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Abstract—Radio frequency identification (RFID) is a technol-
ogy where a reader device can “sense” the presence of a close by
object by reading a tag device attached to the object. To guarantee
the coverage quality, multiple RFID readers can be deployed
in the given region. In this paper, we consider the problem of
activation schedule for readers in a multi-reader environment. In
particular, we try to design a schedule for readers to maximize
the number of served tags per time-slot while avoiding various
interferences. We first develop a centralized algorithm under the
assumption that different readers may have different interference
and interrogation radius. Next, we propose a novel algorithm
which does not need any location information of the readers.
Finally, we extend the previous algorithm in distributed manner
in order to suit the case where no central entity exists. We conduct
extensive simulations to study the performances of our proposed
algorithm. And our evaluation results corroborate our theoretical
analysis.

Index Terms—RFID, Scheduling, Graph Theory.

I. INTRODUCTION

Radio Frequency Identifier (RFID) technology attracts in-
creasingly interests these days from both academic and in-
dustrial areas. It has been considered as a promising tech-
nology for tagging and identifying objects. RFID enables
simultaneous detection of multiple, distant, and non-line-of-
sight objects. Hundreds of millions of RFID tags are deployed
until now; and the number is growing even faster currently.
The main advantage of RFID systems is its accuracy and
low deployment cost. For example, Wal-Mart save billions
of dollars by introducing RFID into their goods management
system. Typically, RFID systems comprise two components:
RFID tags and RFID readers. RFID tags are usually attached to
the objects and store the information of corresponding object.
Avoiding the interference, readers are capable of reading the
information stored on tags placed within its interrogation
range. In this work, we consider all tags as passive tags, i.e.
they do not need to be equipped with battery. Instead, they
leverage the energy from the reader’s signal to process the
store data and communicate with readers.

In this work, we put our focus on improving the read
throughput of a given multi-reader RFID system. In many
locations essential to daily life such as supermarket or post
office, multiple RFID readers are needed in a given region
to perform tag reading concurrently, which will improve the
read throughput greatly. In most existing works, RFID readers
are assumed to be static and carefully deployed in a planned

fashion. When the location of each reader is known a prior and
all the readers has identical interference range, Zhou et al. [7]
and Tang et al. [9] proposed a set of RFID reader scheduling
protocols to improve the read throughput of multiple readers
RFID system. However, their scheme often suffers from its
“ideal” model setting in practical. First, they assume that all
readers are deployed in a planned manner and the geometry
location of each reader is known a prior. However, in a
more realistic model, the position of each reader is often
highly dynamic and we can not expect that that their exact
geometry location can always be obtained. Second, all of
their algorithms are centralized which require a central entity
in the system. Unfortunately, this requirement can hardly
be satisfied either, especially for large scale RFID systems.
Further, even though they claim that all their proposed algo-
rithms can terminate within polynomial time, their analysis
heavily depends on the assumption that all readers have the
same (or the same order of) interference range. Again, this
assumption is indeed too strong in practical where different
readers may be equipped with different antennas. Thus, to
design an efficient and effective reader activation scheduling
by considering all the issues listed above becomes extremely
urgent while challenging under large scale RFID systems. In
this work, we study the reader activation scheduling problem
under a more general model. As main contributions of this
paper, we remove those “ideal” assumptions one by one as
follows:

1) We first study the model under which different reader may
have various interrogation range and interference range. A
PTAS (Polynomial-time approximation scheme) has been
provided;

2) We next break the restriction that all readers’ locations
are known a prior. Specially, we propose a centralized
scheduling scheme which does not need any location
information of the readers;

3) At last, we extend previous centralized algorithm in a
distributed manner to suite the case where no central
entity exists.

This paper is organized as follows: In Section II, we present
a number of basic definitions and background knowledge
regarding multi-reader RFID systems; We then formally define
the problems addressed in this paper in Section III; Section
IV describes a centralized algorithm under the assumption that
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different readers may have different interference and interroga-
tion range; In Section V, we propose another novel algorithm
based on the growth bounded property of interference graph,
which does not require any geometry location information of
the readers. And we further extend this algorithm in a dis-
tributed manner; Finally, we evaluate all proposed algorithms
in Section VI. We conclude our discussion in Section VIII.

TABLE I
NOTATIONS USED IN PAPER

Symbol Meaning

𝑉 Set of readers
𝑣 Reader
𝑋 Scheduling set of readers at a single time-slot

𝑤(𝑋) Weight of scheduling set 𝑋
𝑅𝑖 Interference radius of reader 𝑣𝑖
𝛾𝑖 interrogation radius of reader 𝑣𝑖
𝒪 Set of interference disks

O(𝑣𝑖) Interference disk of reader 𝑣𝑖 with radius 𝑅𝑖

𝒪(𝑟, 𝑠) Set of survive disks under (𝑟, 𝑠)-shifting
𝑁(𝑣)𝑟 𝑟-hop neighborhood of 𝑣 in interference graph

MWFS(𝑆, 𝐼) A MWFS contained in 𝑆 and independent from 𝐼

II. BACKGROUND KNOWLEDGE

In this section, we briefly introduce some basic definitions
and models used in this work.

