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ABSTRACT
Orthogonal Variable Spreading Factor (OVSF) CDMA code
provides a means of support of variable rate data service at
low hardware cost. In contrast to the conventional orthogo-
nal fixed-spreading-factor CDMA code, OVSF-CDMA code
consists of an infinite number of codewords with variable
rates but not every pair of codewords are orthogonal to each
other. In an OVSF-CDMA wireless ad hoc network, a code
assignment has to be conflict-free, i.e., two nodes can be as-
signed the same codeword or two non-orthogonal codewords
if and only if neither of them is within the transmission range
of the other and no other node is located in the intersection
of their transmission ranges. The throughput (resp., bottle-
neck) of a code assignment is the sum (resp., minimum) of
the rates of the assigned codewords. The max-throughput
(resp., max-bottleneck) conflict-free code assignment prob-
lem seeks a conflict-free code assignment which achieves
the maximum throughput (resp., bottleneck). In this pa-
per, we present several heuristics for conflict-free code as-
signment in OVSF-CDMA wireless ad hoc networks. Each
heuristic is proved to be either a constant-approximation
for max-throughput conflict-free code assignment problem,
or a constant-approximation for max-bottleneck conflict-free
code assignment problem, or constant-approximations for
both problems simultaneously.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory, Graph algorithms, Network prob-
lems

General Terms
Algorithms, Theory
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1. INTRODUCTION

Ccode division multiple access (CDMA) provides higher
capacity, flexibility, scalability, reliability and security than
conventional frequency division multiple access (FDMA) and
time division multiple access (TDMA). It has already been
widely deployed in the second generation cellular commu-
nication systems and was proposed for the emerging and
future wireless systems, including the third generation cel-
lular systems, wireless local area networks, and wireless ad
hoc networks. In a CDMA system, the communication chan-
nels are defined by the pseudo-random codewords, which are
carefully designed to cancel each other out as far as possible.
Each communication utilizes the entire available spectrum,
and every bit of data is multiplied by the codeword used
by the communication channel. Thus, many duplicates of
the same information is transmitted and received to ensure
that at least one gets through. The number of duplicates,
which is equal to the length of the codeword, is know as the
spreading factor. The inverse of the length of the codeword
is known as the rate of the codeword. There is a trade-off on
the length of the codewords. On one hand, longer codewords
can increase the number of channels and the robustness of
the communications. On the other hand, longer codewords
would result in lower date rate of the communication chan-
nels since the raw rate seen by the user is inverse to the
codeword length. The Walsh code, used by the cdmaOne
cellular system, consists of 64 codewords, each 64-bits long.

Conventional CDMA used for voice communications in
the cellular systems is of constant rate in nature. Cor-
respondingly, all codewords in the code have fixed length.
Such code is referred to as orthogonal fixed-spreading-factor
(OFSF) code. In the past several years, data services have
become increasingly important to the cellular networks. In-
deed, one major role of the third generation cellular systems
is to support differentiated quality-of-service (QoS) guaran-
tees for emerging multimedia applications, which are typi-
cally of variable data rate. The support of high-rate data
service by OFSF code can be achieved by assigning multiple
codewords to a connection. This mode of operation is called
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multicode CDMA (MC-CDMA). However, MC-CDMA re-
quires multiple transceivers units at each node, thus intro-
duces increased hardware complexity.

Motivated by the support of variable rate data service at
low hardware cost, a variable-length code, known as orthog-
onal variable-spreading-factor (OVSF) code, was developed
[1] in 1997. The idea of the OVSF code is to allow the code-
words in the code to have variable lengths, and a higher-rate
request is assigned by a single shorter codeword. So by using
OVSF code, only a single transceiver is required per node.
The generation of OVSF code can be depicted by a code-tree
structure [1] shown in Figure 1(a). The code-tree is a bal-
anced binary tree, whose vertices represent the codewords.
The root, which is at the level zero, is associated with the
codeword 1. Recursively, if a vertex has codeword c, then its
two children have codewords cc and cc respectively, where
c is the inversion of c. Thus, at level l there are 2l code-
words, each 2l bits long. OVSF code has two prominent
features different from OFSF code: (1) The number of the
codewords in an OVSF code is infinity, while the number of
codewords in an OFSF code is finite. (2) Not every pair of
codewords in an OVSF code are orthogonal to each other.
Indeed, two OVSF codewords are orthogonal to each other
if and only neither is an ancestor, or equivalently, a prefix
of the other. On the other hand, all codewords in an OFSF
code are orthogonal to each other.
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Figure 1: OVSF code: (a) code-tree structure; (b)
binary color representation.

