
1

Position-based Routing for Heterogeneous Wireless
Ad Hoc Networks

Kousha Moaveninejad∗ Wen-Zhan Song∗ Xiang-Yang Li∗

Abstract— Position based routing methods have been used suc-
cessfully recently for homogeneous wireless networks when all nodes
have the same transmission range, and the signal will be received by
all nodes with the transmission range. All these protocols are likely
to fail for heterogeneous wireless ad hoc networks, or the signal could
be blocked by obstacles. In this paper we assume that two nodes
can always communicate directly if their distance is no more than√

2
2

R, where R is the maximum transmission range. A method has
been proposed in [1] to construct a planar topology using some vir-
tual links for some routing protocols, such as [4], [9]. We present an
improved method to construct another planar topology and our simu-
lations show that our protocol out-performs the previous method for
dense networks significantly: it uses much less messages and creates
much less virtual links, while the routing performances of our method
is almost the same as the previous method.

Keywords— Localized routing, planar structure, wireless
ad hoc networks.

I. Introduction

One of the key challenges in the design of ad hoc networks
is the development of dynamic routing protocols that can
efficiently find routes between two communication nodes.
In recent years, a variety of routing protocols [6], [11], [12],
[13] have been developed specifically for ad hoc environ-
ment.

Recently, many authors [8], [2] proposed the use of lo-
cation information to reduce the amount of control traffic
in flooding based routing. On the other hand, another set
of greedy-based routing protocols, which completely stay
away from the flooding paradigm and every node selects
the next node to forward the packets based on the infor-
mation in the packet header, and the position of its local
neighbors, were proposed recently. These protocols may
fail if the underlying topology does not satisfy some prop-
erties. To overcome the failure of all those greedy-based
routing strategies, several researchers proposed another set
of localized routing protocols which basically use the right
hand rule to guarantee the delivery of the packets. A pla-
nar network topology that can be constructed efficiently
in a distributed manner is required for the success of such
localized routing protocols.

Lin et al. [14] proposed the first localized algorithm that
guarantees delivery by memorizing past traffic at nodes.
Bose at al. [4] proposed to use the Gabriel graph 1 as
underlying structure for the Face routing method. Subse-
quently, Karp et al. [7] discussed in detail of medium ac-
cess layer and conducted experiments with moving nodes
for Face routing method. Barriére et al. [1] extended the

∗ Department of Computer Science, Illinois Institute of Technology,
10 W. 31st Street, Chicago, IL 60616, USA. Email: moavkoo@iit.edu,
songwen@iit.edu, xli@cs.iit.edu

1The Gabriel graph [5] GG(V) contains all edges uv such that
disk(u, v) is empty of other nodes.

scheme on graphs which are fuzzy unit graphs, that is, two
nodes are connected if their distance is at most r, not con-
nected if the distance is at least R, and may be connected
otherwise. They showed that their algorithm works cor-
rectly if R ≤ √

2r. Routing according to the right hand
rule, which guarantees delivery in planar graphs [3], is also
used when simple greedy-based routing heuristics fail. Re-
cently, Kuhn, Zollinger and Wattenhofer [10] studied how
to route message on wireless ad hoc networks that cannot
be modelled by UDG. They showed that their methods
achieved the best possible worst case scenario performance
by any localized routing algorithms. Their methods also
rely on a planar structure (could have some virtual links).

It is traditionally (except for [1], [10]) assumed that the
transmission region of each wireless node is a disk with unit
radius. Here a disk centered at a node u with radius ru,
denoted by D(u, ru) is the set of points whose distance to u
is at most ru. Thus, by proper scaling, all nodes together
define a unit disk graph as communication graph, which
has an edge uv if and only if the Euclidean distance ‖uv‖
between u and v is less than one unit. However, graphs rep-
resenting communication links are rarely specified as the
unit disk graph. Different nodes may have different trans-
mission radii, and more importantly, the transmission re-
gion of a node is never as perfect as a disk. Considering this
imperfect transmission region, previous routing algorithms,
which guarantee the packet delivery using some planar sub-
graph as network topology, are likely to fail because of the
following reasons: in routing, either some connections are
not considered which effectively results in disconnecting the
network, or the use of some connections causes livelocks.
In the worst case, the communication graph could be very
complicated. To have some meaningful study, we assume
that each node u has a transmission region (not necessarily
a disk), that is inside the disk D(u,Ru) and contains the
disk D(u, ru). These two thresholds depend on both the
environment and the mobile hosts’ technology. See Figure
1 for an illustration. Two mobile hosts are always mutu-
ally reachable if their Euclidean distance is below the value
min(ru, rv). It is easy to construct a network configuration
such that there is no planar subgraph of the original com-
munication graph under this model. We thus have to rely
on some virtual links to build a planar structure. It is nat-
ural to request that we use as less virtual links as possible.