Interrogation and Interference Regions: Each RFID
reader is associated with an interrogation radius, 𝛾𝑖, which
varies from ten centimeters to hundred feets; and an interfer-
ence radius, 𝑅𝑖. Let (𝑥𝑖, 𝑦𝑖) denote the coordination of reader
𝑣𝑖 in the two-dimensional deployment region. We define the
interference region of 𝑣𝑖, which is denoted by O(𝑣𝑖), as a disk
centered at (𝑥𝑖, 𝑦𝑖) with radius 𝑅𝑖. For ease of presentation,
we assume 𝑟𝑖 = 𝛽𝑅𝑖 where 1 > 𝛽 > 0 is a constant. As in
[7], given a set of readers 𝑉 , we define the region monitored
by the readers 𝑉 as the union of the interrogation regions
of 𝑉 . These regions can be explored by a RF site survey,
e.g., using certain localization device and radio signal strength
measurement device to achieve the survey.

Collisions in Multi-Reader Systems: We first introduce
three typical collisions that may cause interference among
simultaneous transmissions in RFID systems.

Tag-tag collision (TTc): TTc happens when multiple tags
located in the interrogation region of the same reader transmit
data simultaneously. See Figure 1(a). TTc can be successfully
resolved through certain link-layered protocol i.e., framed
Aloha [20] or tree-splitting [16], [18]. In this work, we will
not put extra efforts to dealing with TTc.

Reader-tag collision (RTc): When a reader is in the
interference region of the other one, as illustrated in Figure
1(b), reader 𝐵 ’s transmission can affect the response from
Tag1 to 𝐴. Under this case, any reader suffering RTc can
not successfully read any tag. We must carefully schedule the
activation of different readers in order to avoid RTc.

Reader-reader collision (RRc): When some tags are po-
sitioned within the overlapping interrogation regions of two
readers, those tags are not able to tell the difference between
the signals from those two readers. Different from RTc,

RRc will only disable simultaneous transmissions within the
overlapping interrogation region, however, the readers can still
read other tags that are inside only its own interrogation region.
As illustrated in Figure 1 (c), both Tag2 and Tag3 except
Tag1 can be read successfully.

III. PROBLEM DEFINITION AND PRIMARY APPROACH

Consider a set of 𝑛 readers 𝑉 = {𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛} and a
set of 𝑚 tags {Tag1,Tag2, ⋅ ⋅ ⋅ ,Tag𝑚} deployed statically
at a deployment region. Each tag can be covered by the
interrogation range of one or more readers. We assume that
here is no further request for Tag𝑖 as long as it has accessed
some reader. In the following contents, we name the tag
which has not been served as unread tag. Except for specific
notification, “tag” always refer to “unread tag” throughout this
paper.

We next introduce a number definitions which will be used
frequently throughout this paper:

Definition 1: (Well-Covered Tag) [7]: A tag Tag𝑖 or its
location is said to be well-covered by a reader 𝑣𝑖, wherein
𝑋 ⊆ 𝑉 is the set of activated readers, if the below conditions
hold.

∙ The reader 𝑣𝑖 is in 𝑋 , and the tag Tag𝑖 is in the
interrogation region of 𝑣𝑖.

∙ The reader 𝑣𝑖 is not in the interference region of any
other reader 𝑣𝑗 ∈ 𝑋 in the given time-slot. This condition
ensures that there are no RTc.

∙ There is no other reader 𝑣𝑗 in 𝑋 such that the tag Tag𝑖 is
in the interrogation region of 𝑣𝑗 . This condition ensures
that there are no RRc.

Clearly, a tag can be well covered by at most one reader in
any time-slot due to the first and the last condition.

Definition 2: (Feasible Scheduling Set) Throughout this
paper, we denote the euclidian distance between any two
readers 𝑣𝑖 and 𝑣𝑗 as ∣∣𝑣𝑖 − 𝑣𝑗 ∣∣, e.g. ∣∣𝑣𝑖 − 𝑣𝑗 ∣∣ =√
(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2. For any pair of readers 𝑣𝑖, 𝑣𝑗 ∈
𝑉 , we say they are independent if and only if neither 𝑣𝑖
nor 𝑣𝑗 is located within the other’s interference disk, e.g.
∣∣𝑣𝑖 − 𝑣𝑗 ∣∣ > max{𝑅𝑖, 𝑅𝑗}. We define the feasible scheduling
set as a subset of readers 𝑋 ⊆ 𝑉 such that for any two readers
𝑣𝑖, 𝑣𝑗 ∈ 𝑋 , 𝑣𝑖 and 𝑣𝑗 are independent with each other.

Clearly, a feasible scheduling set should not contain any
subset of readers which may cause RTc. Next we introduce
another key definition which will be used frequently through-
out this paper.

Definition 3: (Weight of Feasible Scheduling Set) [9]
Given a feasible scheduling set 𝑋 , the weight 𝑤(𝑋) of 𝑋
is defined as the total number of well-covered unread tags
under the feasible scheduling set. It reflects the amount of tags
that may have chance to get served from 𝑋 , without causing
RRc. By excluding those tags which are within the overlapping
area of more than one activated readers’s interrogation region,
𝑤(𝑋) can also be defined as the number of unread tags that
are located at the interrogation region of exactly one reader in
𝑋 .
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Fig. 1. [9]Collisions in RFID systems. (a) Tag-Tag collision: Tags 1, 2 and 3 respond to reader A simultaneously
and causing collision at A; (b) Reader-Tag collision: Response from tag 1 to Reader A is “drowned” by the
signal from the reader B; (c) Reader-Reader collision: Signal from reader A and B collide at tag 1

Fig. 2. [9]Illustration of an example in
which scheduling less readers will read
more tags.