A wireless ad hoc network is a collection of radio nodes
(transceivers) located in a geographic region. Each node is
equipped with an omnidirectional antenna and has limited
transmission power. A communication session is established
either through a single-hop radio transmission if the com-
munication parties are close enough, or through relaying by
intermediate nodes otherwise. A channel assignment to the
nodes in a wireless as hoc should avoid two collisions. The
primary collision occurs when a node simultaneously trans-
mits and receives signals over the same channel, or two non-
orthogonal channels in case of OVSF-CDMA. The secondary
collision occurs when a node simultaneously receives more
than one signals over the same channel, or non-orthogonal
channels in case of OVSF-CDMA. Thus, to prevent the pri-
mary collision, two nodes can be assigned the same channel
or two non-orthogonal channels if and only if neither of them
is within the transmission range of the other. Similarly, to
prevent the secondary collision, two nodes can be assigned
the same channel or two non-orthogonal channels if and only

if no other node is located in the intersection of their trans-
mission ranges.

Given a OFSF-CDMA code assignment, its throughput is
the sum of the rates of the assigned codewords, and its bottle-
neck is the minimum of the rates of the assigned codewords.
The throughput of a wireless ad hoc network is then the
maximum of the throughput over all possible conflict-free
OFSF-CDMA code assignment to its nodes. Similarly, the
bottleneck of a wireless ad hoc network is then the maximum
of the bottleneck over all possible conflict-free OFSF-CDMA
code assignment to its nodes. In this paper, we first estab-
lish the relation between the independence number and the
throughput, and the relation between the bottleneck and the
chromatic number. After that we present several heuristics
for conflict-free OVSF-CDMA codeword assignment. The
obtained code assignments can achieve a throughput within
a constant factor of the maximum throughput, and/or a bot-
tleneck within a constant factor of the maximum bottleneck.

The remainder of the paper is organized as follows. In
Section 2, we provide a graph-theoretical formulation of the
conflict-free code assignment problems in wireless ad hoc
networks and briefly review the related works. In Section 3,
we prove a key technical lemma which will be used later in
the paper. In Section 4, we establish the relation between
the independence number and the throughput, and the re-
lation between the bottleneck and the chromatic number.
In Section 5, we propose several heuristics for conflict-free
code assignment and analyze their performances. Finally,
We conclude our paper in Section 6.

2. A GRAPH-THEORETIC FORMULATION
AND RELATED WORKS

Let V be the set of radio nodes in a given wireless ad
hoc network, and rv be the specified transmission radius of
node v for each v ∈ V . For any pair of nodes u and v,
we use ‖uv‖ to denote their Euclidean distance. Then a
geometric graph G over V can be obtained by creating an
edge between each pair of nodes (u, v) satisfying that either
‖uv‖ ≤ max {ru, rv} or there is a node w ∈ V \ {u, v} such
that ‖uw‖ ≤ ru and |vw| ≤ rv. The graph G is referred to
as the interference graph.

With the introduction of the interference graph, a conflict-
free channel assignment in wireless ad hoc networks channel-
ized by FDMA, TDMA, or OFSF-CDMA, is equivalent to a
proper vertex coloring of the interference graph. However,
such equivalency disappears if the wireless ad hoc network is
channelized by OVSF-CDMA. Instead, a conflict-free chan-
nel assignment in a wireless ad-hoc network channelized by
OVSF-CDMA is equivalent to the following variant of vertex
coloring, referred to as prefix-free vertex coloring, or simple
prefix-free coloring, of the interference graph G: The col-
ors are represented by positive binary numbers as shown in
Figure 1(b). Note that the first (i.e., leftmost) bit of every
binary color is one, and a binary color at level l has l + 1
bits. Two binary colors are said to be prefix-free if neither is
a prefix of the other. Then, two binary colors are prefix-free
if and only if the corresponding codewords are orthogonal.
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A prefix-free coloring of G is a vertex coloring such that any
pair of adjacent vertices in G receive prefix-free colors.

We associate each binary color with a rate attribute, which
is equal to the rate of the corresponding codeword. Thus,
the rate of an i-bit binary color is equal to the 2−i+1. The
throughput of a prefix-free coloring is the sum of the rates
of the assigned binary colors, and the bottleneck of a prefix-
free vertex coloring is the minimum of the rates of the as-
signed binary colors. The problem max-throughput prefix-
free coloring seeks a prefix-free coloring of a given graph
which achieves the maximum throughput. The problem
max-bottleneck prefix-free coloring seeks a prefix-free color-
ing of a given graph which achieves the maximum bottle-
neck. The throughput of a graph G is the maximum through-
put achievable by a prefix-free coloring of G. Similarly, the
bottleneck of a graph G is the maximum bottleneck achiev-
able by a prefix-free coloring of G.

All prior studies of prefix-free coloring have been restricted
to complete graphs in the context of channel assignment to
nodes in a single cell of an OVSF-CDMA cellular networks
[3, 5, 10, 15]. The prefix-free vertex coloring of complete
graphs is fairly easy. Indeed, since each node must receive a
unique color different from others, a prefix-free coloring can
thus be represented by a binary tree with one-to-one corre-
spondence between the nodes (or their colors) and the leaves.
Every binary tree with n leaves leads to a valid prefix-free
coloring. If the binary tree is full, then the corresponding
coloring achieves the maximum throughput one. If the bi-
nary tree is full and balanced, the corresponding coloring
achieves both maximum throughput and maximum bottle-
neck. Furthermore, if each node specifies a demand equal to
a power of 1/2, then as an immediate application of Kraft’s
inequality, all demands can be satisfied if and if the total de-
mands is at most one. The dynamic reassignment of colors
to meet a new demand is addressed in [15].

