
Network Agile Preference-Based Prefetching for
Mobile Devices

JunZe Han1, Xiang-Yang Li1,2, Taeho Jung1, Jumin Zhao3, Zenghua Zhao4
1Department of Computer Science, Illinois Institute of Technology, USA

2 School of Software and TNLIST, Tsinghua University
3College of Information Engineering, Taiyuan University of Technology, China

4Department of Computer Engineering, Tianjin University, China
Email: jhan20@hawk.iit.edu, xli@cs.iit.edu, zhaojumin@tyut.edu.cn, zenghua@tju.edu.cn

Abstract—For mobile devices, communication via cellular
networks consumes more energy than via WiFi networks, and
suffers an expensive limited data plan. On the other hand, as
the coverage and the density of WiFI networks are smaller than
those of the cellular networks, users cannot purely rely on WiFi
to access the Internet. In this work we present a behavior-aware
and preference-based approach to prefetch news webpages for
the user to visit in the near future, by exploiting the WiFi
network connections to reduce the energy and monetary cost.
We first design an efficient preference learning algorithm to keep
track of the user’s changing interests, and then by predicting
the appearance and durations of the WiFi network connections,
our prefetch approach optimizes when to prefetch to maximize
the user experience while lowing the prefetch cost. Our prefetch
approach also exploits the idle period of WiFi connections to
reduce the tail-energy consumption. We implement our approach
in iPhone and our extensive evaluations show that our system
achieves about 60% hit ratio, saves about 50% cellular data usage,
and reduces the energy cost by 7%.

I. INTRODUCTION

According to a recent study [1], mobile web browsing is
growing significantly and is expected to surpass the desktop
web browsing by 2015. Web browsing and news reading
account for a large proportion of the time and the data used
by smartphones: smartphone users with a data plan spend on
average 300 minutes per month browsing the web, which is
comparable to mobile voice usage [2]. A global smartphone
study [2] shows that web browser is the single most popular
data application which accounts for 54% of data application
face time and 50% of data volume for smartphones; and
reading news makes up for 68% of the user’s web browsing
time, which is one of the most frequent activities [3].

Typically there are two networking access approaches:
through cellular network and through WiFi network. Although
the cellular network is almost ubiquitous and its coverage
seems not to be a problem, the limited data plan, higher price
and more energy consumption [4], [5] make the smartphone
users prefer using the WiFi network. It is thus natural to switch
to WiFi network connection whenever possible. In order to
reduce energy and monetary cost while not sacrificing the user

The research of Li is partially supported by NSF CNS-1035894, NSF
ECCS-1247944, NSF ECCS-1343306, NSF CMMI 1436786, National Natural
Science Foundation of China under Grant No. 61170216, No. 61228202.

experience, in this work we present a seamless transparent
solution that automatically prefetches contents and switches
the connection between cellular and WiFi networks. To make
the content prefetching work for mobile devices, a number of
challenges must be addressed. In general, we need to know
when to prefetch, and what contents to prefetch such that the
user’s experience is not deteriorated and the overall energy
cost and monetary cost is reduced. In this work we propose a
prefetching approach that is able to predict what webpages the
user will visit more likely in the near future and prefetch them
via WiFi network at an appropriate time, such that when the
user indeed wants to visit these webpages later on, the user
can directly access them from the prefetched buffer instead of
accessing them via cellular network.

A large number of previous works on web prefetching [6],
[7], [8], [9] are based on the URLs of webpages visited in the
past. However, for news prefetch, simple URL-based approach
does not work because newly posted news is usually assigned
a new unpredictable URL. Thus it is hard to predict what
kind of news a user will be interested in purely based on the
URLs of the news. In this work, we present a prefetching
approach that combines the keyword-based and URL-based
approaches. Based on the websites and sections visited in the
past, e.g., cnn.com, cnn.com/World, and the keywords in the
news, we design an efficient preference learning algorithm to
keep track of the user’s changing interests for news so that we
can prefetch appropriate contents using WiFi.

On the other hand, many web prefetch techniques focus
on short-term prefetching [7], [10], [11], which prefetches
the webpages to be visited within a few seconds to a few
minutes at most. However, in this paper we focus on the
long-term prefetching instead which prefetches the webpages
much earlier, e.g., half an hour to several hours, before the
user visits the webpages. A motivating example for the long-
term prefetching is as follows. Assume that a user Bob goes
to work at 8:00 am in the morning by train and he is used
to read news on his way to the office. Assume there is no
WiFi connection on the train and Bob has a WiFi connection
at home. By profiling the news types and frequently visited
webpages by Bob on the train, we can prefetch these contents
for Bob when he is about to leave home for work. Although
the contents prefetched might be obsolete or invalided in the
future, we assume that the user’s experience will not drop by
reading the news prefetched about an hour ago.



For the long-term mobile prefetching described above,
another difficulty for prefetching is to decide when to prefetch
the contents. Several challenges make the decision of prefetch
timing difficult: (1) if a user has a WiFi network connection
now, we need to predict when the user will move outside the
coverage region of the WiFi network; (2) even if we know
when the WiFi network connection will be lost, we need to
estimate the time needed for prefetching the contents so that
the prefetched contents are mostly up-to-date when the user
reads it; (3) the prefetching activities should not interfere the
user’s regular network usage activities (otherwise, the user
experience will be deteriorated).