In this paper, we present a new method to construct pla-
nar topology when underlying communication graph is not
UDG. Our simulations show a significant improvement of
messages used by our method compared with the previous
method [1] without losing the routing performance.

The rest of this paper is organized as follows. In Section

2

II, we discuss in detail of the network model used in this
paper and review some previous results on robust position-
based routing for this model. We present our method in
Section III. In Section IV, we study the performance of
our method compared with the prior art. We conclude our
paper in Section V.

II. Network Model and Preliminaries

Network Model: We consider a wireless ad hoc net-
work (or sensor network) with all nodes distributed in a
two-dimensional plane. Assume that all wireless nodes
have distinctive identities and each static wireless node
knows its position information 2 either through a low-power
Global Position System (GPS) receiver or through some
other way. By one-hop broadcasting, each node u can send
its location information to all nodes within the transmission
region of u. Throughout this paper, a one-hop broadcast by
a node u means that node u sends the message to all nodes
within its transmission region. The main communication
cost in wireless networks is to send out the signal while the
receiving cost of a message is neglected here.

u vu

Fig. 1. The transmission region of a node is modelled by a quasi-disk.

The network is then represented by a geometric undi-
rected graph, G = (V,E), with vertices representing mo-
bile hosts, and edges representing communication links.
The set of vertices V is thus a set of points in the Eu-
clidean plane. Let ‖uv‖ be the Euclidean distance be-
tween the points u and v in the plane. The set of edges
E satisfies {uv | u, v ∈ V, ‖uv‖ ≤ min{ru, rv}} ⊆ E and
E ⊆ {uv | u, v ∈ V, ‖uv‖ ≤ min{Ru, Rv}}. Two mobile
hosts u and v with min{ru, rv} ≤ ‖uv‖ ≤ min{Ru, Rv}
may or may not be able to communicate directly.

More precisely, let R(u) be the transmission region of a
node u, i.e., from where other nodes can receive the signal
sent by u. Then our assumption is that R(u) is contained
inside the disk D(u, Ru) and contains the disk D(u, ru).
Two nodes u and v can communicate directly iff they are
inside the transmission region of each other. Let I(u) be all
nodes that can send signal to u, i.e. I(u) = {v | u ∈ R(v)},
and let T (u) be all nodes that can receive signal from u,
i.e. T (u) = {v | v ∈ R(u)}, then N(u) = I(u)∩ T (u) is the
set of neighbors of node u in graph G.

We note that the transmission conditions do not vary
rapidly with time, compared to the speed of electronic com-
munications. This implies that the network may change,
for example, due to a change in the weather conditions, but

2More specifically, it is enough for our protocol when each node
knows the relative position of its one-hop neighbors. The relative
position of neighbors can be estimated by the direction of arrival
and the strength of signal.

it is at a time scale that allows an easy resetting of the net-
work. Thus, we assume from now on that the connections
between mobile hosts are fixed. However, the structure of
these connections is not known, and it is the role of our
protocol to ensure message delivery in this unknown net-
work.