The minimum (proper) vertex coloring of the interference
graph have been studied in the context of channel assign-
ment in wireless ad hoc networks channelized by FDMA,
TDMA or OFSF-CDMA [6, 7, 9, 11, 16, 17, 18, 19, 20,
21, 22]. The majority of these works simply presented net-
working protocols to obtain a proper coloring without ad-
dressing the computational complexity or the theoretical
performance. Sen and Huson [19] proved the NP-hardness
the minimum vertex coloring of the interference graph even
when all nodes are located in a plane and have the same
transmission radii. Sen and Malesinska [20] made an at-
tempt to analyze the approximation ratio of the classical
FIRST-FIT coloring in smallest-degree-last ordering due to
Matula and Beck [14] when applied to the interference graph.
Unfortunately, their analysis turned to be erroneous. Wan
et al. [22] recently provided correct and tighter analyses of
Matula and Beck’s algorithm and several other approxima-
tion algorithms as well.

A problem related to the vertex coloring of the interfer-
ence graphs is the distance-2 vertex coloring of a graph [12].
A distance-2 vertex coloring of a graph G is a coloring of
the vertices such that any two vertices separated by at most
two hops receive different colors. In other words, it is a
proper vertex coloring of G2, the square graph of G –the

graph obtained by creating an edge between each pair of
vertices of G whose graph distance in G is at most two.
When all nodes have equal transmission radii, their interfer-
ence graph happens to be the square of unit-disk graph over
these nodes, and hence in this case, the vertex coloring of
the interference graph is the same as a distance-2 vertex col-
oring of a unit-disk graph [8]. However, when the nodes have
disparate transmission radii, the interference graph may be
not the square of any graph as observed in [22]. Therefore,
distance-2 vertex coloring is in general different from the
vertex coloring of the interference graphs.

To our best knowledge, there has been no attempt to max-
imize the throughput when coloring vertices. The only ver-
tex coloring problem that can be considered to be some-
how related is the minimum chromatic sum problem [4, 13],
which seeks a vertex coloring of a given graph G, using nat-
ural numbers, such that the total sum of the colors of the
vertices is minimized among all proper vertex coloring of G.
However, the maximum-throughput prefix-free vertex color-
ing problem possesses several unique features, which makes
itself different from the minimum chromatic sum problem.
First of all, the vertex coloring must be prefix-free, instead of
being proper only. Second, the rate of the colors is different
from the color number itself. Third, it is the maximization
problem, while the minimum chromatic sum problem is a
minimization problem.

3. A TECHNICAL LEMMA

Let T be a (rooted) binary tree. For each vertex v of T ,
the level of v in T , denoted by �T (v) is defined as the length
of the path in T between the root and v. Thus the level of
the root is zero. A binary tree is full if every nonleaf vertex
has exactly two children. A binary tree is balanced if the
levels of all leaves differ by at most one. A binary tree is
said to be extremely unbalanced if there are exact two leaves
at the maximum level and one leaf at any other level (see
Figure 2).

Figure 2: An extremely imbalanced full binary tree.

Consider be a finite set S of items in which each item s is
associated with a positive weight ω (s). Let TS denote the
set of binary trees whose leaves are the items of S. For each
tree T in TS , its throughput, denoted by f (T ), is defined
by

f (T ) =
X
s∈S

ω (s) 2−�T (s).
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A tree in TS is said to be optimal if its throughput achieves
the maximum among all trees in TS. Obviously, any optimal
tree must be full. Let T ∗ be an extremely unbalanced tree
in TS satisfying that the levels of the items sorted in the
decreasing order of the weights monotonically increase. The
next lemma states that T ∗ is optimal.

Lemma 1. T ∗ is an optimal tree in for TS. If S is a
finite set of items with weights ω1 ≥ ω2 ≥ · · · ≥ ωk, then its
throughput is

k−1X
i=1

ωi

2i
+

ωk

2k−1
.

The proof of this lemma is similar to the proof of the
correctness of Huffman code construction (see, e.g., Chapter
16 of [2]). It will make use the following two lemmas.

Lemma 2. Let x and y be two items having the lowest
weights. Then there exists an optimal tree in which x and y
appear as the sibling leaves of maximum level.

T’’T T’

a

x

a

y

b

y

x

ba

b

yx

Figure 3: An illustration of the swap operations in
the proof of Lemma 2.