In summary, the main contributions of this work are as
follows. We design an efficient keyword-based and URL-based
preference learning algorithm to predict the news webpage that
the user will be interested in. We also present a network con-
nection prediction approach that can start contents prefetching
automatically. In addition, we propose a prefetch scheduling
algorithm to exploit idle time of the connection to prefetch the
webpages. We implemented the prototype system on iPhone
and conducted extensive evaluations on the performance of
our system. The experimental results show that our system
achieves about 60% hit ratio, saves about 50% cellular data
usage, and reduces the energy cost by 7%.

II. RELATED WORK

A. Desktop Prefetch

Web prefetching has been studied for a long time. The pri-
mary objective of prefetching technique in desktop computer
is to reduce the latency of webpage loading and increase the
hit ratio of the prefetched webpages.

1) Short-Term Prefetching: Short-term prefetching tech-
nique aims at predicting the webpages to be visited imme-
diately say the next one or two webpages. The Markov model
has been exploited in the short-term prefetching to predict next
webpages to be visited by analyzing the past visit sequence [6],
[8], [12]. In HTML5 [13] and Firefox browser [11], a strategy
“link prefetching” for website optimization is introduced:
the browser can prefetch specified webpages based on the
prefetching hints provided by the webpage. It utilizes browser’s
idle time to download or prefetch documents that the user
might visit in the near future. However both Markov-based
and link-based approaches predict and prefetch webpages that
are closely related to the current webpage being viewed and
webpages that are likely to be visited in the following a new
web requests; while our purpose is to prefech webpages based
on the user’s preference and behavior and we make prediction
for further future, e.g., next a few hours.

2) Long-Term Prefetching: Long-term prefetching is a
technique designed for large proxies and content distribution
networks to reduce client’s access latency by storing recently
referenced content closer to the users [14], [15], [16], [17].
Instead of making prefetching decisions on the recent history
of a client, long-term prefetching make predictions based on
global object access patterns to identify a collection of valuable
objects to replicate to caches and content distribution servers.
The basic idea of long term prefetching is to calculate the most
popular domains and most popular objects in those domains,
and then a web proxy can prefetch those objects to reduce

clients’ access latency. Thus without global webpage access
information, we cannot adapt the long-term prefetching into
personal prefetching for our problem.

B. Mobile Prefetch

Compared to desktop prefetching techniques, the prefetch-
ing techniques for mobile device need to be energy and data
efficient. Several prefetching schemes [18], [19], [20] have
been proposed which make prefetch decision by considering
the power consumption, data access rate, data update rate, and
data size. Specially, Higgins et al. [20] presented a cost-benefit
analysis to decide when to prefetch based on the performance
such as latency reduction, the cost of energy and monetary cost
or data usage. Some prefetching schemes [9], [21], [22] also
take advantage of the users’ spatiotemporal access patterns for
web contents. Lymberopoulos et al. [9] presented a prefetching
scheme that predicts what webpages a user is likely to request
as well as when these requests are likely to occur. Parate
et al. [21] proposed an approach to predict which app will
be used next and when it will be used, and then prefetch
application content to fast app launch. Kamaraju et al. [22]
presented a context-aware delivery paradigm that prefetches
video contents by exploiting locations and times in which the
networks experience excess of resources. However none of
the prior prefetching schemes are designed for news webpage
prefetching and make prefetch decisions based on the network
condition prediction. In particularly, as news webpages are
frequently updated and require high freshness, it is desirable
that we can delay the prefetching as late as possible, which
requires that we can predict the future network condition. Thus
priors prefetching cannot be directly adapted to news webpage
prefetching.

III. PROBLEM FORMULATION AND CHALLENGES

A. Problem Formulation

Given the user’s visited webpages and the past network
conditions, we want to prefetch news webpages via WiFi
network that the user is likely to visit when the WiFi network
is not available. Specially, we aim at achieving the following
objectives for the prefetch system:

1) Our system should prefetch the webpages automatically
by carefully exploiting the idle network connections to
keep the prefetching activities transparent from the end-
users while not interfering the users’ regular browsing
activities.

2) Our system should predict the network connections, i.e.,
when the user will have a WiFi network access and when
the user will leave the current WiFi network.

3) Based on the network prediction, the user’s browsing
behavior and preference model, we should carefully
schedule the prefetching jobs such that the latest news
that are likely to be read are prefetched before the user
leaves the current WiFi network coverage.

Observe that a user still needs to use cellular network con-
nections when reading news webpages not yet prefetched.
An intermediate goal here is to reduce such cellular network
connections as much as possible. The ultimate goal is to
carefully decide what contents to be prefetched at what time



such that the overall energy consumption and the paid network
access are reduced.

B. Challenges

1) News Preference Issue: How to learn the user’s prefer-
ence is a challenging problem. Learning the preference by the
URLs visited by the user is not accurate for news prefetching,
as a user always reads newly posted news with unpredictable
new URLs. Keywords extraction has also been widely used for
understanding webpages [23], [24] and webpage prefetching
[25], [26]. Unfortunately these techniques cannot be directly
applied here since analyzing the whole news webpages word
by word will cost a large amount of energy and might not
find the keywords in which the user are really interested.
Besides, the keyword list maintaining is also challenging since
the keyword list will keep growing as the time goes on and
some keywords will become obsolete.