Modelling the transmission region by a quasi-disk is not
our innovation: Barriére et al. [1] has also applied this
model. They assumed, in addition, all nodes have the same
maximum transmission range (R) and also the same min-
imum transmission range (r). They gave a three-phase
protocol that guarantees the delivery of the packet as long
as R/r ≤ √

2. The main part of their protocol is the con-
struction of a planar structure in a distributed manner.
Since the original communication graph may not contain a
planar subgraph at all, it uses some virtual links. To dis-
tinguish the created virtual links from others, we call the
communication links in the original graph actual links. It
defines the virtual links using a recursive approach: given
any link uv (could be virtual or actual), if there is a node
w inside the disk disk(u, v), then add links uw and vw to
virtual links if they are not actual links. It is easy to show
that all virtual links have length at most R by induction.
Since R/r ≤ √

2, obviously, one of the links of uw and vw
must have length at most

√
2R/2 ≤ r, i.e., it is an actual

link in the communication graph. After collecting all vir-
tual links, the algorithm then applies the Gabriel structure
to the new graph (with all actual links and virtual links).
A simple proof can show that the final structure is a con-
nected planar graph.

However, although the virtual links are necessary for con-
structing a planar structure, their protocol creates many
unnecessary virtual links. They also gave an example,
which shows that it creates many such unnecessary vir-
tual links even when the original communication graph is
already a planar structure. 3 Figure 2 illustrates such ex-
ample. There are 2n nodes: n nodes u1, u2, · · · , un are

r

u v

v

2 2

un n

1u v1
R

R

w

v

u

Fig. 2. Excessive virtual links are created (then removed in left case).

equally distributed on the left segment; n nodes v1, v2, · · · ,
vn are equally distributed on the right segment. They are
placed such that ∠uiui+1vi = π/2, ∠uivi+1vi = π/2, in
addition to u1v1 = R and unvn = r + ε for an arbitrarily

3The original intention of their example is to show that the spanning
ratio of the created planar structure could be arbitrarily large. We
found that this example also shows that it creates many unnecessary
virtual links.

3

small positive real number ε. A simple execution of their
protocol shows that the final planar structure has all links
uiui+1, vivi+1, (1 ≤ i ≤ n − 1) and unvn (but no link
u1v1). Notice that the original communication graph has
link u1v1 instead of the virtual link unvn. The shortest
path connecting u1 and v1 in this final planar structure
has length O(

√
n)R. There are O(n) unnecessary virtual

links uivi+1 and ui+1vi created. Notice the original com-
munication graph is already a planar structure.

If we let the nodes ui and ui+1 (so do vi and vi+1) arbi-
trarily close, then their protocol will add all edges uivj as
virtual links. Thus, in the worst case, it could add O(n2)
unnecessary virtual links and then remove all these virtual
links (except unvn). The right figure of Figure 2 shows an-
other example in which their method adds O(n) unneces-
sary virtual links. In this paper, we present a new method
to construct a planar structure that is more efficient in
terms of communication and spanning ratio.

III. Multi-Phase Routing Schemes

In this paper, we will use the network model used by
Barriére et al. [1], i.e., all nodes have the same radius Ru,
say R, and all nodes have same ru, say r, and R/r ≤ √

2.
For any pair of nodes u and v, let disk(u, v) be the disk
with diameter uv.

Our routing scheme consists of five phases: the Link
Collecting phase, the RNG phase, the Virtual-link Adding
phase, the Extraction phase, and the Routing phase. In the
Link Collecting phase, each node u will collect all actual
links uv, i.e., u and v can communicate mutually and di-
rectly. The aim of the RNG phase is to remove some edges
so the number of intersections processed in the Virtual-
link Adding phase decreases. The aim of the Virtual-link
Adding phase is to add some edges (called virtual edges) to
the physical communication graph to guarantee the connec-
tivity of the graph after the Extraction phase is executed.
In other words the Extraction phase might disconnect the
graph if we don’t add virtual edges. The aim of the extrac-
tion phase is to remove the intersections from the physical
communication graph and produce a planar graph. Once
the extraction phase is done, the routing phase performs
message delivery between mobile hosts. All computations
in all phases are local and do not require any central con-
troller.

The RNG phase and the Virtual-link Adding phase are
new contributions, and will be described in detail. The
routing phase is basically the same as the routing phase
in [4], [7], and alternates greedy routing with perimeter
routing, i.e., routing around the faces of a planar graph
using the right-hand-rule. Thus we include only a brief
discussion of the routing phase.