Consider a example in Figure 2, assume there are three
independent readers 𝐴, 𝐵 and 𝐶. By selecting 𝐴,𝐵,𝐶 as
a feasible scheduling set, e.g. 𝑋 = {𝐴,𝐵,𝐶}, the re-
sulted total weight is ∣{Tag1,Tag2,Tag3,Tag4,Tag5}∣ −
∣{Tag2,Tag3}∣ = 3 . However, if we only activate 𝐴
and 𝐶, e.g., 𝑋 = {𝐴,𝐶}, the weight is is increased to
∣{Tag1,Tag2,Tag3,Tag4}∣ − ∣{∅}∣ = 4.

Definition 4: (Covering Schedule of Readers) Consider a
set of readers 𝑉 . Let 𝑀 be the region monitored by 𝑉 (i.e.
the union of their interrogation regions). A covering schedule
of readers for 𝑉 is an assignment of readers to each time-slot
(being active), such that each location in 𝑀 is well-covered by
some reader in one of the time slots. Here, the total number of
required time-slots is called the size of the scheduling. Again,
after tag Tag𝑖 accessing some reader, we say that it leaves
the system, that is, we will simply ignore all those tags in the
following schedule.

Now we are ready to formally define the problems studied
in this paper. Note that the time-slot size is chosen such that
each active reader 𝑣𝑖 is able to read at least one tag within the
time-slot, if there is at least one tag well-covered by 𝑣𝑖. Thus,
if we iterate over a covering schedule of readers, then we are
guaranteed to read all tags which are covered by our system.
This can be easily achieved by rendering a tag passive (using
a lower layer protocol) when it has been served; thus, any tag
that already been served will not participate in later iterations.
The number of iterations required to read all the tags depends
on the maximum number of tags well-covered by a reader in
any time-slot of the given covering schedule. We first define
the minimum covering schedule problem as follows:

Definition 5: (Minimum Covering Schedule Problem):
Given a set of readers 𝑉 and its associated regions, the
minimum covering schedule problem (MCS) is to find the
minimum-size covering schedule of readers for 𝑉 .

Notice that most geometric set-cover problems can be
shown to be NP-hard. Since the above defined MCS problem
can be regarded as a special case of geometric set-cover
problem by setting each reader’s interference range sufficiently
large, it is also NP-hard. If the NP-Hardness for this problem
depresses us somehow, our approximation results proposed in
this paper should bring us good news. We next introduce a
simple greedy algorithm which acts as the backbone of our

scheduling scheme:

1) At the 𝑞-th time-slot, we choose a feasible scheduling set
with maximum weight and let them be active at time-slot
𝑞;

2) It terminates when there are no unread tags remained.

Clearly, we attempt to use one time-slot to its full capacity
in the greedy algorithm.

Theorem 1: [7] This simple greedy algorithm can achieve
log 𝑛-approximation for MCS problem. Here 𝑛 is the number
of readers.

We still use the same greedy algorithm as the backbone
of our scheduling scheme. Clearly, if we can successfully
find a maximum weighted feasible scheduling set at each
time-slot, we can still achieve log 𝑛-approximation through
above greedy algorithm for MCS problem. The proof is same
as the one provided in [7] and omitted here to save space.
Then the main challenging issue arising in this paper is how
to select a feasible scheduling set with maximum weight
under the general model. Specifically, we are interested at
finding a maximum weighted feasible scheduling set at each
time-slot by assuming no central entity exists, no geometry
location information is pre-known and different readers may
have various interference range. Since this problem is already
non-trivial even under the “ideal” model [7], indeed, tackling
the same problem under a more general model becomes much
more challenging.

In this work, we mainly concentrate on finding a maximum
weighted feasible scheduling set under general model. We next
formally define the One-Shot Scheduling Problem as follows:

Definition 6: (One-Shot Schedule Problem): The objec-
tive of One-Shot Schedule Problem is to find a Maximum
Weighted Feasible Scheduling Set (MWFS) at a single time-
slot. Notice that we only consider the unread tags when
computing the weight of any feasible scheduling set at any
time-slot.

IV. ONE-SHOT SCHEDULE PROBLEM WITH LOCATION

INFORMATION

We first study a simple case when each reader’s position is
known a prior and this assumption will be removed later. Here
we propose an centralized algorithm by assuming different
reader may have various interference/interrogation radius. And
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we theoretically prove that the weight of the scheduling set
found by our algorithm is arbitrarily close to the optimum
one.

Assume we are given a set of readers 𝑉 = {𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛}
and their corresponding interference disks 𝒪 =
{O(𝑣1),O(𝑣2), ⋅ ⋅ ⋅ ,O(𝑣𝑛)}. In the following contents,
we say two disks O(𝑣𝑖) and O(𝑣𝑗) are independent with
each other if and only if 𝑣𝑖 and 𝑣𝑗 are independent from
each other. For clarity of presentation, we will use O(𝑣𝑖)
and 𝑣𝑖 interchangeably in the following contents to represent
the same reader 𝑣𝑖. Hereafter we use disk/radius to represent
interference disk/radius for short.

