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Abstract. We develop for set cover games several general cost-sharing meth-
ods that are approximately budget-balanced, core, and/or group-strategyproof.
We first study the cost sharing for a single set cover game, which does not have
a budget-balanced core. We show that there is no cost allocation method that can
always recover more tthL of the total cost if we require the cost sharing being

a core. Here: is the number of all players to be served. We give an efficient cost
allocation method that always recovelﬁsm of the total cost, wher€,,,.. IS

the maximum size of all sets. We then study the cost allocation scheme for all
induced subgames. It is known that no cost sharing scheme can always recover
more tharr of the total cost for every subset of players. We give an efficient cost
sharing scheme that always recovers at Ighszbf the total cost for every subset

of players and furthermore, our scheme is cross-monotone. When the elements to
be covered are selfish agents with privately known valuations, we present a strat-
egyproof charging mechanism, under the assumption that all sets are simple sets,
such that each element maximizes its profit when it reports its valuation truth-
fully; further, the total cost of the set cover is no more that,,, . times that of

an optimal solution. When the sets are selfish agents with privately known costs,
we present a strategyproof payment mechanism in which each set maximizes its
profit when it reports its cost truthfully. We also show howféirly share the
payments to all sets among the elements.

1 Introduction

Generalized Set Cover ProblenLetU = {ej, es, - - , e, } be afinite set, and 1§ =
{51,852, ,Sm} be a collection of multisets (@etsfor short) ofU. For eache; € U
and eaclt; € S, we denote the multiplicity o; in S; by k; ;. EachS; is associated
with a coste;. For anyX’ C S, let C(X') denote the total costs of the setsihi.e,
cx) = ZS cx ¢;- For a givenk > 0 and a set oklement coverage requirements
{r1,ra, - rn} a k-partial-cover( is defined to be a subs¢s;,,S;,,---,S;,} of

S such thaty" " min{r;, >\_, k;,.;} > k. Thegeneralized set cover probleis to
compute an optimuri-partial-coverC,,, with the minimum costC'(C,p;).
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This problem becomes the traditional multicover problem [1, 2] when wé set
Zf 1miandk;; = 1 for all S; ande;, as each elemen; should befully covered
and each se$; is a simple set. When we sget = 1, it becomes the traditional partial
cover problem [3]. This problem is therefore a natural extension of the classic set cover
problem by allowing partial cover, multiset, and element coverage requirement greater
than 1. Accordingly, the greedy algorithm for this problem is a combination of the
algorithms designed for partial cover and multicover [1-3].

Set Cover GameConsider the following scenario: a company can choose from a set of
service providers = {51, 52, -, Sp } to provide services to a set of service receivers
U=/{e1,ea, - ,en}
— With a fixed cost;, each service provides; can provide services to a fixed subset
of service receivers.
— There may be a limik; ; on the number of units of service that a service provider
S; can provide to a service receivgr For example, each service provider may be
a cargo company that is transporting goods to various cities (the service receivers),
and the amount of goods that can be transported to a particular city daily is limited
by the number of trains/trucks that are going to that city everyday.
— Each service receiver; may have a limit-; on the number of units of service that
it desires to receive (and is willing to pay for).
— There may be a limit on the total number of units of service that the service
providers shall provide to the service receivers.
The problem can be modeled by the generalized set cover problem defined previ-
ously. There may be different types of games according to various conditions:
1. Each service receiver, has to receive at least units of service, and the costs
incurred by the service providers will be shared by the service receivers.
2. Each service receivey declares a bid; ,. for ther-th unit of service it shall receive,
and is willing to pay for it only if the assigned cost is at mbgst.
3. Each service provide$; declares a cost;, and is willing to provide the service
only if the payment received is at least
There are different algorithmic issues for these games. For example, for Game 1,
we shall define a cost allocation method so that every subset of service receivers feel
that the total cost they need to pay is “fair” according to certain criteria. For Games
1 and 2, the cost allocation method, by charging service receivers, needs to recover
(either entirely or a constant fraction of) the total cost of the chosen service providers.
For Games 2 and 3, we need a mechanism (for determining costs charged to service
receivers and payments paid to service providers) that can guarantee that the players
are truthful with their declaration of bids/costs.

