), for1 < i < k — 2, and a least cost path
(with < two hops) connecting,—1 andt. Remember that the path

) LCP(u;,us+1, VirtG) is only the least cost path among all paths
After we construct the backbone WCDS, if a nodaevants to connectingu; andu;; using at moss hops.

broadcast a message, it follows the following procedure. If node We then show that the pattCP(s,t, UWCDS) has a cost no
is not a dominator, then it sends the message to one of its domina-more tharB times of the path.CP(s, ¢, G), whereLCP(s, t, G) is
tors. When the message reaches the backbone, it will be broadcasthe least cost path connectirgandt in the original communica-
along the virtual minimal spanning tree. In previous section, we tion graphG. Clearly, 57 £(ui, i1, VirtG) < c(vi) +2 -
prove that the total cost of WCDS is no more than a constant times Zf;f ¢(vi) 4+ ¢(vk—1). Notice that, in our unicast routing algo-
of the optimum, which implies that our structure is energy efficient rithm, when the target nodeis within two hops of the dominator
for broadcast. nodewuy—1, nodeu,—1 will not send the data to dominator node

When considering unicast routing, we can modify our backbone k- Inlsteada '(‘; target is onehhop _nelghb(;)r of noc.’ﬁfav |t|W|II
formation algorithms by (1) removing steps 5, 6, and 7 (collecting irectly send data to nodeg otherwise, nodey; —; will find a eas_t

lon algor y {1 g step _ cost node, say, to connect to the target nodedirectly. Obvi

2-hop information and running the greedy algorithm for set over) ously,c(w) < ¢(v,_1) since nodey, _; connectsu;,_; and target
from Algorithm 1; (2) modifyingPossibleDominator to Domi- t. Thus, the total cost of the path in the constructed backbone is
nator in step 2 of Algorithm 1; and (3) removing steps 5 and 6
(building VM ST) from Algorithm 2. Notice that the changes to
Algorithm 1 are not necessary as will see later. UV C' DS be
the constructed backbone. If a hodavants to unicast a message,

c(MST(VirtG)) < e(MST') < 2-c(MST(Kg)). 2

The theorem follows from combining inequalities (1) and (2):
o(MST(VirtG)) < 2¢(MST(K¢g)) < 2(G) - «(T},,). O

Notice that Theorem 6 also implies the following side-product
result: given a group of receivers in a node weighted network,
the connectors found through VMST has total cost no more than
2a1(G) times of the minimum cost multicast tree. For the spe-
cial case of UDG, the total cost of the connectors is no more than
10 times of the optimum multicast tree. Here we assume that the
receivers have cost

Combining Theorem 3 and Theorem 6, we get the following the-
orem which is one of the main contributions of this paper.

times of the optimum.

4.2 Unicast Performance

k—2 k-1
Z L(ui,uir1, VirtG) + L(ug—1,t, VirtG) + Z c(u;)
i=1 i=1

k—2 k-1
it follows the following procedure. If node is not a dominator and <c(w)+2- > c(v) +e(vp—1) + c(vp—1) + Y _ c(vi)
nodev is not a neighbor of;, nodeu sends the message to one of i=2 i=1

its dominators. Then the dominator will transfer the message to the
target or a dominator of the target through the backbone. Now, we
prove that the backbone is a spanner for unicast application, i.e.,

k-1
<3- Z c(vs).
i=1



This finishes our proof. []

Similar with the proof in [47, 1], we can easily prove the follow-
ing theorem:

THEOREM 10. For any communication graph (not necessarily
a UDG model), the hops stretch factor of UWCDS is at r3dst

4.3 Message Complexity

In wireless ad hoc networks, comparing in data processing, wire-

less node expends more energy in data communication. Therefore

in this section we show that our algorithms are efficient in term of
communication complexity.

THEOREM 11. Algorithm 1 use®(n) messages if the networks
are modeled by UDG and the geometry information of all nodes is
known.

