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Abstract—In this paper we study the spanning ratio of the 3-skeleton
for 8 € [0,2]. Both our upper-bounds and lower-bounds improve the
previously best known results[10], [12].

I. INTRODUCTION

Proximity graphs [1], [2], [3], [4] have been used extensively in
various fields including pattern recognition, GIS (Geographic Infor-
mation System), computer vision, and neural network [5], [3]. The
spanning ratios of the proximity graphs are of great interest to many
applications. For example, severa results showed that Delaunay Tri-
angulation has a constant bounded spanning ratio, which is at least 5
[6] and at most 27/(3 cos(m/6)) ~ 2.42 [2].

As one of the proximity graphs, 5-skeletons have been studied ex-
tensively in [8], [9], [10], [11]. Our main concern in this paper is
about the spanning ratio (or dilation) of the 3-skeleton. Given a set
S of n pointsin atwo dimensional plane, two points » and v are 8-
neighborsin S if N(u, v, ) contains no point of S, other than  or v,
initsinterior *. The most common definition of N (u, v, 3) isso-called
Lune-Based Neighborhood, which is defined as follows.

Case l: 8 > 1. N(u,v,p) istheintersection of the two circles
of radius 2122l centered at the points p» = (1 — 2)u + Zv and
p1 = Zu+ (1 - £)v, respectively.

Case2: 0 < 8 < 1. N(u,v,p) istheintersection of thetwo circles
of radius 28-2) passing through both u and v.

Here ||uv|| is the Euclidian distance between v and v. The -
skeleton of apoint set S, denoted by Gz (.S), isthe set of edgesjoining
B-neighborsin S. When 3 = 1, the closed N (u, v, 3) corresponds ex-
actly to the Gabriel neighborhood of » and v. When 8 = 2, the open
N (u,v, ) isthe relative neighborhood of » and v. As 3 approaches
00, the neighborhood of « and v approximates the infinite strip formed
by translating the line segment (u,v) norma to itself. Notice when
B > 2 the B-skeleton graph can be disconnected, so we restrict our
attention to the case that 0 < 3 < 2. As 3 approaches 0, N (u, v, 3)
approximates the line segment connecting « and v. Thus, except in de-
generate situations (three or more points co-linear), al point pairs are
B-neighbors under this scheme for 3 sufficiently small, which means
that we can find a 8 to make the 3-skeleton of .S a complete graph.

For 8 € [0, 1], the spanning ratio of 3-skeleton is at most O(n°?)
[10], where ca = (1 — log,(1 + /1 — 3?)) /2 and at least Q(n°t)
[12], whereec; = 1 —log;(3 + /2 +24/1 — . For the specid
[3-skeleton such as Gabriel graph (GG) [1], [13], [10] (8 =1)andthe
relative neighborhood graph (RNG) [4], [14], [3], [15] (8 = 2), Bose
et al. [10] gave abound whichis©(y/n) and ©(n) respectively. Since
the spanning ratio increases over 3 for 5 € [1, 2], the spanning ratio
of the B-skeleton for 8 € [1,2] isat least (n?) and at most O(n),
which is also the best known result till now.

The contribution of this paper is follows. We first prove that, for
B € [1, 2], the 3-skeleton has spanning ratio at most (n — 1)7, where
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v =1—3log,(u2 + 1), u» = 252, Wethen show that the Gabriel
graph has exact spanning ratio v/n — 1 and the relative neighborhood
graph has exact spanning ratio n — 1. The spanning ratio of 3-skeleton
for 8 € [0, 1] isat most (n—1)”, wherey = 1 —Llog, (u1+1), 1 =
/1 — j32. Finally, we construct a point set whose 3-skeleton, for 3 €
[0, 1], has spanning ratio n°s, where cs = & — Llog, (1 + /4L
which improves the previously best known lower bound [12].
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I1. UPPER BOUND OF SPANNING RATIOS

Consider a geometry graph G = (V, E) over aset V of n points.
For each pair of points (u, v), the length of the shortest path connect-
ing u and v measured by Euclidean distance is denoted by D¢ (u, v),
while the direct Euclidean distance is ||uwv||. The spanning ratio (also
dilation ratio or length stretch factor) of the graph G is defined by
Y(G) = maxyvea Dﬁ"ﬁl’l”). If the graph G is not connected, then

¥(@Q) isinfinity, so it is reasonable to focus on connected graphs only.

A. Fade Factor of 3-skeleton

Our analysis of the upper bound of the spanning ratio of a 3-skeleton
relies on our definition of fade factor of a 3-skeleton, which is de-
fined as follows. Given a 2-dimensional point set S and its 3-skeleton
Gp(S), choose any pair of pointsu,v € S. If uv ¢ Gg(S), there
must exist some point w other than w, v in N(u, v, 3). We say that
the point w breaks edge (u, v) and define z; = ”“i‘jl'l' vy = Ieul
the two fade factors of uv by w. We then study the property of }ade
factors of an edge uv not in the 3-skeleton, illustrated by Figure 1.