We build our PTAS for approximating MWFS based on the
approach of [4] [22] [2], i.e. to divide the readers into different
levels according to their interference radii. All readers at the
same level have similar interference radii, i.e. they are within
a constant factor of each other. The main idea of our algorithm
is similar as the one proposed in [22] [2], the main challenge
in generalizing the result of [22] [2] arises due to the fact that
in our context 𝑤(𝑋1 ∪𝑋2) may be less than 𝑤(𝑋1)+𝑤(𝑋2)
for two sets of readers 𝑋1 and 𝑋2. We scale the interference
radius of each reader so that the largest interference radius
is 1

2 and the smallest interference radius among all readers is
denoted as 𝑅𝑚𝑖𝑛.

We partition the corresponding disks into 𝑙 + 1 levels such
that level 𝑗, 0 ≤ 𝑗 ≤ 𝑙, consists of all disks with radius
satisfying that 1

(𝑘+1)𝑗+1 < 2𝑅𝑖 ≤ 1
(𝑘+1)𝑗 . Let 𝑙(O(𝑣𝑖)) denote

the level of disk O(𝑣𝑖), i.e. 𝑙(O(𝑣𝑖)) = ⌊log𝑘+1
1

2𝑅𝑖
⌋. For

each level 𝑗, we subdivide the plane into grid by using a set
of vertical lines 𝐿𝑗,𝑣 : 𝑥 = 𝑣 1

(𝑘+1)𝑗 , 𝑣 ∈ 𝑍 and a set of
horizontal lines 𝐻𝑗,ℎ : 𝑦 = ℎ 1

(𝑘+1)𝑗 , ℎ ∈ 𝑍. Hereafter 𝑗 is
named the level of the lines 𝐿𝑗,𝑣 and 𝐻𝑗,ℎ; 𝑣 (and ℎ) is called
the index of the vertical (and horizontal) line 𝑙𝑗,𝑣 (and ℎ𝑗,ℎ) at
level 𝑗. A (𝑟, 𝑠)-shifting of the subdivision is the grid defined
by the set of vertical lines whose indices modulo 𝑘 equal 𝑟
and the set of horizontal lines whose indices modulo 𝑘 equal
𝑠. Different from the UDG case where there is only one (𝑟, 𝑠)-
shifting, we have different (𝑟, 𝑠)-shiftings in different levels.
However, it was proved in [3] that a vertical line at level 𝑗 of a
(𝑟, 𝑠)-shifting subdivision is also a vertical line at level 𝑗 + 1
of the (𝑟, 𝑠)-shifting subdivision. Then, we compute MWFS
using the dynamic programming as discussed later.

Any two consecutive vertical lines at level 𝑗 whose indices
modulo 𝑘 equal 𝑟, and any two consecutive horizontal lines
at level 𝑗 whose indices modulo 𝑘 equal 𝑠, define a 𝑗-square
in the (𝑟, 𝑠)-shifting subdivision. Clearly, any 𝑗-square 𝑆 can
be subdivided into (𝑘 + 1)

2
(𝑗 + 1)-squares (by lines 𝐿𝑗+1,𝑣

and 𝐻𝑗+1,ℎ at level 𝑗+1). Denoted by 𝑆′ ≺ 𝑆, these (𝑗+1)-
squares are called the children of 𝑆, and 𝑆 is called the parent
of 𝑆′.

A disk O(𝑣𝑖) is said to hit a vertical line at 𝑥 = 𝑎 if
𝑎−𝑅𝑖 < 𝑥𝑖 ≤ 𝑎+𝑅𝑖. Similarly, we say the disk O(𝑣𝑖) hits a
horizontal line at 𝑦 = 𝑏 if 𝑏−𝑅𝑖 < 𝑦𝑖 ≤ 𝑏+𝑅𝑖. For MWFS
problem, a disk O(𝑣𝑖) at level 𝑙(O(𝑣𝑖)) = 𝑗 is said to be
survive (respecting to (𝑟, 𝑠)-shifting) if it does not intersect the

boundary of any 𝑗-square of the (𝑟, 𝑠)-shifting subdivision. For
each level 𝑗, let 𝒪𝑗(𝑟, 𝑠) be the set of survive disks at level 𝑗

respecting to (𝑟, 𝑠)-shifting. Define 𝒪(𝑟, 𝑠) = ∪𝑙
𝑗=0𝒪𝑗(𝑟, 𝑠),

i.e. the union of survive disks at all levels respecting to
(𝑟, 𝑠)-shifting. Then a 𝑗-square 𝑆 is named relevant if 𝒪(𝑟, 𝑠)
contains at least one disk of level 𝑗 that is inside 𝑆. Please
see Figure. 3 for an example where 𝑟 = 𝑠 = 0 and 𝑘 = 3.

We first restrict that an optimum solution 𝑂𝑃𝑇 (𝒪(𝑟, 𝑠))
under (𝑟, 𝑠)-shifting should not contain any disk that hits a line
at level 0, e.g., each disk in 𝑂𝑃𝑇 (𝒪(𝑟, 𝑠)) must be contained
inside some 0-square. For ease of analysis, 𝑂𝑃𝑇 (𝒪(𝑟, 𝑠)) can
be further divided into two subsets: (1) some independent disks
at level 0, denoted by 𝐼0; (2) independent disks at higher level
that are independent with all disks from 𝐼0. The above partition
of disks can be performed recursively down to the squares at
lower levels.

Fig. 3. A illustration of the survive disks at level 0 and level 1. Note that a
disk is survive if and only if it does not intersect the boundary of any square
at the same level. In this figure, 𝑟 = 𝑠 = 0 and 𝑘 = 3.