PrROOF First, for messagekryDominator and lamDomina-

Sinced: < n andds < d?, the sixth step takes at moSt(d*) or
O(nd) < O(n?). Therefore, the time complexity of Algorithm 1
is O(n?) in worst case.

For Algorithm 2, the most time consuming step is build a MST
onVirtG. Notice that since the graghirtG has only linear num-
ber of links, we can construct the MST using at most: log n)
time.

5. DISCUSSIONS

5.1 Practical Applications

As we mentioned in the introduction (Section 1), the proposed
distributed algorithms can be used in wireless ad hoc networks to
form a low-cost network backbone for unicast routing or broad-
casting application. The cost which we used as the input of our
algorithms could be genericcost, which defined by various prac-
tical applications. Here we list some possible weights maybe used

tee, every node at most sends out once this kind of messages. Thusin wireless ad hoc networks.

the total number of these two message@is).

Second, for eacPPossibleDominator node, it needs to collect
the costs and IDs of all of its two hop neighbors. This step may
cost lots of communications (at mo§t(m) messages when no
geometry information is known, where in the number of links
in the original UDG). Recently Calinescu [14] proposed a commu-
nication efficient method (usin@(n) messages) to colleé{s(u)
for every nodeu when the geometry information is known for net-
works modeled by UDG.

Third, after applying the greedy method nademay send a mes-
sageYouAreDominator to nodew, but since the number of inde-
pendent nodes in two hops ofv is bounded by a constant, the total
number of this kind of messages is alS¢n).

Consequently, Algorithm 1 us€3(n) messages. [

It is easy to show that Algorithm 1 usé¥(m) messages for a
general networks or the geometry information of all nodes is un-
known. For Algorithm 2, if the networks is modeled by UDG,

Energy Consumption Rate Most backbone-based unicast rout-
ing or broadcasting protocols [22, 41, 49, 48, 36] deliver packets
only through the backbone or restrict the flooding packets in the
backbone, thus the nodes serving as clusterheads or connectors in
the backbone consume more energy than ordinary nodes. If we use
the energy consumption rate at each node as its weight, using the
proposed low-cost backbone formation algorithm, we can achieve
an energy efficient backbone where the total energy consumption
of this backbone is at most constant times of the energy consump-
tion of the optimum. Also the unicast carried on the backbone is
also power efficient, compared with the least energy consumption
path in the original communication graph.

Another way to build energy-efficient backbone is to select nodes
with the maximum amount of remaining energy (equivalently, the
minimum amount of consumed energy if the initial energy of each
node is same).

Fault Tolerant Rate: Fault tolerance is also an important issue
in wireless ad hoc networks, since nodes are mobile and in a dy-

the number of neighboring dominators of a node is bounded by a namic environment. If each node estimates its probability of being
constant, therefore, the number of messages in the first three stepgault and we treat it as the weight, we can use our algorithm to build

is at mostO(n). Since the graptVirtG has only linear number
of links, we can construct the minimum spanning treelamtG
using O(nlogn) number of messages. In practice, we may not

need construct the minimum spanning tree exactly: a localized ap-

proximation of the minimum spanning tree [35] may perform well
enough, which has a message complexity an(y:). In addition,

if only unicast running on the backbone, we can ignore the MST
construction, then the message complexity is @n(y).

4.4 Time Complexity

a fault-tolerant backbone for routing. The fault tolerant rate can be
evaluated by considering the mobility (stability, speed) of the node,
the quality of links (link failures) around the node, the interference
level at the node, or other metric. Some research along this line
have been done in [12, 9, 40, 31, 5]. Assume thaits the prob-
ability that the wireless node;, € V" will have fault in computing

or communicating with its neighbors. Two possible criteria could
be used to measure the fault-tolerant quality of a backbone (i.e., a
CDSSs c V): Zviespi or IT,,esp;. In the first case, the cost
(or called weight) of node; is assigned as(v;) = p;, while in

Considering the data processing at each wireless node, we alsahe latter case, the cost of is assigned ag(v;) = logp;. Then

study the time complexity of our algorithms.
For Algorithm 1, the first four steps take at ma@stn) in time.

building most fault-tolerant backbone is equivalent to find a CDS
with the minimum total cost.