Proof. The idea of the proof is to take an arbitrary opti-
mal tree T and modify it to make a tree representing another
optimal tree such that x and y appear as the sibling leaves
of maximum level in the new tree. We use the swapping
argument. Let a and b be two items that are sibling leaves
of the maximum level in T (see Figure 3). Without loss of
generality, we assume that ω (x) ≤ ω (y) and ω (a) ≤ ω (b).
Then ω (x) ≤ ω (a) and ω (y) ≤ ω (b). As shown in Figure
3, we exchange the positions in T of a and x to produce a
tree T ′, and then we exchange the positions in T ′ of b and y
to produce a tree T ′′. The difference in throughput between
T and T ′ is

f (T )− f
�
T ′�

=
X
s∈S

ω (s) 2−�T (s) −
X
s∈S

ω (s) 2−�T ′ (s)

= ω (x) 2−�T (x) + ω (a) 2−�T (a)

− ω (x) 2−�T ′ (x) − ω (a) 2−�T ′ (a)

= ω (x) 2−�T (x) + ω (a) 2−�T (a)

− ω (x) 2−�T (a) − ω (a) 2−�T (x)

= (ω (a) − ω (x))
�
2−�T (a) − 2−�T (x)

�
≤ 0,

because ω (a) ≥ ω (x) and �T (a) ≥ �T (x). Thus, f (T ) ≤
f (T ′) ,which means exchanging x and a does not decrease
the throughput. Similarly, exchanging y and b does not
decrease the throughput and hence f (T ′) ≤ f (T ′′). There-
fore, f (T ) ≤ f (T ′′). Since T is optimal, f (T ) = f (T ′′).
Thus, T ′′ is an optimal tree in which x and y appear as
the sibling leaves of maximum level, from which the lemma
follows.

The next lemma shows that the optimal tree has the
optimal-substructure property.

Lemma 3. Let T be an optimal tree in TS. Consider any
two items x and y that appear as the sibling leaves in T ,
and let z be its parent. Then, considering z as an item with

weight ω (z) = ω(x)+ω(y)
2

, the tree T ′ obtained from T by
putting z at the parent of a and y and them removing x and
y is optimal tree in TS′ where S′ = S − {x, y} ∪ {z}.

Proof. We first show that the throughput f (T ) of T is
equal to the throughput f (T ′) of T ′. For each s ∈ S −
{x, y}, we have �T (s) = �T ′ (s) and hence ω (s) 2−�T (s) =

ω (s) 2−�T ′ (s). Since

�T (x) = �T (y) = �T ′ (z) + 1,

we have

ω (x) 2−�T (x) + ω (y) 2−�T (y)

= (ω (x) + ω (y)) 2−�T ′ (z)−1

= 2ω (z) 2−�T ′ (z)−1

= ω (z) 2−�T ′ (z)

from which we conclude that f (T ) = f (T ′).
If T ′ is not an optimal one in TS′ , then there exists a tree

T ′′ in TS′ such that f (T ′′) > f (T ′). Since z is treated as
an item in S′, it appears as a leaf in T ′′. If we add x and
y as children of z in T ′′, then we obtain a tree in TS with
f (T ′′) > f (T ′) = f (T ), contradicting the optimality of T .
Thus, T ′ must be optimal in TS′ .

Note that if x and y are the two items having the lowest
weights, then the new item z has the lowest weight in the set
S′. This fact, together with the above two lemmas, implies
the correctness of Lemma 1.

4. THROUGHPUT AND BOTTLENECK OF
GENERAL GRAPHS

The results in this section holds for general graphs. The
concepts of prefix-free coloring, throughput and bottleneck
can be extended to general graphs. Let G be an arbitrary
graph. Following the standard notations, we use χ (G) and
α (G) to denote the chromatic number and the independence
number respectively of G. We also introduce two new nota-
tions. For any graph G, we use τ (G) and β (G) to denote
the throughput and bottleneck respectively of G. The main
result of this section is the following relations among these
four graph parameters.
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Theorem 4. For any graph G,

α (G) /2 ≤ τ (G) ≤ α (G) ,

β (G) = 2−�log χ(G)�.

The proof of the first part of Theorem 4 involves a new
concept of canonical prefix-free coloring, which is defined
below. We observe that in any prefix-free coloring of G,
all nodes receiving the same color form an independent set
of G. Thus, any prefix-free coloring of G can be regarded
as a partition of V (G) into independent sets V1, V2, · · · , Vk

followed by an assignment of colors to these independent sets
as a whole. A prefix-free coloring of G is said to be canonical
if it partitions of V (G) into independent sets V1, V2, · · · , Vk

with

|V1| ≥ |V2| ≥ · · · ≥ |Vk|
for some integer k, and assigns the color 1i0 to all nodes in
Vi for 1 ≤ i ≤ k − 1 and the color 1k to all nodes in Vk. By
definition, a canonical prefix-free coloring is fully determined
by the partition of V into independent sets. The next lemma
states that there exists an canonical prefix-free coloring of
G which achieves the maximum throughput.

Lemma 5. For any graph G, there is a canonical prefix-
free coloring of G which achieves the maximum throughput.

Proof. A prefix-free coloring which uses k different col-
ors c1 < c2 < · · · < ck is said to be locally tight if each node
receiving a color ci for some i > 1 has at least one neighbor
receiving the color cj for any 1 ≤ j < i. It is easy to see
that every prefix-free coloring can be transformed to a lo-
cally tight one with the same or smaller throughput. There-
fore, there is a prefix-free coloring which is locally tight and
achieves the maximum throughput. Let OPT be a such
prefix-free coloring. Assume that OPT uses k different col-
ors c1 < c2 < · · · < ck. Since OPT is locally tight, these
k colors are pairwise prefix-free. For each 1 ≤ i ≤ k, let Vi

denote the set of vertices which receive the color ci. Then
the k subsets V1, V2, · · · , Vk form a partition of V (G) into
independent sets. Now we renumber them such that

|V1∗ | ≥ |V2∗ | ≥ · · · ≥ |Vk∗ | .