Our Results We first study how we share the cost of the selected service providers
among the service receivers such that some fairness criteria are met. We present a cost
sharing method that i§1— budget-balanced and core, whétg, .. is the maximum
set size. The boung— is tight. We also present a cost sharing method th@us
budget-balanced core and cross-monotone, which is almost the optimum [4].

We then design greedy set cover methods that are cognizant of the fact that the ser-
vice providers or the service receivers are selfish and rational. By “selfish,” we mean
that they only care about their own benefits without consideration for the global perfor-
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mances or fairness issues. By “rational,” we mean that when the methods of computing
the output for the set cover game are instituted, they will always choose their actions
to maximize their benefits. When the elements to be covered are selfish agents with
privately known valuations, we present a strategyproof charging mechanism, under the
assumption that all sets are simple sets, such that each element maximizes its profit
when it reports its valuation truthfully; further, the total cost of the set cover is no
more thann d,, ., times that of an optimal solution for these selected service receivers
and their coverage requirements. When the sets are selfish agents with privately known
costs, we present a strategyproof payment mechanism in which each set maximizes its
profit when it reports its cost truthfully. We also show howfdoly share the payments

to all sets among the elements.

Paper Organization In Section 2, we give the exact definitions of fair cost sharing and
mechanism design. In Section 3, we study how to fairly share the cost of the service
providers among the covered service receivers when the receivers must receive the ser-
vice. We show in Section 4 how to charge the cost of service providers to the selfish
service receivers when each receiver has a valuation onttheover received. We then

show in Section 5 a strategyproof payment scheme to the selfish service providers when
each has a privately known cost. We conclude our paper in Section 6.

2 Preliminaries and Prior Art
2.1 Preliminaries

Algorithm Mechanism Design (AMD) Assume that there ane agents. Each agent
i, for i € {1,---,n}, has someprivate information¢;, called itstype All agents’
types define a type vector= (¢1,t2,--- ,t,). A mechanism defines, for each agent
i, a set of strategied;. For each strategy vectar= (aq,--- ,a,), i.e, agenti plays

a strategya; € A;, the mechanism computes antputo = O(a) and apayment
vector P(a) = (p1,---,pn), Wherep; = P;(a) is the amount of money given to
the participating agent Let v;(¢;,0) denote agent's preferences to an outputand
u;(t;,0(a), p;(a)) denote itautility at the outcoméo, p) of the game. We assume that
agents areational and have quasi-linear utility functions. The utility functiorgisasi-
linear if u;(t;,0) = v;(t;,0) + p;. An agent is calledational if it always adopts its best
strategy (calledlominant strategythat maximizes its utility regardless of what other
agents do. A direct-revelation mechanisnmnisentive compatibl€lC) if reporting val-
uation truthfully is a dominant strategy. Another common requirement in the literature
for mechanism design is the so calliedividual rationality (IR): the agent’s utility of
participating in the output of the mechanism is not less than the utility of the agent if
it did not participate at all. A mechanism is calledthful or strategyproofif it satis-
fies both IC and IR properties. To make the mechanism tractable, both meft{pds
andP() should be computable in polynomial time. A mechanism= (O, P) is 3-
efficientif v, >""" | v;(t;, O(t)) > B-max, Y., v;(t;, 0). Obviously for the set cover
game, we cannot design afin n)-efficient polynomial-time computable strategyproof
mechanism unles¥ P C DTIM E(n'°&1°e") [2].
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Cost SharingConsider a set/ of n players. For a subsét C U of players, letC(.S)
be the cost of providing service % HereC'(.S) could be the minimum cost, denoted
by OPT(S), or the cost computed by some algorittdndenoted byA(S). We always
assume that the cost functiéi(S) is cohesivei.e,, for any two disjoint subsetS; and
Sa, C(S1 U Ss) < C(S7) + C(S2). A cost sharing scheme is simply a functigfi, S)
with (i, S) = 0fori ¢ S, for every setS C U of players. An obvious criterion is that
the sharing method should i&r. While the definition of budget-balance is straight-
forward, defining fairness is more subtle: many fairness concepts were proposed in the
literature, such asiax-min[5], min-max6], coreandbargaining se{7]. Typically, the
following three properties are required by a cost sharing scheme.