2) Performance Issue: Fast loading of a webpage is what
the user desires, so the prefetching is supposed not to interfere
the user’s normal browsing considering the limited bandwidth
of the mobile device. It is better that we prefetch contents when
there are no regular networking activities: prefetching should
be interleaved among regular data transmission. In order to
exploit the period after the data transmission is completed,
we need to estimate when the next regular web request will
occur and how long a prefetching job will take as a user often
experiences various networking speeds in different networking
environments (e.g., time, location, and APs).

3) Energy Issue: Due to the limited lifetime of the battery
of mobile devices, energy consumption is an important consid-
eration for the mobile prefetching approach. It is well-known
that cellular network connection consume more energy than
WiFi [5], thus an energy-saving strategy is to visit and prefetch
webpages via WiFi connection. However, although the WiFi
connection is energy saving compared to the cellular network,
both WiFi and cellular network waste some energy when the
data transmission is completed due to the “tail energy” [27],
[28]. The mobile device is at high powering setting when
transmitting data via WiFi or cellular network, and after the
mobile device completes the transmission it will remain in
the high powering setting for a period of time, which costs
more energy than in normal setting. In order to exploit the
tail energy to prefetch and further save energy, we need to
learn the user’s behavior such as the time separation between
two normal consecutive networking activities and how long
the network connection is idle.

On the other hand, prefetching useless news that the user
will not read in the future also wastes a certain amount of
energy. Though the more we prefetch, the higher possibility we
prefetch all the contents to be accessed, but the more energy
are consumed. Thus we need to balance the amount of the
webpages to prefetch and prefetching accuracy.

IV. SYSTEM DESIGN

A. System Architecture

Fig. 1 illustrates our system architecture. In our system,
the preference learning module learns the user’s preference
and predicts what webpages the user will visit based on the

Preference Module

Location Monitor

Prefetch Module

Behavior Module

Web Browsing

Keywords

Location 

Network Condition

URLs

Leaving WiFi

User’s Preference

Cached Webpages

Fig. 1: System Architecture

preference model. Location monitor module runs in the back-
ground to keep track of when the user enters and leaves certain
Wifi coverage areas. Based on the historical log provided
by the location module, the behavior learning module will
predict when the user is about to leave the WiFi coverage
area and trigger the prefetching module to start prefetching.
If the prefetching module is triggered to start, it will search
for the webpages that are likely to be visited in the future
based on the prediction results provided by the preference
learning module. After extracting the URLs of the webpages
to be visited, the prefetching module then schedules these
prefetching jobs according to the user’s browsing behavior
provided by the behavior learning module.

To predict the webpages the user will visit in the future,
we need to learn the user’s preference based on the news the
user has read. Besides, in order to effectively schedule the
prefetching jobs, we also need to learn the user’ s browsing
behavior. Table I summarizes the data we collect to learn the
user’s preference and behavior.

TABLE I: Data Collected for Preference and Behavior Learn-
ing

Learning Data
Browsing Behavior Time interval between two web requests,

Enter time, Leave time of the webpages
Browsing Preference Keywords in the title, visited URLs

B. Network Environment Prediction

The first challenge to be solved in our system design is to
decide when to prefetch webpages for the user. Although the
user wants to read the latest news, but for most users they
will be also interested in the news posted several minutes
or hours ago. So prefetch the “old” news is reasonable and
meaningful to the user. But we still want the news prefetched
to be relatively new, so we begin the prefetching as late as
possible while ensuring the prefetching can be finished before
the user leaves the WiFi. To do this, we need estimate how
long the user will stay in the coverage area of the current
WiFi network. For most of the people, the daily schedule and
weekly schedule do not change a lot and hence it is possible
to do such network coverage prediction.

Monitoring the network connection all the time sometimes
may give us misleading information about how long the
user stays in the WiFi area, because it is possible that in
certain locations in the WiFi coverage area, the WiFi access
is temporarily unavailable. Thus instead of monitoring the
network connection, we monitor the user’s current location
to estimate when he or she leaves a certain area. The location
module is available in most of the mobile devices that can help
us to monitor when the user enters of leaves a certain area.



We observe that the duration when a user stays in a network
depends on the network he connects or the location of the
network, and the time he enters the networks. Thus, to pre-
cisely estimate how long a user will stay in a certain area, we
will keep track the following information 〈ti, di, Li, SSIDi〉,
where ti is the time the user entered the coverage area of the
network with SSIDi at location Li, and the user stayed in this
network for a duration of di. We round time ti to hours. Based
on the collected networking access data, we then predict when
the user will leave the current Wifi network.

As a result, for the same WiFi network we have multiple
time duration records for the same entering time. We use a
probability-based algorithm to estimate the time the user will
leave the current network, such that we can finish the prefetch
in time. Let T ti be the collection of time the user stays in the
WiFi coverage area of SSID i after entering at time t, where
d is the day (e.g., Monday, Tuesday, etc.) and the hour when
the user enters the WiFi coverage. Let pti(d) be the probability
that the mobile device is connected to this network for over
time d after entering at time t. We estimate the time that the
user will stay in the current WiFi coverage as

argmin{d | pti(d) > δ},

where δ is a threshold value (chosen as 0.5 in our implemen-
tation).