Let OPT ∗ be the prefix-free coloring which assigns the color
1i0 to all nodes in Vi′ for 1 ≤ i ≤ k − 1 and the color 1k

to all nodes in Vk′ . Then OPT ∗ is a canonical prefix-free
coloring. We shall prove that the throughput of OPT ∗ also
achieves the maximum throughput by using Lemma 1.

In order to apply Lemma 1, we treat each subset Vi as an
item with weight ω (Vi) = |Vi| and let S = {V1, V2, · · · , Vk}.
We define two trees T and T ∗ in TS as follows. For each
1 ≤ i ≤ k, let Pi denote the path in the tree representation of
binary colors shown in Figure 1 from the root to the tree ver-
tex representing color ci. Since the k colors c1, c2, · · · , ck are
pairwise prefix-free, the union of the k paths c1, c2, · · · , ck is
a binary tree with k leaves. For each 1 ≤ i ≤ k, we place the
item Vi to the leaf which comes from Pi. The resulting tree
in TS is then defined to be the tree T . The tree T ∗ is defined
as the extremely unbalanced binary tree in TS with the item
Vi∗ being the (unique) leaf at level i for each 1 ≤ i ≤ k − 2

and the two items V(k−1)∗ and Vk∗ being the two leaves at
level k−1. Clearly, f (T ) equals to the throughput of OPT ,
and f (T ∗) equals to the throughput of OPT ∗. By Lemma
1, f (T ) ≤ f (T ∗). Thus, the throughput of OPT is less than
or equal to the throughput of OPT ∗. Since OPT achieves
the maximum throughput, so does OPT ∗.

Now we are ready to prove the first part of Theorem 4.
First, we show that τ (G) ≤ α (G). Consider a canoni-
cal prefix-free coloring of G which achieves the maximum
throughput τ (G). Assume that k colors are used. For each
1 ≤ i ≤ k, let Vi be the set of nodes receiving the color 1i0.
Then,

α (G) ≥ |V1| ≥ |V2| ≥ · · · ≥ |Vk| ,
Thus,

τ (G) =

k−1X
i=1

|Vi|
2i

+
|Vk|
2k−1

≤ α (G)

 
k−1X
i=1

1

2i
+

1

2k−1

!

= α (G) .

Second, we prove that α (G) /2 ≤ τ (G). Let V1 be a max-
imum independent set, and {V2, · · · , Vk} be an arbitrary
partition of V \ V1 into independent sets with

|V2| ≥ · · · ≥ |Vk| .
Then,

α (G) = |V1| ≥ |V2| ≥ · · · ≥ |Vk| .
Consider the canonical prefix-free coloring of G determined
by V1, V2, · · · , Vk. Its throughput is

k−1X
i=1

|Vi|
2i

+
|Vk|
2k−1

≥ |V1|
2

=
α (G)

2
.

Therefore,

τ (G) ≥ α (G)

2
.

Next we prove the second part of Theorem 4. First, we
show that β (G) ≤ 2−�log χ(G)�. Consider any prefix-free
coloring with maximum bottleneck β (G) = 2−�+1 for some
�. Then every color in this coloring is at most �-bit long.
We replace each �′-bit color c with �′ < � by the �-bit color

c0�−�′ , i.e. the color obtained from c by appending � − �′

zeros. This new coloring remains prefix-free and uses only
�-bit colors. Since the first bit of every �-bit color is always
one, the total number of �-bit colors is at most 2�−1. Thus
χ (G) ≤ 2�−1. This implies that �log χ (G)� ≤ � − 1. Thus,

β (G) = 2−(�−1) ≤ 2−�log χ(G)�.

First, we show that β (G) ≥ 2−�log χ(G)�. Consider any
proper vertex coloring of G using χ colors. These χ col-
ors can all be represented by distinct (1 + �log χ (G)�)-bit
binary colors. Thus,

β (G) ≥ 2−(1+�log χ(G)�)+1 = 2−�log χ(G)�.

This completes the proof of Theorem 4.
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5. APPROXIMATION ALGORITHMS

Throughout of this section, we use V to denote the set of
given radio nodes. All nodes in V are assumed to locate in a
plane. The transmission radius of For each node v ∈ V , its
transmission radius is denoted by rv. The nodes in V are
said to have quasi-uniform transmission radii if the ratio
of maxv∈V rv to minv∈V rv is at most 1

2 sin 360o

13
, and have

uniform transmission radii is all rv’s are equal. We use G
to denote the interference graph.