1. (a-budget-balance For some given parameter< 1,a-C(U) < 3, £(4,U) <

C(U). If a = 1, we call the cost sharing scherbedget-balanced

2. (fairness under corg For any subse$ C U, >, £(i,U) < OPT(S).
3. (Cross-monotonicity) For any two subsetS C T andi € S, £(7,S) > £(3,T).

When only the first two conditions are satisfied, we call the cost sharing scheme to
be in thea-core When all three conditions are met, we call the cost sharing scheme to
be cross-monotone-core When each playerhas a valuatiom; on getting the service,

a mechanism should first decide the output of the game (who will get the service), and
then decide what is the share of each selected player (what is the payment method). Itis
well-known that a cross-monotone cost sharing scheme impligsup-strategyproof
mechanism [8]. Notice that the cross-monotone property is not the necessary condition
for group-strategyproof. Naturally, several additional properties are required for a cost
sharing scheme when every player has a valuation on getting the service.

1. (Incentive Compatibility) Assume that the valuation by playéion getting the

service isv;. Letb = (by,bs,--- ,b,) be the bidding vector of. players. Let

O(b) = (01,02, - ,0,) denote whether a player is selected to get the service or

not andP(b) be the charge to playéri.e., the mechanism id37 = (O(b), P(b)).

It satisfies IC if every player maximizes its prafit- o; — p; whenb; = v;.

2. (No Positive Transfen For every playet, p; > 0.
(Individual Rationality ) For every playet, v; - o; — p; > 0.
4. (Consumer Sovereignty Fix the bids of all other players, there exists a vaiye
such that player is guaranteed to get the service when its bid is larger than

w

2.2 Prior Arts on Cost Sharing and Algorithm Mechanism Design

Although the traditional set cover problem (without multisets and partial-cover require-
ment) can be viewed as a special case of multicast, several results were proposed specif-
ically for set cover in selfish environment. Devamtral. [9] studied, for the set cover

game and facility location game, how the cost of shared resource is to be distributed
among its users in such a way that revealing the true valuation is a dominant strategy
for each user. Their cost sharing method is not inchie of the game. One of the open
questions left in [9] is to design a strategyproof cost sharing method for multicover
game in which the bidders might want to get covered multiple times. For facility lo-
cation game, Pal and Tardos [10] gave a cost sharing method that can réanf\me

total cost, and recently, Immorlie al.[4] showed that this is the best achievable upper



bound for any cross-monotonic cost sharing method. Sharingasimf the multicast
structure among receivers was studied in [8, 11-16] so some fairness is accomplished.

3 Cost Sharing Among Unselfish Service Receivers

In this section, we study how to share the cost of the service providers among a given
set of service receivers. For this scenario, it is difficult to find realistic examples where
a partial cover is desired. Therefore, in the remainder of this section, we only consider
the multiset multicover probleme., k = >, r;. However, the results presented here
can easily be generalized to the partial cover case, should such a scenario arise.

3.1 «o-Core

Given a subset of element¥, let OPT(X) denote the cost of an optimum cover
Copt(X) of X. This cost function clearly isohesivefor every partitionT’, T, - - -,

T, of U, OPT(U) < 3_'_, OPT(T;). A cost allocatiorfor U is an-dimensional vec-

torx = (z1,x9,- - ,x,) that specifies for each elementc U the share:; > 0 of the

total cost of servind/ thate; shall pay. Ideally, when the set of elements to be covered

is fixed to beUU, we want the cost allocatianto be budget-balanced and fdig., be-

ing in core. However, a simple example in [17] shows that there is no budget-balanced
core for the set-cover game. We then relax the notion of budget-balance to the notion of
a-budget-balance for some< 1. See [17] for the proof of the achievahlecore.

Theorem 1. For the set cover gamep cost allocation method is-core fora > -

Inn*

We then give a cost allocation method that can recqyer— of the total cost
OPT(U) for a multiset multicover game, whetlg, . = Hlaxlgjg;:|5j‘. Without loss
of generality, we assume thdy, ... < Z?:l r;. The basic approach of our cost alloca-
tion method is as follows. We first run the greedy Algorithm 1 to find a set aGygr
with an approximation ratio dfi d,,,,. Starting withC,,q = 0, the greedy algorithm
adds toC,,.q a setS;,, at each round’. After the s-th round, we define theemaining
required coverage’, of an element; to ber; — Y7 _, k;,, ;. For anyS; ¢ Cy4, the
effective coverage’ ; of e; by S; is defined to benin{k;;,7;}, thevaluev; of S; is

defined to b&)~;" , &} ;, and theeffective average cosf S; is defined to be:.