The following data structures and messages are used by
our method:
1. Data Structures:
(a) N(u)=(bDeleted, bActual, bProcessed, (v, vx, vy),

(w, wx, wy)): the history/final (actual or virtual) neigh-
bor list of u where v is ever or now a neighbor of u and
w is the relay node if link uv is virtual; bDeleted is a flag

to show whether it was ever deleted or not; bActual is a
flag to show whether it is an actual edge or a virtual edge;
bProcessed is a flag to show whether it was ever processed
or not. Initially, all flags are False. If the neighbor is an
actual neighbor then the last argument, which is the ID
and coordinate of the relay node, would have no meaning.
(b) L(u) =(bDeleted, bProcessed, (v, vx, vy,), (w, wx, wy)):

the set of all known edges vw by u, where neither v nor w
is u. Here bDeleted is a flag to show whether it was ever
deleted or not; bProcessed is a flag to show whether it was
ever processed or not. Initially, all flags are False.
2. Message Format:
(a) NewNode(v, vx, vy): a node uses this message to in-

form other node the information of a node v. Here (vx, vy)
is the coordinate of node v.
(b) Confirm(u, v): node u confirms node v that u can re-

ceive signal from v.
(c) NewLink(u, v, (ux, uy), (vx, vy)): a node uses this mes-

sage to inform other node the existence of a link uv. Here
uv could be an actual link or a virtual link.
(d) CreateLink(u, v, (ux, uy), (vx, vy)): a node uses this

message to inform either node u or node v to create a vir-
tual link uv.

A. Link Collecting Phase

Before we start the RNG Phase we have to construct the
FUDG graph, so each node will be aware of its neighbors,
as follows. Initially, every mobile host broadcasts its own
geometry position to the mobile hosts within its transmis-
sion region. Notice here knowing the geometry position of
a node v, node u cannot determine whether it can commu-
nicate directly with v if ‖uv‖ > r.

Algorithm 1: Construct FUDG Graph
1. Initially, each node u sets an empty neighbor list N(u)
and an empty link list L(u). Each node u broadcasts its lo-
cation information, by sending message NewNode(u, ux, uy)
to all nodes inside its transmission region using a local
broadcast model.
2. When a node v receives the message NewNode(u, ux, uy)
from a node u,
(a) if ‖uv‖ > r then node v confirms node u by sending

the message Confirm ((v, vx, vy), u).
(b) if ‖uv‖ ≤ r then node v adds the record (NotDeleted,

Actual, NotProcessed, (u, ux, uy), (null, null, null)) to
N(v).
3. If a node u receives a confirmation message Con-
firm((v, vx, vy), u) from a node v, node u adds the
record (NotDeleted, Actual, NotProcessed, (v, vx, vy),
(null, null, null)) to N(u).

Now each node has the information of its one-hop neigh-
bors. It then can continue to the next phase. Notice that,
node u can perform RNG phase whenever it gets the infor-
mation about some new neighbors. To avoid unnecessary
recalculation of the RNG Phase, we set a timeout value
TMax, which is the time it will start the RNG phase after
getting the confirmation message from its first neighbor.

We now show that the link information collected by all
nodes is symmetric(i.e. if node u has the neighbor v ,then

4

node v has the neighbor u): If ‖uv‖ ≤ r, then u and v
are sure that link uv exists and no confirmation is needed.
Otherwise, when node u has a link uv, it means that the
NewNode message sent by u is received by v and the con-
firmation message from v is received by u. Consequently,
the NewNode message from v will be received by u and the
confirmation message by u will be received by v. Thus,
node v will also create an actual link vu.

B. RNG Phase

In this phase we try to remove as many edges as pos-
sible while preserving connectivity. A node u removes a
neighbor v if there is another neighbor w such that uv is
the longest link of triangle uvw (ties broken by ID) and
‖vw‖ ≤ r (which guarantees that link vw does exist). No-
tice that in this phase each node has the knowledge of one
hop neighbors only and if ‖vw‖ > r then node u does not
know whether link vw exists or not. Removing edge uv
is performed by setting the flag bDeleted of node u to be
True in the adjacency list of node v and vice versa.