Based on above partition idea, we next compute
MWFS(𝑆, 𝐼) using the dynamic programming. We first as-
sume that the entry MWFS(𝑆, 𝐼) for all squares 𝑆 (with level
at least 𝑗 + 1) and all appropriate feasible sets 𝐼 intersecting
𝑆 is already computed. The interference disks in MWFS(𝑆, 𝐼)
can be divided into two subsets: (1) 𝐷 contains all independent
disks, that are independent with disks from 𝐼 , inside 𝑆 with
level 𝑗; (2) independent disks that are independent with any
disk from 𝐼 and 𝐷 with level larger than 𝑗.Notice that each
disk in the second subset is contained inside some (𝑗 + 1)-
square 𝑆′. We then compute MWFS(𝑆, 𝐼) by scanning all
possible 𝐷 as follows,

𝑀𝑊𝐹𝑆(𝑆, 𝐼) = max
𝐷

(( ∪
𝑆′≺𝑆

𝑀𝑊𝐹𝑆(𝑆′, 𝐼𝑆′ ∪𝐷𝑆′)

)∪
𝐷

)

Here 𝐼𝑆′ is the subset of disks from 𝐼 who intersect 𝑆′.
𝐷𝑆′ is defined similarly.

The algorithm processes all relevant squares in order of non-
increasing levels. For each 𝑗-square 𝑆 and some appropriate
independent set 𝐼 , MWFS(𝑆, 𝐼) is computed by dynamic
programming, as shown in Algorithm 1.
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Theorem 2: Given a set of readers and their geometry
locations, there is at least one (𝑟, 𝑠)-shifting, 0 ≤ 𝑟, 𝑠 < 𝑘
such that 𝑤 (𝑂𝑃𝑇 (𝒪(𝑟, 𝑠))) ≥ (1 − 1

𝑘 )
2𝑤(𝑂𝑃𝑇 ) where

𝑤(𝑂𝑃𝑇 ) denote the weight of optimum solution(e.g. maxi-
mum weighted feasible scheduling set).

Theorem 2 basically shows that the weight of the feasible
scheduling set computed by our algorithm can be arbitrarily
close to the optimum solution. The proof is omitted here to
save space.

Algorithm 1 Approximate Maximum Weighted Feasible
Scheduling Set (MWFS) With Location Information
Input:All 𝑛 readers, their geometry locations, interference
area, and interrogation region.
Output: Feasible scheduling set 𝑋 ⊆ 𝑉 .

for all 𝑗 = 𝑙 + 1 downto 1 do
for all square 𝑆 with level 𝑗 do

Let 𝑌 be survive readers under (𝑟, 𝑠)-shifting of level
≤ 𝑗 and intersecting 𝑆.
for all 𝐽 ⊆ 𝑌 with at most Λ disks do

if 𝐽 is a feasible scheduling set then
Let 𝑋 be independent disks in 𝐽 with level 𝑗.
for all child square 𝑆′ of 𝑆 do

Let 𝐽𝑆′ be disks in 𝐽 intersecting 𝑆′.
Set 𝑋 = 𝑋∪ MWFS(𝑆′, 𝐽𝑆′).

end for
Let 𝐼 be readers in 𝐽 with level less than 𝑗.
if 𝑤(𝑋) > 𝑤(MWFS(𝑆, 𝐼)) then

MWFS(𝑆, 𝐼) = 𝑋
end if

end if
end for

end for
end for
𝑋 ← ∪𝑆 :

V. ONE-SHOT SCHEDULE PROBLEM WITHOUT LOCATION

INFORMATION

In the previous section, we propose an efficient centralized
algorithm under the assumption that the geometry location
of each reader is known a prior. In this section, we first
design a centralized algorithm which does not need any
location information. And we further extend this algorithm
in a distributed manner where no central entity is required.

A. Centralized Scheme

We first present a centralized approach for One-Shot Sched-
ule problem where no geometry information of each reader is
required. We assume that a interference graph 𝐺 = (𝑉,𝐸)
is available through network measurement1. Here we give a
formal definition of 𝐺 as follows:

1This can be done by a RF site survey using a localization device and radio
signal strength measurement device.

Definition 7: Interference Graph of the readers 𝑉 is a
graph where every reader in 𝑉 has a corresponding node, and
any two nodes have an edge between each other if and only
if one reader is located in the interference region of the other.
In other words, any two adjacent readers in interference graph
cannot be active simultaneously due to RTc.

Our proposed method is based on the algorithm for maxi-
mum weighted independent set problem proposed in [15]. The
basic idea of our approach is that, we first select a reader 𝑣 with
maximum weight (by activating 𝑣 alone); then we compute
maximum weighted feasible scheduling set Γ𝑟(𝑣) in the 𝑟-
hop neighborhood 𝑁(𝑣)𝑟 of 𝑣 which includes 𝑣. 𝑁(𝑣)𝑟 of
node 𝑣 is defined as:

𝑁(𝑣)𝑟 := {𝑢 ∈ 𝑉 ∣𝑢 has hop distance at most 𝑟 from 𝑣}

Hereafter, we use Γ𝑟 and 𝑁𝑟 to represent Γ𝑟(𝑣) and 𝑁(𝑣)𝑟

respectively. We repeat the process when the weight of Γ𝑟

meets the following requirement:

𝑤(Γ𝑟+1) ≥ 𝜌 ⋅ 𝑤(Γ𝑟) (1)

where 𝜌 = 1+𝜖 and 𝜖 > 0. The process stops when 𝑟 increases
to 𝑟 and inequality (1) is violated for the first time. We will
prove the existence of 𝑟 later.