Algorithm 1 Greedy algorithm for multiset multicover problem.
1: Cypra<—0; r}«r; for eache,.
2: while U # ( do
pick the setSy in S\ Cyr-q With the minimum effective average cost.
Cgrd<_cgrd U {St’}-
forall e; € U do
ri—max{0,r; — ky ; }.
if / =0thenU—U \ {e;}.

No gk w




The greedy algorithm will select a s&} with the least effective average cost. For

anye; andr such that; —r, +1 <r <wr;, —r. + k”, we letprice(i, r) = 5—’ Let
J

af =Y price(i,r) andaz; = d;m . We claim the following theorem (see [17]):

Theorem 2. The above-defined cost allocatioris a ——-core.

Recall that the core we defined, given a set of plaggnequired thad -, - (i, U)
is at most theptimumcost of providing service to elementsih For a set cover game,
clearly it is NP-hard to find the optimum cost of coveriigNaturally, one may relax
the a-core as follows: a cost sharing methéd, -) is called arelaxed a-core if (1)
a-Cyrag(U) <3 ey §(i,U) < Cyra(U); and (2) 0, €(5,U) < Cyra(T) for every
subsefl” C U. Even we relax the definition of the core to this, we can still prove in [17]
that with the cost function computed by the greedy algorithm, there is no cost sharing
method that is a relaxeg-core fora = ().

Inn

3.2 Cross-monotonex-Core

Clearly, if a cost sharing scheme is cross-monotereore then every cost allocation
methods(-, S) induced on a subsét of players is always-core, but the reverse is not
true. From Theorem 1, cleart}o cost sharing scheme for the set cover game is cross-
monotonex-core fora = ——. Recently, it was claimed in [4] that for set cover game,
there isno cross- monotona -core cost sharing scheme for= * i

For generalized set cover games, we will present a cross monotone cost sharing
schemeg(i, S) (see Algorithm 2) that can recovg% of the total cost. We show an
example in [17] that the bounglr is tight for Algorithm 2. Further, the bound is tight,
for set cover games without multisets (but still allowing multicover requirements): our
cross-monotone cost sharing scheftie S) can recover}; of the total cost.

Algorithm 2 Cost sharing for multiset multicover game with eleméfits
1: SetCq « 0,Y(4,5) = 0and((i,j) = 0for1 < i < mandl < j < m. Here
Y (i, 7) denotes how many cover requirements of eleragate provided by sef;,
and{(z, j) denotes the fraction cost of s&f shared by the elemea.
for all elemente; € T do
Setr] «— r;;
while r; > 0 do
Find the setS; with the minimum ratianing, es—c 4 W'
Y (i,t) « min(k;;,7}); ) — r; =Y (i,t); andCq < C4 U {S;}.
for all setS; do
if> 1 <ic, Y(4,5) > 0thenp; — m
for all element; € T'do
10: Set((,5) =Y (4,7) - pj-
11: for all element; € T do

. 1< mC(%
120 Seté(i,T) = 3 <<y C(6,7) andé(i, T) = W
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Theorem 3. The cost sharing schengé, -) is a cross-monotong--core and is cross-
monotone};-core for set cover game when every Seis a simple set.

4 Cost Sharing Among Selfish Service Receivers

In Section 3 we assumed that all elements (service receivers) are unselfish and all their
coverage requirements are to be satisfied. In this section, we consider the problem of
selecting service providers under the constraint of a collection of Bids B; U By U
--- U B,,. EachB; contains a series of bidsg 1, b; 2, - - , b; ,, Whereb, , denotes the
declared price that elemestis willing to pay for ther-th coveragei(e., the valuation
of the r-th coverage). In this scenario, we may also consider partial cover, as the total
number of units of service available may be limited by a constant

We assume thdt ; > b; o > --- > b, ,. Thisis often true in realistic situations: the
marginal valuations are usually decreasing. Alhidwill be served (and the subsequent
bid b; 11 will be considered) only ib; . > price(i, r), whereprice(s, r) is the cost to
be paid bye; for its r-th coverage. Further, to guarantee that the mechanism is both
strategyproof and budget-balanced, we assume that each set is a simple set.