After doing this, each node, say u, sends out the infor-
mation of its neighbors, say v, whose bDeleted flag is False
by sending the message NewLink((u, ux, uy), (v, vx, vy)).
When a node, say w, which is neither u nor v, receives
the message NewLink((u, ux, uy), (v, vx, vy)), and if (a) the
link uv doesn’t belong to L(w) and (b) either ‖uw‖ ≤
r or ‖vw‖ ≤ r, then it adds the record (NotDeleted,
NotProcessed, (u, ux, uy), (v, vx, vy)) to L(w).

Notice that, after the RNG phase, we only have two sets
of links (1) a subset links with length at most r, and these
links form a planar graph (not necessarily connected); (2)
all actual links that have length larger than r, but no more
than R (these links may intersect themselves or with the
links from the first subset). Our next phase will add virtual
links so we can remove intersections later.

C. Virtual-link Adding Phase

Consider any two intersecting links xy and uv. Either of
these two links could be a virtual link or an actual link. The
basic approach of our method to remove the intersection
without disconnecting the network is based on the following
observation illustrated by Figure 3. Assume ∠xuy is the

v

x y

u

Fig. 3. Two intersected links xy and uv: one will be removed.

largest angle of the quadrilateral. Then we can remove link
xy and add link xu (if it is not added before) to remove
this intersection and preserve the connectivity. If the added
link xu causes new intersections, we continue to process the
new intersections.

Notice that if we actually remove link xy from the graph
immediately, we may end up generating many messages due

to the following phenomena: link xy could be added back
when we process some other intersections, and then link
xy will cause new intersections again (although we have
processed them before). To avoid this loop of intersection
processing, we will only mark edge xy as deleted but do
not actually remove it from the graph now. Later, when
processing some other intersection that causes adding link
xy, we first check if link xy exists or not (it could be marked
as deleted). If it exists, we do nothing; otherwise, we add
the link information to node x and node y.

Since any pair of nodes with distance at most r can com-
municate directly, the added virtual links have length larger
than r. Actually we have

Lemma 1: [1] All virtual links have length at most R.

We then discuss in detail our method of adding virtual
links. First of all, consider any two intersected links, say
uv and xy, in the current configuration of the network. See
Figure 3 for an illustration. W.l.o.g., assume that ∠xuy is
the largest angle of the quadrilateral xuyv (ties are broken
by ID of the apex). Then it is easy to show that either
uy or ux has length at most r, i.e., it is an actual link.
Assume that ‖uy‖ ≤ r. Consequently, both u and y can
detect such intersection since they know the existence of
these two links uv and xy (node u knows xy through node
y and node y knows uv through node u). To avoid that
both of them process this intersection, we only let node u
(with the largest angle ∠xuy) process it. Thus, we have
the following procedure of adding virtual links.

Algorithm 2: Adding Virtual Links
1. Assume that node u creates a new link uv. Node u
checks whether link uv causes intersections with some links
stored in list L(u). If it does cause intersection, say with a
link xy, it goes to Step 3.
2. Assume node u receives NewLink(u, v, (xx, xy), (yx, yy))
from some neighbor. Node u checks whether link xy causes
intersections with some links stored in list N(u). If it does
cause intersection, say with a link uv, goes to Step 3.
3. Node u checks if the following conditions are satis-
fied: (1) ∠xuy is the largest among the quadrilateral
xuyv, and (2) link ux does not exist. If the conditions
are satisfied, node u will add virtual link ux, i.e., adds
record (notDeleted, notProcessed, (x, xx, xy,), (y, yx, yy))
to L(u).
Notice that node y can also detect this intersection. Node
y then sends a message to node x (through the relay of
some other nodes if link yx is virtual) asking it to form a
virtual link ux. Node y also marks link xy deleted, i.e.,
sets bDeleted of link xy to True.
When node x receives the message of forming virtual link
xu from node y, node x adds node u to its list N(u) and
marks link xy deleted also.

Notice that here link xy could be a virtual link also. The
communication through link xy will then be through the
relay of a sequence of actual links. In addition, since we
check whether the link ux exists or not before we decide to
add this link, all added virtual links have length at least r.

5

D. Extraction Phase

In this phase, we basically remove the longest edge from
any triangle that has an obtuse angle.