We then “remove” 𝑁𝑟+1 of node 𝑣 including 𝑣. We repeat
the above process until all the nodes in the network are
“removed”. Assuming that the nodes we have picked are
𝑣1, 𝑣2, 𝑣3, ⋅ ⋅ ⋅ , 𝑣𝑚, the candidate solution for 𝑋 is the union
of Γ𝑟𝑖(𝑣𝑖). Note that we remove (𝑟𝑖 + 1)-neighborhood of 𝑣𝑖
instead of 𝑁(𝑣𝑖)

𝑟𝑖 in order to ensure that the union of Γ𝑟𝑖(𝑣𝑖)
is a feasible scheduling. Please see Figure. 5 for an example.

Algorithm 2 Centralized Reader Activation Scheduling with-
out Location Information
Input: 𝐺 = (𝑉,𝐸) and 𝜌.
Output: Feasible Scheduling Set 𝑋 .

1: repeat
2: Pick a reader 𝑣 with maximum weight by activating it

alone;
3: Compute Γ𝑟(𝑣);
4: 𝑋 = 𝑋 ∪ Γ𝑟(𝑣);
5: 𝑉 = 𝑉 ∖𝑁(𝑣)𝑟+1;
6: until 𝑉 = ∅;

Now we prove that 𝑟 does exist and is bounded by a constant
(depending on 𝜌).

Theorem 3: [15] There exists a constant 𝑐 = 𝑐(𝜌) such that
𝑟 ≤ 𝑐.

The correctness and approximation guarantee of the algo-
rithm follows from the following theorem, and the proof is
similar as [15] thus omitted here.

Theorem 4: 𝑋 generated by Algorithm 2 is an feasible
scheduling set of weight at least 1

𝜌 = 1
1+𝜖 of maximum

weighted feasible scheduling set.
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B. Distributed Scheme

Compared with centralized scheduling algorithms, dis-
tributed algorithms are more realistically and efficiently, spe-
cially for large scale RFID systems. The main idea of our
distributed algorithm without knowing location information is
that we let every reader in the network collect information
from other nodes within a limited hops in 𝐺; when it finds
itself with maximum weight (by activating itself alone), it
starts the local computation of MWFS. Notice that in central-
ized scheduling, to guarantee the correctness, we start from
a reader 𝑣 with the largest weight and then grow the region
until a certain criterion (inequality (1)) is violated. Given 𝜌,
we know that we will explore at most 𝑟-hops neighborhood
𝑁𝑟 of 𝑣 in the interference graph. Thus, other readers that do
not have the global largest weight can also start to explore
its neighborhood 𝑁𝑟 and find an MWFS simultaneously.
Let 𝑐 ≥ 𝑟 be the control parameter depending on 𝜌. As
proved in Theorem 5, 𝑐 is some constant. To ensure the
consistency of these two simultaneous explorings, we require
any two initiating readers to be separated by at least 2𝑐 + 2
hops in the interference graph 𝐺. Please see Figure. 5 for
illustration. Our main idea is as follows: Step 1: Initially,
every reader collects the information from its (2𝑐 + 2)-hop
neighborhood of interference graph 𝐺. Here constant 𝑐 is a
system parameter. The reader with maximum weight in its
(2𝑐 + 2)-hop neighborhood will become a coordinator for
local MWFS computation. We choose the value of 𝑐 in a way
such that every node initiating a local MWFS computation
terminates the computation within 𝑐 hops. We can choose a
appropriate 𝑐 according to Theorem 5. Note that we let each
node collect information in its (2𝑐 + 2)-hop neighborhood to
ensure that MWFSs computed by simultaneous coordinators
will always be interference free.

Step 2: Based on the collected information, if a reader 𝑣
has maximum weight among all its neighbors within (2𝑐+2)
hops, 𝑣 starts to compute local MWFSs Γ0, Γ2, ..., Γ𝑟 by
enumeration. Same as the centralized algorithm, we find a 𝑟
such that 𝜌𝑤(Γ𝑟) ≤ 𝑤(Γ𝑟+1) when 𝑟 < 𝑟 and 𝜌𝑤(Γ𝑟) >
𝑤(Γ𝑟+1). Let Γ𝑟 denote the local result computed by reader
𝑣.

Step 3: 𝑣 announces Γ𝑟 in its (𝑟+1+2𝑐+2)-neighborhood
of 𝐺 and “removes” 𝑁𝑟+1 from 𝐺. As a result, some node
𝑢 ∈ 𝑁𝑟+1+2𝑐+2 ∖ 𝑁𝑟+1 might find that it has the maximum
weight in its (2𝑐 + 2)-hop neighborhood and it can start to
compute its local MWFSs. Please refer to Algorithm 3 for
details. A Red node is included in the solution of the current
round, while a Black node is excluded. In addition, we use
several colors to distinguish the different status of readers. For
example, if a reader 𝑣 marks itself with color 𝑅𝑒𝑑, it means
𝑣 is selected in the solution for this round. 𝐵𝑙𝑎𝑐𝑘 means the
node is not selected as the solution in this round.

Theorem 5: There exists a constant 𝑐 = 𝑐(𝜌) such that 𝑟 ≤
𝑐.