Given the estimated staying time, it is still necessary to
choose an appropriate time during this period to prefetch
webpages. We seek to find the time to start the prefetching
as late as possible, while at the same time to ensure that the
prefetching can be finished in time. Given the estimated staying
time d, number of webpages to prefetch l and the average fetch
time f , in order to finish prefetching these webpages before
the WiFi coverage is not available, we need to start to prefetch
no later than d− lf .

C. Webpage Access Prediction

1) Preference Learning: News title is always concise,
informative and highly related to the content of the news,
and the user is always guided by the keywords in the title.
Thus by extracting keywords from the titles we can effectively
learn the user’s preference and predict what news the user
will be interested in. Note that users are interested in different
keywords to different degree, we quantify the keyword interest
by assigning each keyword w with a interest weight q(w). Each
time the keyword w appears in the title of the news read by
the user, we increase its weight q(w) by a constant cq

Since people’s interests will change as time goes on, newly
appearing keywords in the title play more important roles in
learning the user’s preference than old ones. To deal with the
issue of interest changing, we use a simple time decay function
to keep reducing the keyword’s interest weight as time goes
on. The decay function works as follows:

1) In each time period t, the keyword w’s weight q(w) in
the keyword list will be reduced to q(w)(1 − δ), where
1− δ is the decay rate.

2) The keyword w will be removed if its interest weight
q(w) is less than the threshold ε.

Not only the decay function helps us capture the user’s current
interests, but also contributes to reducing the size of the
keyword list. To effectively maintain the keyword list, we use
the heap data structure to store the keywords. In every time
period we will check whether the root’s interest weight is less
than ε, if so we remove it from the keyword list and heapify
the keyword list, and then check the new root’s interest weight
until the root’s weight is larger or equal to ε.

In our keyword maintaining approach, the keyword w
might be removed from the keyword list and later be added
again. Thus w’s weight q(w) is only accumulated and decayed
since the latest time it is added to the keyword list and hence
q(w) is less than the “actual” weight. However in our approach,
if keyword is removed from the keyword when weight q(w) is
smaller that ε, the actual weight is also less than a constant of
the removal threshold ε. Formally, for each keyword w in time
interval between time i and n we define a weight function

fni (w) =

n∑
j=i

xj(w)(1− δ)n−j ,

where x(w) ∈ {0, 1} indicates whether w appears at time tj .
In each time slot, if fni (w) < ε, where time i is the first time
word w appears since the last removal, the word w will be
removed from the keyword list. Then we have the following
theorem

Theorem 1. If a word w is removed from the keyword list at
time slot n, then the weight fn1 (w) ≤ ε

1−ε .

Proof: Assume that a word w is added into the keyword
list and then removed for n times. Afterwards, at time slot ai
word w is added into the list again and at time slot ri removed
from the list. Let vi(w) = f

ri−1
ai−1 and ti = ri − ai, then we

have

fn1 (w) =

n∑
i=1

vi(w)(1− δ)
∑n

i ti

≤ ε
n∑
i=1

(1− δ)
∑n

i ti =
ε

1− ε

This finishes the proof.

Since word w is added at time ai and removed at time ri,
(1− δ)ti must be less than ε and hence

∑n
i=1(1− δ)

∑n
i ti ≤

1
1−ε .

However, learning the user’s preference only based on
keywords is no enough. We observe that the user’s preference
on news is also related to sections of the news website where
the news is posted. For example, if a user always visits the
sports section, we can infer that he might be interested in sports
and hence the news in this section will be read by the user with
higher probability. Thus we also keep track of URLs of the
sections and subsections visited frequently by the user such
that we can prefetch the news from these sections. The news
website is always organized as a tree structure as shown in
Figure 2 and each section always has a fixed URL. Similarly
to the keywords, we assign a interest weight t(s) to the URL
of each section s. We keep track of the times the section s is
visited by the user and each time the user visits the section
s, we increase the weight t(s) by a constant ct. Besides, the



weights of URLs are also decayed as time goes on using the
same approach for the keyword.

news news newsnews news news news news news news

...

... ...news news

subsection

Section

Website

... ...

.../World/Euro /World/Asia /Tech/PC ... /Tech/Mobile

cnn.com/World cnn.com/Tech

cnn.com

Fig. 2: Website Architecture
With the interest weights of keywords and URLs of the

sections, we define the interest weight for each news according
to the keywords appearing in the headline and the section
where the news is posted. The higher the weight is the more
possible the user will read it. Assume that keywords w1, ..., wn
appear in the news h’s title, and the weight of the section where
the news is posted is t(s), then we set h’s weight as

w(h) =

n∑
i=1

q(wi) + t(s)

2) News Searching: If the prefetching module is about to
start prefetching, it will search for the news in the sections
frequently visited by the user.

Given the news searching results, we need to decide which
news webpages to prefetch. To make prefetching decision, we
compare the news’s weight with a prefetch threshold, if it is
greater than the threshold, we then add the URL of the news
webpage to the prefetch queue. In order to set the value of the
prefetch threshold appropriately, we keep track of the weight of
each news the users has read and set the threshold as follows.
Let p be the expected probability we set that the prefetched
webpages will be accessed, n be the total number of webpages
the user visited and v(w) be the number of webpages whose
weight is above w, then we set the threshold weight s as

argmin{w | v(w) > pn}.