Algorithm 3: Extract Edges
1. Each node u checks every link uv, whose flag bDeleted
is False and ‖uv‖ > r, to see if there is another neighbor
w such that ∠uwv ≥ π/2 and link vw exists. If it has, then
set the flag bDeleted of link uv to be True.
2. All edges whose flag bDeleted is False form the final
structure.

Again, we actually can further improve the performance
by using the following extraction method. A node u re-
moves an incident link uv if there is a node w such that
link uv is the longest link of triangle uvw (ties broken by
ID) and links uw and vw exist.

E. Correctness

In the remainder of the section, we show that our algo-
rithm does terminate and generate a planar structure.

We first show that the final structure is indeed a con-
nected planar graph. First of all, if the original graph is
connected and planar, our algorithm will not add any vir-
tual links. If the algorithm terminates with two intersected
links, say xy and uv, assume that ∠xuy is the largest angle
among the quadrilateral xuyv. Obviously, either ‖xu‖ ≤ r
or ‖yu‖ ≤ r. Assume that ‖yu‖ ≤ r. Then this intersection
will be detected by nodes u and y. We also showed that one
of the nodes will decide to add a virtual link (node u will
add the virtual link ux in our virtual link adding phase and
then let y notify x to add the virtual link ux also.). Thus
link xy will be removed in the Extraction phase accord-
ing to our algorithm. Thus, if the algorithm terminates,
there are no two intersecting links. It is obvious that the
final structure is connected if the original communication
graph is connected since, everytime we decide to remove a
link that causes intersection, we already added some vir-
tual links (if necessary) to form a path connecting the two
end-points of the removed link. Obviously, the extraction
phase does not disconnect the graph.

It is easy to show that our algorithm does terminate. No-
tice that although we divide our algorithm to many phases,
nodes do not have to strictly follow these phases, i.e., dif-
ferent nodes may be in different phases, and some node
may come back to some earlier phase when necessary. Our
method terminates since every intersection is processed ex-
actly once and there are at most n4 intersections.

We also show that the number of messages used by our
method is strictly less than that of the method by the
method in [1]. First of all, the Link Collecting Phase is
same for both methods, thus, the messages used are same.
Our RNG Phase does not use any message. In the Virtual
Link adding phase, we add a virtual link only when there
is some intersections and it is easy to show that the added
virtual links by our method are a subset of all virtual links
added by the method in [1]. Consequently, we use less
number of messages. The Extraction Phase is similar, and
our method does not use any message in this phase.

F. Routing

After a planar structure is constructed, we then can ap-
ply any routing protocol that is based on planar graph. In
this paper and for our simulations we used Greedy Perime-
ter Stateless Routing (GPSR)[7]. GPSR makes greedy for-
warding decisions using only information about a node’s
immediate neighbors in the network topology. When a
packet reaches a region where greedy forwarding is impossi-
ble, the algorithm recovers by routing around the perimeter
of the region. Using GPSR the message delivery, when the
underlying topology is planar, is guaranteed.

IV. Experiments

We conducted extensive simulations to study the perfor-
mance of our method compared with the previous method
proposed in [1]. We compare them in terms of both the
structure construction performance and the routing perfor-
mance. We randomly put 500 nodes in a square with side
length varying from 7 to 15 and the transmission range of
each node is fixed to one unit. First of all, we want to
know how many messages used by these two methods re-
spectively. Figure 4 (a) illustrates a quasi-UDG graph with
100 nodes in a square region of 7. Figure 4 (b) and (c) show
the virtual edges added during the process by priori art and
our method. Figure 4 (d) and (e) show the final topologies
generated by these two methods.

Our simulations show that our method uses significantly
less messages than the method by Barriére et al. [1] for
dense networks. The used messages are similar for sparse
networks. Similar observation holds for the number of vir-
tual links created: our method creates significantly less
virtual links for dense graphs. See Figure 5.

Notice that, a structure that can be constructed with
less messages does not imply that the routing performance
based on it is better than other structure. We continue
to study the routing performances of the structures con-
structed by our method and by the method of Barriére et
al. [1]. We test the Greedy-Face routing method on struc-
tures constructed by both methods (given the same orig-
inal communication graphs). Surprisingly, we found that
the routing performances based on these two structures
are almost the same. See Figure 6 for an illustration. We
measured both the average route hops and average route
lengths. Notice that, if a route uses a constructed virtual
link, we have to measure the hops and lengths of the actual
path stored at the end-points to connect them.