The proof is similar to that of Theorem 3 which is based on

Fig. 4. Illustration of the centralized algorithm. We start from 𝑣1 who has
the maximum weight until certain criteria is violated, then we choose 𝑣2 to
start its local computing. The light squares denote a possible set of feasible
scheduling set and dark nodes denote the remaining readers.

Fig. 5. Illustration of the distributed algorithm. 𝑣1 and 𝑣2 start their local
computing simultaneously. Note that 𝑣1 and 𝑣2 need to be departed by at
least 2𝑟 + 2 hops away from each other to ensure the feasibility.

the observation that

𝑤(Γ𝑟) ≥ 𝜌𝑤(Γ𝑟−1) ≥ 𝜌2𝑤(Γ𝑟−2) ≥ ⋅ ⋅ ⋅ ≥ 𝜌𝑟𝑤(𝑣)

Surprisingly, the performance of our distributed algorithm
is also arbitrarily close to the optimum solution.

Theorem 6: 𝑋 generated by Algorithm 3 is an feasible
scheduling set and 𝑤(𝑋) ≥ 1

𝜌𝑤(𝑂𝑃𝑇 ).
Proof: Let 𝑉 = 𝑉 ∖ 𝑁𝑟+1, and inductively assume that

Γ ⊂ 𝑉 is a 𝜌−approximation feasible scheduling set in 𝐺[𝑉 ].
Obviously, 𝑋 = Γ𝑟 ∪ Γ is an feasible scheduling set. Since
Γ𝑟+1 is an MWFS in 𝑁𝑟+1, we have 𝑤(𝑂𝑃𝑇 ∩ 𝑁𝑟+1) ≤
𝑤(Γ𝑟+1) ≤ 𝜌𝑤(Γ𝑟).

VI. EVALUATION

In this section, we evaluate the performance of our designed
algorithms using a custom simulator. In the simulations, we
uniformly and randomly distribute 50 readers and 1200 tags in
a square region of side-length 100 units. And we also randomly
assign different interference range and interrogation range
to each reader following Poisson distribution with parameter
(mean) 𝜆𝑅 and 𝜆𝑟 respectively. We may need to modify
some assignments to ensure 𝑅𝑖 ≥ 𝑟𝑖. We compare our
methods with Colorwave Algorithms (CA) and Greedy Hill-
Climbing Algorithms (GHC). Under the greedy Hill-Climbing
algorithm, we choose the scheduling set for each time-slot by
the following greedy rule: at each step, we select a reader
to add to current active reader set, in order to maximize the
incremental weight together with other active readers at this
time-slot. Then we keep adding the reader to the active set
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Algorithm 3 Distributed Scheduling Without Location Infor-
mation
Input: 𝜌, 𝑐(which is computed from 𝜌).
Output: A local feasible scheduling set.

1: state = White; active = NO; head = NO;
2: Collects information from 𝑁(𝑣)2𝑐+2 in 𝐺.
3: if 𝑤(𝑣) ≥ 𝑤(𝑢), for any 𝑢 ∈ 𝑁(𝑣)2𝑐+2 then
4: head = YES;
5: end if
6: if head = YES then
7: Computes Γ0(𝑣),Γ2(𝑣), ...,Γ𝑟(𝑣) such that

𝑤(Γ𝑖+1(𝑣)) ≥ 𝜌 ⋅ 𝑤(Γ𝑖(𝑣)) for 0 ≤ 𝑖 ≤ 𝑟 − 1,
and 𝑤(Γ𝑖+1(𝑣)) < 𝜌𝑤(Γ𝑖(𝑣)) for 𝑖 > 𝑟 − 1.

8: Broadcasts message RESULT(Γ𝑟(𝑣)) among
𝑁(𝑣)𝑟+1+2𝑐+2;

9: end if
10: if state = White AND head = NO then
11: if receives message RESULT(Γ𝑟(𝑢)) then
12: if 𝑣 ∈ Γ𝑟(𝑢) then
13: state = Red; active = YES;
14: end if
15: if 𝑣 ∈ 𝑁(𝑢)𝑟+1 AND 𝑣 /∈ Γ𝑟(𝑢) then
16: state = Black; active = NO;
17: end if
18: if 𝑣 ∈ 𝑁(𝑣)𝑟+1+2𝑐+2 ∖𝑁(𝑣)𝑟+1 then
19: If 𝑣 has no White neighbor within 2𝑐+2 hops that

has larger weight, goto 5;
20: end if
21: end if
22: end if

one by one recursively until the weight starts to decrease
(the incremental weight becomes negative) due to various
collisions.

1) To test the performance of each algorithm for the
MCS problem, we compare the sizes of covering schedules
computed by various algorithms. Remember that the size of
covering scheduling is the total number of time-slots required
to read all tags. As described in Section III, we use the greedy
algorithm by recursively finding a maximum weighted feasible
scheduling set to active at each time-slot until no unread tags
left. Here we use different one-shot algorithms as described in
this paper to find the maximum weighted feasible scheduling
set at each time-slot and further evaluate their performance;

2) To test the performance for the one-shot scheduling
problem, we compare the total number of well-covered tags
at a given time-slot under different algorithms.