5.1 First-Fit Prefix-Free Coloring

First-fit coloring is a class of greedy algorithms for con-
ventional (proper) vertex coloring. Each first-fit coloring
is associated with a vertex ordering and colors the vertices
sequentially according to the associated vertex ordering by
assigning each vertex the least possible color. A first-fit
coloring of a graph G using k colors partitions V into k in-
dependent sets V1, V2, · · · , Vk where Vi is the set of vertices
receiving the i-th color. Note that V1–the set of vertices
receiving the first (smallest) color– is always a maximal in-
dependent set. In addition, for any 1 ≤ i < j ≤ k, at least
one vertex in Vj is adjacent to some vertex in Vi.

A first-fit coloring can be adapted for max-throughput
prefix-free coloring in the following “unbalanced” manner.
First apply the first-fit coloring to obtain a proper vertex
coloring. Assume that k colors are used. Replace the i-th
color by the binary color 1i0 for 1 ≤ i ≤ k−1, and replace the
k-th color by the binary color 1k. Such prefix-free coloring
is referred to as unbalanced first-fit prefix-free coloring.

A first-fit coloring can also be adapted for max-bottleneck
prefix-free coloring in the following “balanced” manner. First
apply the first-fit coloring to obtain a proper vertex color-
ing. Assume that k colors are used. Let Tk be a balanced
full binary tree of k leaves. By mapping the root of Tk to
the binary color 1, the k leaves of Tk correspond to k bi-
nary colors c1, c2, · · · , ck in the increasing order. For each
1 ≤ i ≤ k, replace the i-th color in the first-fit coloring by
the binary color ci. Such prefix-free coloring is referred to
as balanced first-fit prefix-free coloring.

As with first-fit coloring, the performance of a first-fit
prefix-free coloring depends on the associated vertex order-
ing. In this paper, we consider the following three vertex
orderings:

1. Radius-increasing ordering: In this ordering, the ver-
tices are sorted in the increasing order of their trans-
mission radii.

2. Radius-decreasing ordering: In this ordering, the ver-
tices are sorted in the decreasing order of their trans-
mission radii.

3. Lexicographic ordering: In this ordering, the vertices
are sorted in the lexicographic order of their coordi-
nates.

We propose unbalanced first-fit prefix-free coloring in rad-
ius-increasing ordering as a heuristic for max-throughput
prefix-free coloring. Its performance is given in the following
theorem.

Theorem 6. Unbalanced first-fit prefix-free coloring in ra-
dius-increasing ordering is a 26-approximation for max-th-
roughput prefix-free coloring. If all nodes have quasi-uniform
transmission radii, then it is a 24-approximation for max-
throughput prefix-free coloring.

Proof. Let V1 be the set of vertices receiving the binary
color 10. It was proved in [22] that |V1| ≥ α (G) /13. Thus,
the throughput of the output prefix-free coloring is at least
|V1| /2 ≥ α (G) /26. By Theorem 4, α (G) ≥ τ (G). Thus,
the throughput of the output prefix-free coloring is at least
τ (G) /26. This implies that unbalanced first-fit prefix-free
coloring in radius-increasing ordering is a 26-approximation
for max-throughput prefix-free coloring.

If all nodes have quasi-uniform transmission radii, then
it was proved in [22] that |V1| ≥ α (G) /12. Using the
same argument as in the previous paragraph, we can show
that in this case unbalanced first-fit prefix-free coloring in
radius-increasing ordering is a 24-approximation for max-
throughput prefix-free coloring.

We propose balanced first-fit prefix-free coloring in radius-
decreasing ordering as a heuristic for max-bottleneck prefix-
free coloring. The following theorem gives an upper bound
on its approximation ratio.

Theorem 7. Balanced first-fit prefix-free coloring in rad-
ius-decreasing ordering is a 16-approximation for max-bottle-
neck prefix-free coloring.

Proof. Let k be the number of binary colors used by the
output prefix-free coloring. Then the number of bits in any
of these k binary colors is at most 1+�log k�. The bottleneck

of the output prefix-free coloring is at least 2−�log k�. It
was proved in [22] that k ≤ 13χ (G). By Theorem 4, the
bottleneck of the output prefix-free coloring is at least

2−�log(13χ(G))� ≥ 2−�log 13�−�log χ(G)�

= 2−�log χ(G)�/16

= β (G) /16.

This implies that balanced first-fit prefix-free coloring in
radius-decreasing ordering is a 16-approximation for max-
throughput prefix-free coloring.

When all nodes have uniform transmission radii, we pro-
pose unbalanced first-fit prefix-free coloring in lexicographic
ordering as a heuristic for max-throughput prefix-free color-
ing, and balanced first-fit prefix-free coloring in lexicographic
ordering as a heuristic for max-bottleneck prefix-free color-
ing. Their performances are given in the following theorem.
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Theorem 8. Assume all nodes have uniform transmis-
sion radii. Then unbalanced first-fit prefix-free coloring in
lexicographic ordering is a 14-approximation for max-throu-
ghput prefix-free coloring, and balanced first-fit prefix-free
coloring in lexicographic ordering is an 8-approximation for
max-bottleneck prefix-free coloring.