Case 1: 8 € [1,2]. In this case, w must lie in the shaded
area N(u,v,3). For symmetry, we assume that ||wu| > ||wv||,
2 |n triangles Awup: and Awwp:, we have |juw|* = |lupi|®> +
[wp1l|> = 2ljups||[lwp || cos o and [[vw]|* = [lopa]|* + wpr])® —
2||vp1||||wp1 ]| cos(m — a). Consequently,

lluwl|” = llup1 |I” — [lwp1 [I” [Juwl]]* — [[opa]|* — |lwpa|[*

+ =0
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Suppose that 0 < pu» = 222 < 1. The fade factors, when 8 € [1, 2]

and z; > xa, Satley

x] 4 poxs <1 1)

Case2. § € [0,1]. Inthiscase, wehave 1 = 7 +x3
Letcosa = /1 — 32. From 8 + a > «, we have

—2x1x2 cosb.

1>z} 4+ 25 — 21z cos(m — @) = z7 + x5 +2z1x2cos . (2)

B. Construction of the fade factor tree

Our analysis of the spanning ratio is based on a concept called fade
factor tree, which intuitively records the edge-breaking sequence for
an edge uv not in 3-skeleton. The exact definition is given along the
following construction algorithm.

Algorithm 1: Constructing the Fade Factor Tree

1) Construct the root node corresponding to uv.

2This assumption implies that ||wps|| < ||wp1|| < ||uv|| and 21 > 2.
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Fig. 1. The relations between fade factorgle$keleton.

2) If there is no point insideéV (u, v, 3) then stop. Otherwise, as-
sume a pointv € N(u, v, 3). We put edgeiw asuv’s left child
and edgewwv aswuw's right child and label these two branche
with their fade factor: = ||uw||/||uv|| andzz = [|Jwv||/||uv||
respectively. The leaf nodesw, wv form pathuwwv.
If we already have a binary tree with leaf nodespopi,
pip2, * -, Pk—1Pk, Wherepo u, v = pg. LetS:
{po,p1, -+ ,pr}. FOrevery poinpp € S, we test ifp breaks
some edge;pi+1. We considefive cases here.

a) If p doesnt break anyp;p;+1 then continue to try another
point from.S.
If p € S — S; andp breaks a single edgepi+1 then
similar to step(2), attachp;p as the left child anghp; +1 as
the right child of edge;pi1.

3)

b)

c)
such broken edgg,p,+1 with the minimum index- and
Dsps+1 With the maximum index. Attach nodep,p to
nodep,p,+1 and nodepps+1 to nodepsps+1 in the tree.
Mark all leaf nodes between.p andpp;+:. If all descen-

We can show that the above algorithm terminates. For detail of the
proof, see the full version of the paper.

C. Upper bound when 3 € [1,2]

Previously, Boseet al. [10] gave an upper boun@(n) for 3-
skeleton when3 € [1,2] from the fact that, for a point sef, the
[31-skeleton belongs to thé,-skeleton wherB; > 3». They use the
upper bound of the RNG3(= 2) as upper bound faf € [1,2]. We
improve it to

U(B7n) = (n - 1)77
wherey = max{l — jlog,(u2 + 1),9(u2)} = 1 — 5 log,(u2 +

1

1), p2 = 352, andg(u») is the solution to the equatiofu; 2’ +

1)29(2) = 1 4 u, (See appendix about the detailsgtfiz) and-).
Before presenting our proof, we list some simple results; I x»

%nd subject to the constraint @f), then fora, b > 0,

max{azri + br2} = /a2 +b>/us; ifb< psa ?3)
z1,22
max{azri +bx2} = (b+a)/\/pu2+1; ifb>pa (4)

r1,r2
Now we prove our upper bound by induction an Whenn = 3,
there are only three points, v and w, and suppose thatv is the
longest edge. Ifv doesrit breakuv, theny(G) =1 < U(B). Other-
wise, the relation of the fade factors frarh) implies

W(G) =31 +@p < 217310820002 — (8 3),

If p € S — S; and it breaks multiple edges, choose

Suppose for alk < n we havey(G) < U(B,k). Then fork = n
and any pair of points andwv, we construct their fade factor trgg
and suppose the fade factors of the rootarandz». Suppose there
aren; leaf nodes in roos left subtree and, leaf nodes in roos right

dant leaf nodes of an internal node have marks, then adbtree. Clearlyp; +n, < n —1and we have)(G) < U(8,m +

mark it. Delete all nodes with marks.

If p € S1, sayp = p;, and it breaks single edggp;+1.