To collect the information of two-hop neighbors, we apply the method  Security Level: Our algorithm can also be applied in designing

proposed by Calinescu [14], which also takes at nist) in time.
Notice that the time complexity of the greedy method in [22, 23]
(based on the set covering method in [21]) is at mOs$inA),
wherem is humber of nodes participating in the algorithm and
A is the maximum node degree. So the sixth step of Algorithm
1 takes at mosD(d2d) whereds is the maximum number of two-
hop neighbors andis the maximum number of one-hop neighbors.

?Actually, the bound i3 + 2, wherek is the number of hops of
the shortest hop path in the original communication graph. Since
1-hop neighbors can directly communicate with each other, for any
nodes that are at least 2-hops away, the boudd is

secure routing protocols. Since ad hoc networks lack a central au-
thority for authentication and key distribution, security is hard to
achieve. In [39], Liuat el. proposed a dynamic trust model for
ad hoc network. Each node has a security level by observing its
neighbor. By using the security level information got from their
method, we can apply our low-cost method to build a backbone for
routing with high security. We could assign the cost to a node using
a method analog to the case of fault-tolerance discussed above.
More different metrics can be considered as the weight in our
method, such as traffic load, signal overhead, battery level, and
coverage. As done in [18, 16, 17, 44, 19], we can also use a com-



bined weight function to integrate various metrics in consideration in VirtG. Typically k is 1 or 2 in our methods. Node: then
to form a more robust and efficient backbone for wireless ad hoc constructs the minimum spanning tr#eST' (N (u)) and keep all
networks in general applications. edgeaw € M ST (N (u)). The union of all such selected links are
Beside forming the backbone for routing or broadcasting, our called the local minimum spanning tree, denotedldy ST (G).
cluster algorithm (Algorithm 1) can also be used in other applica- Notice that here the weight of a linkv is the cost of the least cost
tions. For example, Zheng et al. [50] studied time indexing path (with< 3 hops) connecting andv in G. From the property
problem in sensor networks. To enable time-indexed in-network of the minimum spanning tree, the following lemma is obvious.
storage of sensor data, they selected a subset of sensors, i.e., ren- o ) )
dezvous points to collect, compress and store sensor data from its LEMMA 12. The global minimum spanning tréd ST'(G) is a
neighborhood for pre-defined periods of time. To consider the en- Subgraph of the local minimum spanning teé/ ST} (G).
ergy and storage balancing, we can apply our weighted cluster al-
gorithm to select the rendezvous points. Another example, in [28],
a simple cluster algorithm is used for selecting the mobile agents
to perform intrusion detection in wireless ad hoc networks. We can
also apply our method to their intrusion detection system to achieve
more robust and power efficient agent selection.

5.2 Dynamic Update

After the generation of the weighted backbone, dynamic main-
tenance of the backbone is also an important issue, since an ad ho%
network could be highly dynamic. Two major events may cause

the backbone obsoleted: Mpology changedue to node moving, less nodes with random costs drawn frfim100] and the induced

n0(_je joining or I_eavmg, node failure; and @pight changes/hen UDG(V), then tested the connectivity 8fDG(V'). If it is con-
weights are assigned based on some observed status of nodes. No-

tice that some of the practical weights we discussed above chan hected, we construct different cluster algorithms(oRG/(V') to
P 9 . ; 9%orm dominating sets and measure the total costs of these dominat-
frequently, such as battery level and quality of links. Therefore, a

dynamic update method for our backbone is needed. Usually, there!"J sets. Then, we apply our new methqd o construct the weighted
. ) . . backbone. We test the total cost of the final backbone and measure
are two kinds of update methods: on-demand update or periodi- . . X
S ) . . the average and maximum cost/hop spanning ratios.