Proof. Let V1 be the set of vertices receiving the binary
color 10 in the output of unbalanced first-fit prefix-free col-
oring in lexicographic ordering. It was proved in [22] that
|V1| ≥ α (G) /7. Following the same argument as in the
proof of Theorem 6, unbalanced first-fit prefix-free color-
ing in lexicographic ordering is a 14-approximation for max-
throughput prefix-free coloring.

Let k be the number of binary colors used by the output
of balanced first-fit prefix-free coloring in lexicographic or-
dering. It was proved in [22] that k ≤ 7χ (G). Following the
same argument as in the proof of Theorem 7, we can show
that balanced first-fit prefix-free coloring in lexicographic or-
dering is an 8-approximation for max-throughput prefix-free
coloring.

We observe that an unbalanced first-fit prefix-free color-
ing achieves a good throughput but a very poor bottleneck.
Indeed, every unbalanced first-fit prefix-free coloring always
outputs an extremely unbalanced coloring with colors cor-
respond to the leaves of the binary tree depicted in Figure
4 (a). On the other hand, a balanced first-fit prefix-free
coloring achieves a good bottleneck but may have a poor
throughput. In the next, we discuss on how to modify them
so as to achieve both good throughput and good bottleneck.

(b)

10 11

(a)

Figure 4: Modification to the coloring by first-fit:
(a) the original colors; (b) the new colors.

For disparate transmission radii, the modified first-fit prefix-
free coloring consists of two steps. In the first step, we apply
the first-fit heuristic in the radius increasing ordering to find
a maximal independent set. All nodes in the obtained max-
imal independent set will receive the binary color 10. This
first step ensures a good throughput. In the second step, we
use the first-fit coloring in the radius decreasing ordering to
find a proper vertex coloring of the remaining nodes. These
colors will then be mapped to the binary colors which corre-
spond to the leaves of a balanced full binary tree rooted at
the color 11 (see Figure 4 (b)). This second step ensures a
good bottleneck. Such modified first-fit prefix-free coloring
is referred to as bicriteria first-fit prefix-free coloring in dou-
ble radius-ordering. Its performance is given in the following
theorem.

Theorem 9. Bicriteria first-fit prefix-free coloring in dou-
ble radius-ordering is a 26-approximation for max-throughput
prefix-free coloring and a 32-approximation for max-bottleneck
prefix-free coloring. If all nodes have quasi-uniform trans-
mission radii, then it is a 24-approximation for max-through-
put prefix-free coloring and a 16-approximation for max-
bottleneck prefix-free coloring.

The proof of Theorem 9 is similar to those of Theorem 7
and Theorem 6 and is omitted here.

For uniform transmission radii, we modify first-fit prefix-
free vertex coloring in lexicographic ordering as follows: We
first apply the first-fit in lexicographic ordering to find a
proper vertex coloring. Then the smallest color is mapped
to the binary color 10, and all other colors are mapped to
the binary colors which correspond to the leaves of a bal-
anced full binary tree rooted at the color 11 (see Figure 4
(b)). Such modified first-fit prefix-free coloring is referred
to as bicriteria first-fit prefix-free coloring in lexicographic
ordering. Its performance is given in the following theorem.

Theorem 10. Assume all nodes have uniform transmis-
sion radii. Then bicriteria first-fit prefix-free coloring in lexi-
cographic ordering is a 14-approximation for max-throughput
prefix-free coloring and a 16-approximation for max-bottleneck
prefix-free coloring.

The proof of Theorem 10 is similar to that of Theorem 8
and is omitted here.

5.2 Tile Prefix-Free Coloring

In this subsection, we assume that all nodes have uniform
transmission radii equal to one. We propose a spatial divide-
and-conquer heuristic referred to as tile prefix-free coloring.
It is attractive due to its easy implementation, especially for
dynamic and on-line prefix-free coloring and also distributed
prefix-free vertex coloring.

In this heuristic, we tile the plane into regular hexagons
of side equal to 1/2 (see Figure 5). Each hexagon, or cell,
is considered to be left-closed and right-open, with the top-
most point included and the bottom-most point excluded
(see Figure 6). Cells are further grouped into clusters of
size 12 according to the pattern as shown in Figure 5. We
then label the 12 hexagons in a cluster with the numbers
1 through 12 in an arbitrary pattern, and repeat the same
labelling for all clusters. Then, the distance between any two
(half-closed and half-open) hexagons with the same label is
greater than 2. Thus, colors can be spatially reused among
the hexagons with the same label.

Now for each 1 ≤ i ≤ 12, let Vi denote the set of nodes
within the hexagons labelled with i. We will assign colors
to the nodes such that for any 1 ≤ i < j ≤ 12, the colors
assigned to nodes in Vi are disjoint from the colors assigned
to nodes in Vj . For this purpose, all nodes in a set Vi will
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Figure 5: Tiling of the plane into hexagons with 12
hexagons per cluster.