We first evaluate various algorithms for MCS problem.
In the first round of experiments, we fix the parameter 𝜆𝑅

and compare the total number of time-slots required by each
algorithm under various parameters 𝜆𝑟. Alternatively, we next
fix 𝜆𝑟 and compare them under different 𝜆𝑅. The results
are demonstrated in Figure.6 and Figure.7 respectively. As
we expected, Algorithm 1 has the best performance in terms
of least scheduling size. This is because Algorithm 1 is a

Fig. 6. The size of covering scheduling under various algorithms when 𝜆𝑟

is fixed.

Fig. 7. The size of covering scheduling under various algorithms when 𝜆𝑅

is fixed.

centralized algorithm with global information of each reader’s
location. Algorithm 2 also performs much better than the
rest algorithms, it also results from its centralized manner
even though no exact location information is known. Since
Algorithm 3 is a distributed algorithm without knowing any
location information of each reader, it performs not as good
as the previous two algorithms. However, it still beats CA
and GHC in all range of values. We also observe that the
performance of each algorithm improves as 𝜆𝑅 increases,
because larger interrogation region provides a larger coverage
area. And the gap between our algorithms and the others
becomes even bigger when the interrogation range increases.
Same as observed before, the total number of well-covered
tags decreases as the interference range increases.

We next test all approaches for One-Shot Scheduling prob-
lem. In contrast to the evaluation in MCS where the size of
scheduling is the main metric, we are interested at the total
number of well-covered tags at one time-slot here. Similar
as previous experiment setting, we evaluate each algorithm
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Fig. 8. The total number of well-covered tags under various algorithms when
𝜆𝑅 is fixed.

Fig. 9. The total number of well-covered tags under various algorithms when
𝜆𝑟 is fixed.

under different parameter setting for 𝜆𝑅 and 𝜆𝑟. At the first
experiment, we fix the 𝜆𝑅 and increase 𝜆𝑟. Figure. 8illustrates
the total weight of well-covered tags at one time-slot under
various algorithms. In the second part, we test the same metric
by fixing 𝜆𝑟. As demonstrated in Figure. 8 and Figure. 9, all
of our algorithms perform significantly better than the other
algorithms. This is simply because all our approaches are able
to find a feasible scheduling set with near maximum weight.

VII. RELATED WORK

Recently, several protocols have been proposed to avoid
collisions in RFID systems. We classify these results into three
categories according to the type of collisions they addressed.
For tag-tag collisions, several link layer protocols, e.g. [11],
[16], [18], [20], were designed to avoid this collision. A
popular solution is the tree walking algorithm (TWA) [16],
[18] in which the reader splits the entire ID space into two
subsets and tries to identify the tags belonging to one of the
subsets, recursing along the way until a subset has exactly one
tag or no tag at all. Recently, [19] proposes optimizations to

tree traversal. In slotted Aloha protocol [10], a query frame
is selected with a sufficiently large number of time slots
and each tag sends a response at a random chosen time
slot. When the reader hears a response correctly, it sends
confirmation. If there is a collision, the colliding tags will
choose another random slots to send a response. The reader
further changes the frame size according to how frequently the
collisions happen in the previous frame. For avoiding Reader-
Reader or Reader-Tag Collisions. Colorwave [21] is one of
the first work to address reader-reader collisions. In particular,
it considers an “interference graph” over the readers, wherein
there is an edge between two readers if they could lead to
a reader-reader collision when transmitting simultaneously,
and tries to randomly color the readers such that each pair
of interfering readers have different colors. If each color
represents a time slot, then the above coloring should eliminate
reader-reader collisions. If conflicts arise (i.e., two interfering
readers pick the same time slot), only one of them wins
(i.e., sticks to the chosen time-slot), the others pick another
time-slots again randomly. In [13], the authors suggest 𝑘-
coloring of the interference graph where 𝑘 is the number
of available channels. If the graph is not 𝑘-colorable under
their suggested heuristic, then they will remove certain edges
and nodes from the interference graph. This work aims at
avoiding the reader-tag collisions exclusively. In the recent
EPCGlobal Gen 2 standard [8], a dense reading mode has been
proposed, where the tag responses happen in different channels
than the readers. If the number of channels are sufficient, this
technique eliminates reader-tag collisions. For a given network
of readers and communication pattern, [14] proposes a Q-
learning process that yields an optimized resource (channel
and time slot) allocation scheme after a training period. The
training process determines the channel and time slot to be
allocated to a reader, when a new tag read request comes
in. They assume a fixed number of time slots, and aim at
maximizing the frequency and time utilization ratio. This work
does not provide any performance guarantee. Most recently,
[7] proposes a tag access scheduling protocol (EGA) based on
STDMA. The authors try to schedule all the tag access such
that the total reading time is minimized. In the case where the
tag distribution is known, they attempt to solve the problem of
assigning time slots to readers, such that each location of the
deployment space is well-covered by some reader in one of the
time slots. Then the authors extend and optimize their solution
for the case where the tag distribution is unknown and also
there are multi-channels to be used. Note that in their paper,
they assume that the distribution of the tags are static and no
new tags will appear in the system dynamically.

VIII. CONCLUSION

In this paper, we address the reader activation scheduling
problem under large scale multi-reader RFID systems. For
networks with geometry location, we propose a PTAS scheme.
For networks without geometry location, we present a cen-
tralized algorithm based on the growth bounded property of
interference graph. This algorithm is further extended in a

11541154114111541154115411541154



distributed manner where no central entity is required. Clearly,
all the algorithms proposed in this paper are well suited for
practical implementation by removing a number of strong
assumptions made in previous works.
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