3) Scheduling Prefetching: Given the prediction result
from preference learning module and behavior learning mod-
ule, we know the time when the user will leave the current
WiFi coverage area and the collection of URLs to prefetch.
Due to the limited bandwidth of the mobile devices, prefetch-
ing should not interfere user’s normal web browsing as afore-
mentioned. Observing that the network connection is idle
between two web requests, we exploit the interval between
two web requests to prefetch webpages, as shown in Figure3.
Moreover, exploiting the idle interval to prefetch also leverages
the tail energy.

WiFi cellular

Leaving WiFi

Prefetch Slot

Regular Browse Slot

Fig. 3: Prefetch Scheduling

Before scheduling webpage prefetching, we need to learn
how long it takes for fetching a webpage. Our extensive
evaluations (downloading more than 300 webpages) at three
different locations show that the fetch times for webpages do
not have a large variance. For simplicity, in this work, we use
the mean fetch time as the estimated time for prefetching any
news webpages.

When scheduling prefetching jobs, we divide the time
domain into time-slots of fixed length, and assume that fetch-
ing one webpage costs one time-slot. Formally, let a(u) =
[a0, a1, ..., an] ∈ {0, 1}n be the webpage access sequence by
the user, and p(u) = [p0, p1, ..., pm] ∈ {0, 1}n be the prefetch
sequence. In order to not interfere the user’ s normal browsing,
for each time t, we should have at + pt ≤ 1. To fully exploit
the idle time when the user is browsing news, we need to
maximize

∑n
i=1 ai +

∑m
j=1 pj .

In our system, we maintain a queue of the webpages to
prefetch. We first sort the webpages in prefetch queue in de-
creasing order of the weights such that we could first prefetch
the webpages that are more likely to be accessed in case that
we do not have enough time to prefetch all the webpages
in the prefetching queue. Each time the webpage loading is
finished and the network connection is idle, prefetching module
will schedule a batch of webpages in the prefetch queue. In
particular, let the average idle time interval the user spend
on reading one webpage be d and the average fetch time for
prefetching a webpage be t, then we schedule d/t jobs from
the prefetch queue after each normal webpage request.

We specify a maximum size for the prefetching cache and
apply the same time decay function to the interest weights
of prefetched webpages in cache. When the cache is full and
we have webpages to prefetch in the prefetch queue, we will
remove the cached webpages with interest weights lower than
those in the prefetch queue.

4) Visit Un-prefetched Webpages Without WiFi: Despite
our personalized preference learning algorithm, it is unavoid-
able that the user will visit webpages which have not been
prefetched in the cache when out of the WiFi coverage. In
order to further reduce the energy consumption, for the above
cache-miss cases we leverage the peer-to-peer (P2P) connec-
tion to provide temporary network access. Several prior works
[29], [30] have proposed solutions for a mobile device who
has access to the Internet via cellular connection to share its
network access with nearby devices via WiFi connection, such
as Bluetooth and WiFi Direct, which are more energy efficient
than cellular connection. Moreover, through connections with
nearby users, it is also possible to find other users sharing
similar interests and preferences [31], [32], [33] and to get
webpages prefetched by those users via P2P connection.

To exploit nearby mobile devices’ network accesses and
prefetched contents, the first step is to quickly discover and
build connections with other devices in the vicinity. We design
a simple and efficient method for quickly building connections
based on the protocols proposed in [34]. The user first sets a
number k of connections to be built and then our system will
ask nearby devices to ACK with their MAC addresses so that
the connections can be built. The basic steps are as follows.

Step-1: The user’s device broadcasts a message including the
size m of a frame which is a set of continuous time slots.



Step-2: A nearby device who received the message sends an
ACK message including its MAC address randomly at one
of the m slots.

Step-3: If the user has obtained enough MAC addresses
from nearby devices, it will send out an END messages;
otherwise repeat step 1 and 2.

Since collisions will happen when multiple devices ACK
simultaneously, we can receive at most one ACK per slot,
thus we need at least Θ(k) slots to connect to k neighbor
devices. Let n be the number of nearby devices, based on the
Hoeffding inequality, our theoretical analysis shows that by
carefully choosing the frame size we can achieve the optimal
latency and we have the following lemma.

Lemma 2. When n ∈ [a1k, a2k] for constants 1 < a1 < a2,
the optimal frame size is m = n and the latency to discover
k neighbors is Θ(k) w.h.p..

V. SYSTEM IMPLEMENTATION AND EVALUATION

We implemented the prototype system in iPhone 4 with
iOS 5.1.1. In order to monitor when the user enters and leaves
the WiFi coverage area, we use a service “region monitoring”
provided by iOS[35]. In iOS 4.0 and later, applications can
use region monitoring to be notified when the user crosses
geographic boundaries. We use this feature to keep track of
the time the user enters and leaves certain WiFi areas. When
the user enters a WiFi coverage area for the first time, the user
needs to register this area with its SSID in our system and the
radius of the WiFi area is set to be 100 meters. Before the
system starts to prefetch webpages, it will send a notification
to the user to ask for the permission. In addition, we also allow
the user to start prefetching manually.