Figure 6: Half-closed half-open hexagon.

receive colors which are descendents of some color ci corre-
sponding to a leaf in the balanced full binary tree with 12
leaves as shown in Figure 7. For each Vi, we further parti-
tion into groups such that each group consists of nodes in
Vi that are within a hexagon. Since the interference graph
over all nodes in a group is a clique, we apply a “shifted-
down” version of the algorithm for prefix-free vertex coloring
of complete graphs to all nodes in a group. In other words,
the coloring to nodes in each group of Vi corresponds to a
balanced full binary tree rooted at ci with one-to-one corre-
spondence between the nodes and the leaves. With this col-
oring, the throughput of all nodes in a group of Vi is exactly
the rate of ci. Thus, in order to maximize the throughput,
the mapping from Vi’s to ci’s are chosen such that a set Vi

with more groups will be mapped to a color ci of shorter
length.

Figure 7: Each of the 12 colors corresponding to the
12 leaves is the prefix of the colors assigned to all
nodes in some Vi.

The next theorem give the performance of title prefix-free
coloring.

Theorem 11. Assume all nodes have uniform transmis-
sion radii. Then tile prefix-free coloring is a 12-approxima-
tion for max-throughput prefix-free coloring and a 16-ap-
proximation for max-bottleneck prefix-free coloring.

Proof. We first prove that tile prefix-free coloring is a
12-approximation for max-throughput prefix-free coloring.
For each 1 ≤ i ≤ 12, let gi denote the number of hexagons
labelled with i which contains at least one node. Note that
in any prefix-free coloring the total rates of the binary colors
assigned to all nodes in a non-empty hexagon is at most one.
Thus,

τ (G) ≤
12X

i=1

gi.

Without loss of generality, assume that

g1 ≥ g2 ≥ · · · ≥ g12.

Since in tile prefix-free coloring the total rates of binary col-
ors assigned to all nodes in a non-empty hexagon labelled
with i is exactly the rate of the binary color ci, the through-
put of tile prefix-free coloring is exactly

1

8

4X
i=1

gi +
1

16

12X
i=5

gi.
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Note that  
1

8

4X
i=1

gi +
1

16

12X
i=5

gi

!
− 1

12

12X
i=1

gi

=
1

24

4X
i=1

gi −
1

48

12X
i=5

gi

≥ 1

24
· 4g4 − 1

48
· 8g5

=
g4 − g5

6
≥ 0.

Therefore,

1

8

4X
i=1

gi +
1

16

12X
i=5

gi ≥
1

12

12X
i=1

gi ≥
1

12
τ (G) .

This implies that tile prefix-free coloring is a 12-approximation
for max-throughput prefix-free coloring.

Next, we prove that tile prefix-free coloring is a 16-ap-
proximation for max-bottleneck prefix-free coloring. Let m
be the largest number of nodes contained in a hexagon.
Then each binary color used in tile prefix-free coloring has
at most 5+ �logm� bits. Thus, the bottleneck of tile prefix-

free coloring is at least 2−4−�log m�. On the other hand,
χ (G) ≥ m. Thus, by Theorem 4,

β (G) = 2−�log χ(G)� ≤ 2−�m�.

So the bottleneck of tile prefix-free coloring is at least

2−4−�log m� ≥ 1

16
β (G) .

This implies that tile prefix-free coloring is a 16-approxima-
tion for max-bottleneck prefix-free coloring.

6. CONCLUSION

In FDMA, TDMA or OFSF-CDMA wireless ad hoc net-
works, a conflict-free channel assignment is equivalent to a
conventional (proper) vertex coloring of the underlying in-
terference graphs. Because of the limited number of chan-
nels available in these networks, the cost metric of a conflict-
free channel assignment in these networks is typically the
number of channels used. In OVSF-CDMA wireless ad hoc
networks, a conflict-free channel assignment is no longer
equivalent to a conventional vertex coloring of the under-
lying interference graphs. Indeed, since not every pair of
OVSF codewords are orthogonal to each other, the channels
assigned to any pair of nodes adjacent to each other in the
interference graph must receive not only be different from
each other, but also be orthogonal to each other. Because of
this constraint, we introduce a new type of vertex coloring
called prefix-free (vertex) coloring with positive binary num-
bers. A conflict-free channel assignment in OVSF-CDMA
wireless ad hoc networks is equivalent to a prefix-free col-
oring of the underlying interference graphs. Furthermore,
since there are infinite number of channels in OVSF-CDMA
wireless ad hoc networks, the number of channels used is
no longer an concern. Instead, the throughput and the bot-
tleneck become appropriate cost metrics of a conflict-free
channel assignment in OVSF-CDMA wireless ad hoc net-
works. Correspondingly, we introduced the concepts of the

throughput and bottleneck of a prefix-free coloring, and the
throughput and bottleneck of a graph. we also introduced
two new maximization problems, namely max-throughput
prefix-free coloring and max-bottleneck prefix-free coloring

In this paper, we first established two fundamental rela-
tions between the independence number and the through-
put of a graph, and between the chromatic number and
the bottleneck of a graph respectively. After that, we pro-
posed several algorithms for prefix-free coloring. Each of
these algorithms is either a constant-approximation for max-
throughput prefix-free coloring, or a constant-approxima-
tion for max-bottleneck prefix-free coloring, or constant-ap-
proximations for both max-throughput prefix-free coloring
and max-bottleneck prefix-free coloring at the same time.
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