We use a greedy algorithm (see Algorithm 3) similar to the one for the traditional
set cover game [9]. Informally speaking, we start wjtk= 0, wherey is the cost to
be shared by each bid served. We rajagntil there exists a sef; whose cost can be
sufficiently covered by the element copiesdp if each element copy needs to pay
To adapt to the multicover scenario, we make the following changes:

= For any setS; ¢ C4-q and anye;, we define thecollection of alive bidngj) of e;
with respect toS; to be{b; ., 1} if &5, > 0 (i.e, &}, = 1 sinceS; is a simple
set) andb; ., 141 > ¥, or () if otherwise. That is, ify is the cost to be paid for each
bid servedB}j ) contains the bid o, covered byS; that can afford the cost (if any).

« Define the valuey; of 5; asy"""_, |BY)|, and its effective average costgs

Algorithm 3 Cost sharing for multicover game with selfish receivers.
1: Cyra(B)—0; A—0; y—0; k' —k; B" = 0;
2: while A # U andk’ > 0 do
Raisey until one of the two events happens:
if BY) = (forall 5, thenU—U \ {e;};
if ¢; < w; -y for some seb; then
Cora(B)—Cgra(B) U{S;}; k' k" — vj;
for all elemente; with Bi(j) #+ () do
price(i,r; —rj + 1)L B'—B" U {b;r, 141}
rhe—r —1; '
10: if r; =0then A—AJ{e;};
1. update allBY" forall S/ & Cyrq ande; € S; (N Sy;




When the algorithm terminateB; contains all bids (of all elements) that are served.
We prove the following theorem about this mechanism (see [17] for proof):

Theorem 4. Algorithm 3 defines a strategyproof mechanism. Further, the total cost of
the sets selected is no more tharnl,,,,. times that of an optimal solution.

In [9] multicover game was also considered. However, the algorithm used is different
from ours and also they did not assume that the bids by the same element are non-
increasing, and their mechanism is not strategyproof.

5 Selfish Service Providers

The underline assumption made so far in previous sections is that the service providers
are truthful in revealing their costs of providing the service. In this section, we will
address the scenario when service providers are selfish in revealing their costs.

5.1 Strategyproof Mechanism

We want to find a subset of agents such thatlJ;., 5; hasr; copies of element
e; for every element; € U. Letc = (1,9, ,cm). The social efficiency of the
output D is — ZjeD ¢;, which is the objective function to be maximized. Clearly a
VCG mechanism [18-20] can be applied if we can find the subsgtloat satisfies the
multicover requirement of elementsihwith the minimum cost. Unfortunately this is
NP-hard. LeC,,4(S, c, U, ) be the sets selected frofh(with cost specified by a cost
vectorc = (c1,- -+, ¢n)) by the greedy algorithm to cover elementslinwith cover
requirement specified by a vectoe= (rq,--- ,r,) (see Algorithm 1). We assume that
the type of an agent isS;, c;), i.e., every service providef could lie not only about its
costc; but also about the elements it could cover. This problem now looks very similar
to the combinatorial auction with single minded bidder studied in [21]. We show in [17]
that the mechanism/ = (Cy.q, PV %) is not truthful,i.e., use Algorithm 1 to find a
set cover, and apply VCG mechanism to compute the payment to the selected agents:
the payment to an agentis 0 if S; & Cy,.q; Otherwise, the payment to a s&t € Cyyq
is PYCC = C(Cyra(S\ {S;}, ¢l o0,U, 7)) = C(Cyra(S, ¢,U,r)) + ¢;. HereC(X) is
the total cost of the sets itf C S.
For the moment, we assume that agemton’t be able to lie about its elemeAf.
We will drop this assumption later. Clearly, the greedy set cover method presented in
Algorithm 1 satisfies a monotone property: if a $étis selected with a cost;, then
it is still selected with a cost less thap. Monotonicity guarantees that there exists a
strategyproof mechanism for generalized set cover games using Algorithm 1 to com-
pute its output. We then show how to compute the payment to each service provider
efficiently. We assume that for any sgt, if we removeS; from S, S still satisfies the
coverage requirements of all elementdinOtherwise, we call the set cover problem
to bemonopoly the setS; can charge an arbitrarily large cost in the monopoly game.
The following presents our payment scheme for multiset multicover set cover problem.
We show in [17] that the mechanisid = (C,..q, P9"?) is strategyproof (when the

agentj does not lie about the sét of elements it can cover) and the paym@j‘f’d



Algorithm 4 Strategyproof paymemj.”d to service provides; € Cyyq.