cal update. Most of the existing clustering algorithms are invoked . .

e : . In the experimental results presented hergyjireless nodes are
periodically, while some algorithms [18, 16, 17] perform the updat- - . .
! o i . . randomly distributed in 400m x 500m square, and the transmis-
ing only when it is required (i.e., on-demand). Our algorithm can sion rande is set t000m. We tested all algorithms by varvi
adapt and combine both of these two update methods. If no major g - g y varying

. - from 50 to 275, where50 vertex sets are generated for each case to
topology change or no remarkable weight change, no update will . .
. . ; smooth the possible peak effects. The average and the maximum
be performed until some pre-set timer expires. In other words, we

X s : : . were computed over all thesé vertex sets. Notice, the parameter
perform our algorithm periodically with a pre-set time. The time . . . ;
) . . setting of our experiments here is just for demonstrations. We have
could be set quite long depending on the types of the weight and _ . ;
o o : tried other various settings, the results and performances are stable,
applications. This kind of global update also insures the load bal-

ance throughout the network. But for some major topology change due to space limit, we can not present all of them here.
(such as a clusterhead dies) or tremendous change of weights (suchg 2. 1  Cost of Dominators

as a big drop of security level), an on-demand update will be per- First, we compare our algorithm with the three previous greed
formed. Notice that since our algorithm is a localized algorithm -~ np algo . P 9 Yy
algorithms to find a dominating set. Figure 5 gives an example

g;]zﬁgg%tsczrgcess can be performed only in a local area where theof the original communication graph with node costs and different

dominating sets by different greedy methods.
We plotted the performances of all methods in Figure 6. Our
6. PERFQRMANCE EVAL'UATJON. method produces a dominating set whose cost is significantly less
In this section, we conduct extensive simulations to study th(_a than that produced by the MIS based method (greedy 1) and is on
performances of our proposed backbone and compared them withthe similar level with other two methods. In addition, our method
previously greedy algorithms. produces a dominating set whose size is significantly less than that
: : produced by the method in [8] (greedy 3) and is on the similar level
6.1. Pracycal Implemen.tatlon . ] ) with other two methods. The set-cover based method (greedy 2)
Since the distributed construction of MST in Algorlthm 2 is ex- is the 0n|y one that is Comparab|e with our method for both met-

pensive, we implement a localized approximation of M&Eal- rics. However, it is a centralized method while our is a distributed
ized minimum spanning tr§eMST) [35]. For completeness, we  method with a small communication cost.

give the definition of LMST for general edge weighted gragh

Unfortunately, in the worst case, the total costlod! ST (G)
could be arbitrarily larger than the cost 8 ST(G). However,

our simulations show that it is within a small constant factor on
average. The advantage of using the local minimum spanning tree
instead of the global minimum spanning tree is the significant re-
duction in the communication cost.

6.2 Performance Comparisons

We then evaluate the performance of our new distributed weighted
ackbone formation algorithm by simulations on random networks.
In our experiments, we randomly generated asedf n wire-

here. 6.2.2 Cost of Backbone
DEFINITION 1. The k-local minimum spanning tree (LM$) After getting the dominating set (Figure 7(b)) by Algorithm 1,
contains adirectededgeid if edgeuv belongs taV ST( Ny, (w)). we apply Algorithm 2 to find the connectors. Figure 7(c) shows
) _ the backbone after adding some connectors to the dominating set.
For the edge weighted graphirtG, each dominator node Notice that we used the local minimum spanning tree to find the

will first collect all dominator nodes that are at mashops away connectors instead of the global minimum spanning tree (that is