A. Browsing Behavior Learning

1) Web Request Interval and Web Fetch Time: We first
present the user’s browsing behavior statistics when using our
system. We have three student users use the prototype system
for two weeks. Everyday they browse news webpages using
our system for about half an hour. Figure 4 shows the time
intervals between two web requests when the user browses
news webpages. For 65% of the time intervals, the lengths of
the intervals are less than 1.5 second. These short intervals
usually appear on the way the user goes to the destination
section after entering the news website, because the user only
stays on intermediate webpages for a short time. These short
intervals also appear when the user switches from one section
to another section. For the rest 35% time intervals, the average
length is 61 seconds, which is the average time the user spends
on reading one piece of news.

Figure 5 plots the time of fetching webpages via WiFi
network. As we can see, for most of the web requests, the
time of fetching a webpage via WiFi network is short. It takes
less than 1 second to fetch a webpage for over 94% of the
web requests. This is because that news webpages designed
for the mobile devices usually simply consists of words and
one or two pictures. Thus the size of a webpage is small and
hence it takes very little time to fetch a webpage via the high
speed WiFi connection.

2) Keyword Maintaining: Figure 6 shows the interest
weights of the keywords that have appeared in the title of
news read by the user. In our experiment, we set the removal
threshold to 0.2 and the decay period to 3 minutes. Here we
define the compression rate as the proportion of the number
of the keywords maintained in the keyword list to the total
keywords that have appeared in news titles. Our experiment
shows that we achieve the compression rate of 81%

B. Performance

1) Network Condition Prediction: In our experiment, the
student users’ daily schedules are almost fixed and hence
the time the users stay in a certain WiFi coverage does no
vary a lot. As mentioned above, our system will send a
notification before the user’s estimated leaving time and ask
for the permission to start to prefetch. We assume that the
network prediction is correct if the user agrees the prefetch
request and we achieve accuracy rate of 80% in a week for
one user.

2) Hit Ratio and Waste Ratio: Prefetching systems are
often evaluated in terms of the hit ratio and waste ratio.
Hit ratio refers to the proportion of the number of prefetched
webpages that are accessed by the user to the total requested
webpages; waste ratio refers to the proportion of the number
of undesired prefetched webpages to the total prefetched
webpages. Figure 7 plots the hit ratio of our system. As we
can see the hit ratio is relatively stable and around to 60% on
average. Although at the beginning phase, our system does not
learn the user’s preference precisely, we achieve about 90% hit
ratio. The reason for the high hit ratio at the beginning phase
is that the prefetch threshold is low due to the low weights
of the news the user read and large amount of webpages are
prefetched. Besides, at the beginning phase, the weight of the
section is dominating when make prefetch decisions and most
of the news in the user’s favorite section are prefetched. Thus
we can still achieve high hit ratio at the beginning phase.

Figure 8 plots the waste ratio of our system. The waste
ratio here is calculated for each batch of prefetched webpages.
Compared with the hit ratio, the waste ratio continuously
decreases. As time goes on, the user is more likely to access
to the webpages from the sections with large weight and also
to access the news with titles containing keywords with large
weight. Thus the prefetch threshold become larger and less
webpages are prefetched. However since our system learn the
user’s preference more precisely, the webpages prefetched are
more likely to be accessed by the subscriber and the waste
keeps decreasing.

In our prototype system, we remove prefetched webpages
and the clean the prefetch cache everyday. Figure 9 plots the
everyday’s cache usage in 9 days. Similarly to the waste ratio,
the cache size is relatively large at the beginning. As the
system learns user’s preference more precisely and the prefetch
threshold become larger, less webpages are prefetched and the
cache size keeps decreasing. For the last 5 days the size of the
prefetch cache is about 11 MB per day.

3) Energy and Data Consumption: We use the tool in-
struments[36] provided in MacOS to evaluate the energy
consumption. The energy consumption in iPhone is divided
into 20 levels in instruments. In our experiment, we browse the



0 50 100 150 200 250
0

50

100

150

200

250

Web Requests

W
e
b
 R

e
q
u
e
s
ts

 I
n
te

rv
a
l 
(S

)

Fig. 4: Web Request Interval
s

1 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

Web Requests

W
e
b
 F

e
tc

h
 T

im
e
 (

S
)

Fig. 5: Webpage Fetch Time

1 50 100 150 200 250 300 350 400
0

1

2

3

4

5

Keywords Sorted by Weight

W
e
ig

h
t

Fig. 6: Keyword Weight

0 20 40 60 80 100
0

0.5

1

Prefetch Sequence

H
it 

R
at

io

Fig. 7: Hit Ratio

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Prefetch Sequence in Batch

W
a
s
te

 R
a
ti
o

Fig. 8: Waste Ratio

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Time Sequence

C
a
tc

h
 S

iz
e
 (

M
B

)

Fig. 9: Cache Size

same webpages using our system with prefetch feature enabled
and disabled respectively. In this set of experiments we first
run the system for about 10 minutes via WiFi connection and
then via cellular connection for 20 minutes, such that when the
prefetch feature is enabled our system will prefetch webpages
via WiFi network in the first 10 minutes.