1: Cyrq—0 ands—1;

2: k'—k,r; = r; for eache;;

3: while ¥’ > 0 do

4:  pick the setS; # S, in S\ C4rq With the minimum effective average cost;
5. Letwv, andv; be the values of the sefs andS; at this moment;

6:  k(J, s)<—5—ict ands«—s + 1; Cgra«Cgra U {Si}; K'—k' — vy;

7. for eache;, ri« max{0,7; — k;;};

8: Pf’rd = max;_| x(j, 1) is the payment to selfish service providge

is the minimum to the selfish service provideamong any strategyproof mechanism
using Algorithm 1 as its output. We now consider the scenario when ggeam also
lie aboutS;. Assume that agentcannot lie upwarg i.e., it can only report aS’ C 8.

We argue that agentwill not lie about its elements;. Notice that the vaIu&(L )

Zl<1<nmm(’r J’L)

computed for thes-th round isx(j, s) = e, = S o () Ot Obviouslyv;
1<i<n t,

cannot increase when ageieports any se$’; C S;. Thus, falsely reportlng a smaller
setSé will not improve the payment of agem’t

Theorem 5. Algorithm 1 and 4 together definelad,, . -efficient strategyproof mech-
anismM = (Cyrq, P9"?) for multiset multicover set cover game.

5.2 Sharing the Payment Fairly

In the previous subsection, we only define what is the payment to a selfish service
providerS;. A remaining question is how the payment should be charged fairly (under
some subtle definitions) to encourage cooperation among service receivers. One natural
way of defining fair payment sharing is to extend the fair cost sharing method. Consider
a strategyproof mechanis = (O, P). Let P(T) be the total payment to the selfish
service providers whef ' is the set of service receivers to be covered. A payment shar-
ing scheme is simply a functian(i, T') such thatr (i, ') = 0 for any element; ¢ T'. A
payment sharing scheme is calleebudget-balanced o - P(T) < >, o, 7(i,T) <

P(T). A payment sharing scheme is said to beogeif > o7 (i,T) < P(S) for

any subsef' C T'. A payment sharing scheme is said to benacoreif it is «-budget-
balanced and it is a core. For payment meti®géi?, we prove in [17] that

Theorem 6. There is nax-core payment sharing scheme ¢ if o > 1

It is easy to show that if we share the payment to a service provider equally among
all service receivers covered by this set, the scheme is not in the core of the game. We
leave it as an open problem whether we can design-aare payment sharing scheme
for the paymenP9 with a = O(:1-).

Inn

8 This can be achieved by imposing a large enough penalty if an agent could not provide the
claimed service when it is selected.
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In the next, we study the cross-monotone payment sharing scheme. A payment shar-
ing scheme is said to l@oss-monoton (i, T') < m (i, S) for any two subset§ C T’
andi € S. A payment sharing scheme is said to berass-monotone-core if it is
a-budget-balanced and cross-monotone, and it is a core. We propose the following con-
jecture.

Conjecture 1 For the strategyproof mechanishd = (C,,.4, P9"¢) of a set cover game,
there is no payment sharing scheng, -) that is cross-monotone-core fora = %Jre.

In the remaining of this section we will present a cross-monotone budget-balanced
payment sharing scheme for a strategyproof payment scheme of the set cover game.
Our payment sharing scheme is coupled with the followesst cost semechanism
M = (Cjes, Pe%). It uses the output calleléast cost sef;.., (described in Algorithm
5): for each service receives;, we find the service provide$; with the least cost
eﬁiciencym to cover the elemend;. New cost efficient sets are found till the
cover requirement of; is satisfied. The payment (described in Algorithm 6) to a%et
is defined a§>jl-cs = MaXe,cU p§, wherep;i is the largest cost thaft; can declare while

S; is still selected to coves;. If the setS; is not selected to cove, thenp§ =0.