3By using localized minimum spanning trg@MST) instead of why the graph WCDS in Figure 7(c) is not a tree). We plot the to-
MST, our distributed algorithm becomes a localized algorithm. We tal cost and the size of the weighted backbone in Figure 8 (a) and
will discus it in Section 6.1 in detail. (b). The size of the backbone becomes stable when the network
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Figure 5: Different dominating sets by different greedy methods from the same original communication graph.
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Figure 6: Total cost and number of cluster-head of different greedy methods (when the number of nodes are froft to 275).
becomes denser. However, the average total cost of the backboneand is on the similar level with other two methods. Remember the

decreases over the increasing of the network density, which is dueset-cover based method (greedy 2) is a centralized method, there-
to dense network provides more candidates for backbone with po-fore it has good performance in this experiment. Notice, the third

tential lower costs. greedy algorithm also has similar performance with our method.
The reason maybe as follows. Even the size of the dominating set
6.2.3 Cost of Unicast Routing generated by greedy 3 is larger than our method (as shown in the

For unicast, we can simplify Algorithm 2 by directly using VirtG first e>_<p<_ariment), after sz_electing the connectors the sizz_e of back-
as the final backbone. Figure 7(d) illustrates such backbone. Span0ne is in same level with our method for a random distributed
ning ratios of the final backbone are plotted in Figure 8 (c). Notice network.
that the average cost and hop spanning ratios are indeed small (al-
most1). The maximum cost spanning ratio is less tfBanThe
maximum hop spanning ratio is no more thanThese maps well *r
to the theoretical bounds, which eé8@nd4 respectively. sal-

6.2.4 Life-time Experiments

We also conduct simple experiments to test the life time of the
network when using our proposed backbone. Using the same ran-
dom distribution and transmission range as in previous experiments,
we setup networks in &00m x 500m square. Then, we assume

life~time of network

48

461

that each node in the network has total ene2gg initially. We “r f

perform the three classical greedy cluster algorithms and our algo- o Igéig ]
rithm to build weighted backbone for the networks and update it 4 . ‘ ‘ __ouaros
periodically. To ignore the effects of methods selecting connectors, ® 100 150 mber ofnodes 20 00

we apply the same method used in our solutions (Algorithm 2) to
connect clusters generated by the different cluster algorithms. Forrigure 9: The life time of the network using different greedy

the cost of each node being backbone, we simply use the reversenethods (when the number of nodes are frons0 to 275).
of the remaining energy at each node. At the end of each period,

we reduce the power of backbone nodes$ bgnd update the back-

bone. Figure 9 shows the life time (the number of periods that the

network survives until the first node run out of energy). Again, our 7. SUMMARY AND FUTURE WORK

method has longer life time than the MIS based method (greedy 1) In this paper, we present a new algorithm to construct a sparse
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Figure 7: Dominating set, connected dominating set and virtual backbone for unicast from the same original communication graph.
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structure for network backbone in wireless ad hoc networks. A
communication efficient distributed algorithm was presented for

the construction of a weighted connected dominating set, whose [3l

size is guaranteed to be within a small constant factor of the mini-
mum (when eithed or d is a constant). We also show that WCDS

is efficient for both cost and hops and has at ni@&t) edges. This
topology can be constructed locally and is easy to maintain when
the nodes move around. All our algorithms have the message com-

plexity O(n) when geometry information is available.

There are many interesting open problems left for further study.
Remember that, we use the following assumptions on wireless net-
work model: omni-directional antenna, single transmission received
by all nodes within the vicinity of the transmitter, nodes being sta-
tic for a reasonable period of time. To prove that the backbone has
low cost, we also assume that all nodes have the same transmis-

sion range. Notice that the efficiency property for unicast does not [7]

require the communication graph to be a UDG. The problem will
become much more complicated if we relax some of these assump-
tions. Another interesting open problem is to study the dynamic

updating of the backbone efficiently when nodes are moving in a (8]

reasonable speed although our cost function does integrate the mo-
bility of the nodes. Itis interesting to see the practical performance
differences of all proposed methods such as methods by Exker
al., Alzoubi et al, and our methods proposed here, in mobile envi-

ronment.
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