Figure 10(a) and Figure 10(b) plot the energy consumption
when the user browses webpages via WiFi network with
prefetch feature enabled and disabled respectively. In both
figures the peaks appear when the browser loading webpages,
and after loading the webpage the energy level decreases to a
low level. As we can see, there are some time slots where the
energy level is higher after webpage loading, this is caused by
scrolling the webpage which makes energy level increase due
to display contents change. With prefetch feature enabled, the
device stays at high energy level for longer time than the one
with prefetch feature disabled. This is because our system is
prefetching webpages in the background. However, as we can
see that even with prefetch feature disabled, the energy level
does not fall to a low energy level instantly due to the effect
of tail energy. The average energy level with prefetch feature
enabled and disabled is 12.5 and 9.6.

0 50 100 150 200 250
5

10

15

20

Time

E
n

e
rg

y
 L

e
v
e

l

(a) Prefetch Enabled

0 50 100 150 200 250
5

10

15

20

Time

E
n

e
rg

y
 L

e
v
e

l

(b) Prefetch Disabled

Fig. 10: Energy Consumption via WiFi Network

Figure 11(a) and Figure 11(b) show the energy consump-
tion when our system is connected via cellular network. In
Figure 11(a) after loading a webpage from prefetch cache, the
energy level falls instantly to the low level. However, in Figure
11(b), after fetching a webpage via cellular network, although
the energy level falls to a lower level, it still higher than that
when the webpage is loaded from the prefetch cache. The
average energy level when when prefetch feature is disabled is
about 11.8 while the energy level is 10.2 when prefetch feature
enabled.

Let e(p) = ew(p) + ec(p) and e(n) = ew(n) + ec(n) be
the energy cost when the prefetch feature enabled and disabled,
where ew and ec is the energy cost via WiFi connection and
cellular connection respectively. We then calculate ep/en as
the energy cost reduction. The result shows that our system
consume less energy when prefetch enabled than that when
disabled and we achieve about 7% of the energy reduction.

During the data usage evaluation, we browsed 100 web-
pages with prefetch feature enabled and disabled respectively.
When the prefetch feature is enabled, 30% of pages are not
prefetched and all the other webpages are prefetched via Wifi
network, which consumed 2 MB cellular data. When the
prefetch feature is disabled, all of the webpages are fetched
via the cellular network and the cellular data usage is 5 MB,
which is over 2 times of the one with prefetch feature enabled.

1 100 200 300 400 500
5

10

15

20

Time

E
n

e
rg

y
 L

e
v
e

l 

(a) Prefetch Enabled

1 50 100 150 200 250 300 350 400 450 500 550
5

10

15

20

Time

E
n

e
rg

y
 L

e
v
e

l

(b) Prefetch Disabled

Fig. 11: Energy Consumption via Cellular Network

VI. DISCUSSION

There are several interesting questions left for our future
research. First of all, as most of existing popular web browsers
support plugins and provide open APIs, we plan to implement
our prototype system as a plugin, such that there is no need
for users to switch to new browsers. Besides, we can also
take advantage of the cloud service to perform fine-grained
analysis on the user’s preference and behavior [37], [38] by
securely uploading user’s visiting history and daily schedule,
to further improve the prediction accuracy. Furthermore, by
carefully considering the connection or channel quality [39],
[40] it is possible to optimize the communication cost and
further reduce the energy consumption.



VII. CONCLUSION

In this paper we designed a network-agile preference-based
prefetching method for mobile devices. We implemented our
method in iPhone and conducted extensive evaluations on
the performances of our methods. Our evaluations show that
our prefetching based approach is able to reduce the cellular
network access by about 50% and reduce the energy cost by
about 7%.

REFERENCES

[1] K. Mateus, “Web usage prediction: When mobile and desktop
collide,” http://www.mequoda.com/articles/new-media-trends/
web-usage-prediction-when-mobile-and-desktop-collide.

[2] “Applications capture already half of mobile in-
ternet traffic,” http://www.zokem.com/2010/09/
applications-capture-already-half-of-mobile-internet-traffic/.

[3] “Adobe mobile experience survey: What users want from me-
dia, finance, travel & shopping,” http://www.synergetechsolutions.com/
whos-nearme.aspx, 2010.

[4] W. Lehr and L. W. McKnight, “Wireless internet access: 3G vs. WiFi?”
Telecommunications Policy, vol. 27, no. 5, pp. 351–370, 2003.

[5] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” in ACM SIGCOMM, 2009.

[6] R. R. Sarukkai, “Link prediction and path analysis using markov
chains,” Computer Networks, vol. 33, no. 1, pp. 377–386, 2000.

[7] X. Jin and H. Xu, “An approach to intelligent web pre-fetching based
on hidden markov model,” in Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, vol. 3, pp. 2954–2958.

[8] M. Deshpande and G. Karypis, “Selective markov models for predicting
web page accesses,” ACM Transactions on Internet Technology (TOIT),
vol. 4, no. 2, pp. 163–184, 2004.

[9] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,
“Pocketweb: instant web browsing for mobile devices,” in ACM ASP-
LOS, 2012.

[10] X. Dongshan and S. Junyi, “A new markov model for web access
prediction,” Computing in Science & Engineering, vol. 4, no. 6, pp.
34–39, 2002.

[11] “Link prefetching,” https://developer.mozilla.org/en-US/docs/Web/
HTTP/Link prefetching FAQ.

[12] F. Khalil, J. Li, and H. Wang, “Integrating recommendation models for
improved web page prediction accuracy,” in Proceedings of the thirty-
first Australasian conference on Computer science, 2008.