V. Conclusion

In this paper, we described a robust routing protocol that
guarantees message delivery in a connected ad hoc network
whenever the ratio of the maximum transmission range to
the minimum transmission range is at most

√
2. Our sim-

ulations showed that our protocol out-performs the previ-
ous method for dense networks significantly: it uses much
less messages and creates much less virtual links, while the
routing performances of our method is almost the same as
the previous method.

6

(a) FUDG (b) Priori Art (c) Our method (d) Priori Art (e) Our Method

Fig. 4. (a) A quasi Unit Disk Graph; (b) and (c): virtual edges added; (d) and (e): Final structure.

7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

4

Graph Range

of

 v
irt

ua
l e

dg
es

 a
dd

ed

Our Method
Old Method

(a) Virtual edges added

7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6
x 10

7

Graph Range

of

 m
es

sa
ge

s

Our Method
Old Method

(b) Messages used
Fig. 5. Comparison of our method with previous method.

References

[1] Lali Barriére, Pierre Fraigniaud, and Lata Narayanan. Robust
position-based routing in wireless ad hoc networks with unsta-
ble transmission ranges. In Proceedings of the 5th international
workshop on Discrete algorithms and methods for mobile com-
puting and communications, pages 19–27, 2001.

[2] S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward.
A distance routing effect algorithm for mobility (dream). In
Proceedings of ACM/IEEE MobiCom’98, 1998.

[3] P. Bose and P. Morin. Online routing in triangulations. In Proc.
of the 10 th Annual Int. Symp. on Algorithms and Computation
ISAAC, 1999.

[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. ACM/Kluwer
Wireless Networks, 7(6):609–616, 2001. 3rd int. Workshop on
Discrete Algorithms and methods for mobile computing and
communications, 1999, 48-55.

[5] K.R. Gabriel and R.R. Sokal. A new statistical approach to
geographic variation analysis. Systematic Zoology, 18:259–278,
1969.

[6] David B Johnson and David A Maltz. Dynamic source routing
in ad hoc wireless networks. In Imielinski and Korth, editors,
Mobile Computing, volume 353. Kluwer Academic Publishers,
1996.

[7] Brad Karp and H.T. Kung. Gpsr: Greedy perimeter stateless

7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10

11

12
x 10

5

Graph Range

of

 h
op

s

Our Method
Old Method

(a) Average route hops

7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10

11
x 10

5

Graph Range

Le
ng

th
 o

f R
ou

te

Our Method
Old Method

(b) Average route length
Fig. 6. Comparison of our method with previous method.

routing for wireless networks. In Proc. of the ACM/IEEE In-
ternational Conference on Mobile Computing and Networking
(MobiCom), 2000.

[8] Young-Bae Ko and Nitin H. Vaidya. Using location informa-
tion to improve routing in ad hoc networks. Technical report,
Department of Computer Science, Texas A&M University, 1997.

[9] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron
Zollinger. Geometric Ad-Hoc Routing: Of Theory and Prac-
tice”. In Proc. 22nd ACM Int. Symposium on the Principles of
Distributed Computing (PODC), 2003.

[10] Fabian Kuhn, Aaron Zollinger, and Roger Wattenhofer. Ad-
hoc networks beyond unit disk graphs. In ACM DIALM-POMC
Joint Workshop on Foundations of Mobile Computing, 2003.

[11] C. Perkins. Ad-hoc on-demand distance vector routing. In MIL-
COM ’97, Nov. 1997.

[12] C. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing. In Proc. of the ACM SIG-
COMM, October, 1994.

[13] P. Sinha, R. Sivakumar, and V. Bharghavan. Cedar: Core ex-
traction distributed ad hoc routing algorithm. IEEE Journal on
Selected Areas in Communications, 17(8):1454 –1465, August
1999.

[14] Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-
path/flooding routing algorithms with guaranteed delivery for
wireless networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 12(10), 2001.