Algorithm 5 Least cost set greedy for multiset multicover game.
1: LetCies — 0.
2: for all element; € T' do
30 Letr] —ry;
4:  whiler] > 0do
5: Find the setS; with the minimum ratianing, es—c,.. min(cf
6

kj,iﬂ“ﬁ);
A / : IAY
i« ri —min(k;;,7}); Cres < Cies U {St}.

Algorithm 6 Compute the paymerR.“* to a setS; in Cics.

1 LetCpes — 0,p} = 0for1 <i<nands=1;
2: for all element; € T do
3 Letr] —ry;

4:  whiler, > 0do
5: Find the sef; # S; with the minimum ratianing, es—c,..—{s,} mmge 77
6 k(j,1,8) = %ct, ri «— 1) —min(k;j;,7%); Cies < Cies U {S¢} and

s—s+1;
70 piemaxi<ec<s (4,4, 8);
8: PJI»CS<— maxi<i<n Pj;

Theorem 7. The mechanism = (C;.s, P'°*) is ﬁ-efﬁcient and strategyproof.
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We then study how we charge the service receivers so that a budget-balance is
achieved and the charging scheme also is fair under some concepts. Notice that, given
a subset of elemenfB, we can view the total paymenf(T’) to all service providers
coveringT as a “cost” tol'. The payment computed by mechanidim= (C;.,, P'**)
clearly is cohesive. Then naturally, we could use the cost-sharing schemes studied be-
fore to share this special cost among elements. However, it is easy to show by example
that the previous cost-sharing schemes (studied in Section 3) are not in the core and
also not cross-monotone.

Roughly speaking, our payment sharing scheme works as follows. Notice that a final
payment to a sef; is the maximum of paymen;zsj- by all elements. Since different
elements may have different value of payment ta%ethe final paymerfP}CS should
be sharegbroportionallyto their values, nogéquallyamong them as cost-sharing.

Algorithm 7 Sharing MV costP among receivers.
1: Initialize £(i,U) = 0 and(;(z,U) = 0. Here(;(¢,U) denotes the payment to set
S; shared by the elemenf when the set of elementsis.
2: forall S; € Sdo

3:  For all elementg;, we compute the paymep}. Sort the payments, 1 < i <

n, in an increasing order. Assume thgt"), p7®, ..., p7""Y, p7 are the

sorted list of payments in an incremental order.

) o(t)_ o(t—1)

4:  For elements:, (1), =+, €q(n), It G(0(i), U)— Yy “mpir—

assume thap‘j’(o) = 0. Update the payment sharing as followigi, U) =
£(4,U) + ¢;(4,U) for eache; € U.

5: £(i, U) is the final payment sharing of service receiver

. Here we

Our payment sharing method described in Algorithm 7 applies to a more general
cost function. A cost functiorP is said to bemaximum-view cogtMV cost) if it is
defined asP; = max,,cy p; Wherep), is theview of the cost of setS; by element
e;. Obviously, the traditional costis a MV cost function by setting;ﬂ = ¢; for each
elemente;. The payment functio®'* is also a MV cost function.

A service receiver is calleftee-rider in a payment sharing scheme if its shared
total payment is no more thariﬁg of its total payment it has to pay if it acts alone. Notice
that, when a service receiver acts alone, the same mechanism is applied to compute the
payment to the service providers.

Theorem 8. The payment sharing scheme described in Algorithm 7 is budget-balanced,
cross-monotone, in the core and does not permit free-rider.

6 Conclusion

We studied cost sharing and strategyproof mechanisms for various set cover games. We
gave an efficient cost allocation method that always recovvej—s; of the total cost,

Iy,
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whered, ... is the maximum size of all sets. We further gave an efficient cost sharing
scheme that i%-budget-balanced, core and cross-monotone. When the elements to
be covered are selfish agents with privately known valuations, we presented a strate-
gyproof charging mechanism. When the sets are selfish agents with privately known
costs, we presented two strategyproof payment mechanisms in which each set maxi-
mizes its profit when it reports its cost truthfully. We also showed hofaitty share

the payments to all sets among the elements.

There are a number of open questions left for future research. Are the bounds on the
a-budget-balanced cost sharing schemes tight, although we proved that they are asymp-
totically tight? Consider the strategyproof mechanism= (Cy.q, P9"¢). Is there a
payment sharing method thatf'r%-core? Is there a payment sharing method that is
cross-monotoné -core? Is this! a tight lower bound?
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