[13] “Html5 specification,” http://www.w3schools.com/html5/default.aspLL.
[14] E. P. Markatos and C. E. Chronaki, “A top-10 approach to prefetching

on the web,” in Proceedings of INET, vol. 98, 1998, pp. 276–290.
[15] S. W. Shin, B. H. Seong, and D. Park, “Improving world-wide-web

performance using domain-top approach to prefetching,” in The Fourth
International Conference/Exhibition on High Performance Computing
in the Asia-Pacific Region, 2000. IEEE.

[16] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin,
“The potential costs and benefits of long-term prefetching for content
distribution,” Computer Communications, vol. 25, no. 4, pp. 367–375,
2002.

[17] B. Wu and A. D. Kshemkalyani, “Objective-optimal algorithms for
long-term web prefetching,” Computers, IEEE Transactions on, vol. 55,
no. 1, pp. 2–17, 2006.

[18] L. Yin, G. Cao, C. Das, and A. Ashraf, “Power-aware prefetch in
mobile environments,” in 22nd International Conference on Distributed
Computing Systems, 2002. IEEE, pp. 571–578.

[19] H. Song and G. Cao, “Cache-miss-initiated prefetch in mobile environ-
ments,” Computer Communications, vol. 28, no. 7, pp. 741–753, 2005.

[20] B. D. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed mobile prefetching,” in ACM MobiSys, 2012.

[21] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin,
“Practical prediction and prefetch for faster access to applications on
mobile phones,” in ACM UbiComp, 2013.

[22] P. Kamaraju, P. Lungaro, and Z. Segall, “A novel paradigm for context-
aware content pre-fetching in mobile networks,” in Wireless Communi-
cations and Networking Conference (WCNC). IEEE, 2013.

[23] W.-t. Yih, J. Goodman, and V. R. Carvalho, “Finding advertising
keywords on web pages,” in ACM WWW, 2006.

[24] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W.
Lonsdale, Y.-K. Ng, and R. D. Smith, “Conceptual-model-based data
extraction from multiple-record web pages,” Data & Knowledge Engi-
neering, vol. 31, no. 3, pp. 227–251, 1999.

[25] C.-Z. Xu and T. I. Ibrahim, “Towards semantics-based prefetching to
reduce web access latency,” in Applications and the Internet, 2003.
Proceedings. 2003 Symposium on. IEEE, 2003, pp. 318–325.

[26] C.-Z. Xu and T. I. Ibrahim, “A keyword-based semantic prefetching
approach in internet news services,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 16, no. 5, pp. 601–611, 2004.

[27] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3G using WiFi,” in ACM MobiSys, 2010.

[28] H. Liu, Y. Zhang, and Y. Zhou, “Tailtheft: Leveraging the wasted time
for saving energy in cellular communications,” in Proceedings of the
sixth international workshop on MobiArch. ACM, 2011, pp. 31–36.

[29] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and
A. Markopoulou, “Microcast: cooperative video streaming on smart-
phones,” in ACM MobiSys, 2012.

[30] N. Do, C.-H. Hsu, and N. Venkatasubramanian, “Crowdmac: a crowd-
sourcing system for mobile access,” in Proceedings of the 13th Inter-
national Middleware Conference, 2012.

[31] Z. Li, C. Wang, S. Yang, C. Jiang, and X.-Y. Li, “Lass: Local-activity
and social-similarity based data forwarding in mobile social networks,”
IEEE TPDS, 2014.

[32] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X.-Y. Li, “Free market
of crowdsourcing: Incentive mechanism design for mobile sensing,”
IEEE TPDS, 2014.

[33] L. Zhang, J. T. Li, Xiang-Yang, and Y. Liu, “Message in a sealed bottle:
Privacy preserving friending in social networks,” in IEEE Transaction
on Mobile Computing. Oct, 2014.

[34] J. Han and X.-Y. Li, “Pickup game: Acquainting neighbors quickly and
efficiently in crowd,” in IEEE MASS, 2014.

[35] “Regionmonitor,” https://developer.apple.com/library/ios/
documentation/userexperience/conceptual/LocationAwarenessPG/
RegionMonitoring/RegionMonitoring.html.

[36] “Instruments,” http://developer.apple.com/library/mac/#documentation/
DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/
Introduction.html.

[37] C. Bo, L. Zhang, X.-Y. Li, Q. Huang, and Y. Wang, “Silentsense: silent
user identification via touch and movement behavioral biometrics,” in
ACM MobiCom, 2013.

[38] C. Bo, X. Jian, X.-Y. Li, X. Mao, Y. Wang, and F. Li, “You’re driving
and texting: detecting drivers using personal smart phones by leveraging
inertial sensors,” in ACM MobiCom, 2013.

[39] B. Li, P. Yang, J. Wang, Q. Wu, S. Tang, X.-Y. Li, and Y. Liu,
“Almost optimal dynamically-ordered channel sensing and accessing for
cognitive networks,” IEEE Transactions on Mobile Computing, 2013.

[40] Y. Zhou, X.-Y. Li, F. Li, M. Liu, Z. Li, and Z. Yin, “Almost optimal
channel access in multi-hop networks with unknown channel variables,”
in IEEE ICDCS, 2014.