If 7 > i+ 1 then attachp;p; to nodep;p;+1, and mark
all leaf nodepppmii1fori+1 <m<j—-1.I1fj <4
then attaclp;p;+1 to nodep;p;+1 and mark all leaf nodes
PmPpm+1 fOr j +1 < m < 4. If all descendant leaf nodes

d)

of an internal node have marks, then also mark it. Delete

all nodes with mark.

e) Ifp € S1,sayp = p;, and it breaks multiple edges, choose 2) If U(8,n, + 1

the edge with the minimum index.p,+: and the maxi-
mum indexpsps+1. If j < rthen attacty;jps41 top;pj+1

and mark all leaf nodes betweenp,+1 andpsps41. If

j > s+ 1 then attactpsp; to psps+1 and mark all leaf
nodes betweepsps+1 andp;_1p;. If r+1 < j < sthen
attaChprpj t0 prpr41 and attacrpjps+l t0 psps+1, then
mark all nodes betweep,.p-+1 andpsps+1. If an inter-

nal nodés all descendant leaf nodes have marks, then also

mark it. Delete all nodes with mark.

4) When there is no updating to the tree, conduct the follow-
for every internal node, if it has

ing reduction process:

only one child then remove its only child. Visiting all

leaf nodes from left to right, we get a sequence of edges

qu,BlEl, e ,BlflElfl,BlU.

Observations of fade factor tree:

1) Foreverny) < <[ —1,we haveE; = B;41, S0 the sequence
can be written asou1, wiuz, - - -, ui—1u;. (wo = u, u; = v).

2) 1 < n—1,wheren is the number of total points ifi.

3) woui,uius,--- ,u—1u; corresponds to ample path connect-
ing w andv in 3-skeleton.

1)z1 + U(B, nr + 1)z2. By induction, we havé/ (8, + 1) < n/
andU(B,n, + 1) < n]. We consider two different cases here.
1) fUB,n, +1) > p2U(B, ny + 1), we have

P(@) < UBu+1)+URBn +1)/v/1+p
< (4 mp)? 2T les ) AT
<

(
(n—1)" =U(B,n)
)

< wU(B,m + 1), we havey(G)
\/U(ﬁ,m +1)2 4+ LU(B,n, +1)2 Let f(z) = 2>
-z — 1)>. Differentiating f(z), we get f'(z)
29[z — L(n —x —1)>"7']. Sincel/2 < v < 1, f(x)

2
1
reaches its minimum at a poinp = (n —1)/(1 4+ p57 "), in-
creases whem > xo, and decreases whén< z < xo. Notice
thatU (3, n. +1) < p2U(B, ni+1), which implies that the fea-

sible region forr isx; = 1”/;11 <z <n-2=gzx,.ltiseasy
Ha

to show thatr; < zo wheny < 1 andu» < 1. Consequently,
U(B,mi+1)z1+U(B,n, +1)x> reaches its maximum at point
x; or x, = n — 2. We can show that it reaches the maximum at
pointx;. Thus,

<
+

1
Y(G) < V1+pz-(n—1)"/(u +1)".
1

Notice (ug + 1)7 strictly increases ovdf, 1] for . Thus

1
Vidpe (n=1)"/(u3 +1)7
1
VItpz-(n—1)"/(u™ +1)02) =n?

P(@)
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The upper bound we proved so far could be a loose bound, and usu- ,A,”‘}\ Ar A
ally the 3-skeleton cannot reach this upper bound. At some extreme An—Z,v:\ An-a ‘“
cases, we can show that the upper bounds are indeed tight. VA A
When 3 = 1, the B-skeleton is the Gabriel Graph. Then = / \ s ‘
22 = 1. ltis easy to verifyg(1) = 3. Thus,y = max{l —
11og,(2), 5} = 1. In the following section, we construct an example
such that GG has spanning rafio — 1)l Consequently, we have ;
Theorem 1: The spanning ratio of Gabriel Graph is exactly A3 ‘
U(l,n)=(n— 1) A | -
Wheng = 2, theS-skeleton becomes the RNG. Notjee = 0, and
it is impossible thal/ (3, n,) < p2U(B,n:). Then we havey = 1.
In the following section we review an example in [10] such that RNG
has spanning ratia — 1. Consequently, we have . . .
Theorem 2: The spanning ratio of Relative Neighborhood Graph is (a) Gabriel Graph (b) Relative Neighborhood Graph
exactlyU(2,n) =n — 1. Fig. 2. Point sets that achieve the upper bounds of the spanning ratios.

D. Upper bound when 3 € [0, 1]

. ; 2) Letay = ZAk 1AkAk+1 Thensin ap = T andéak <
The fade factors satisty; +x3 4221 221/1 — 32 < 1wheng < 1. Lags. Foreveryl < k < n— 2, ZA,_ 2AkAk+2 =4
Letu1 = /1 — 32 here. For symmetry, assume that> x». Thus, Log + % — ZLaggr. Thus,ZAp_ 1 ApApy1 < 5
0<zy <,/—2—.If ; > z» and subject to the constraint (2), 3) For everyAiAj, if |i — j| # 2thenA;A; is not in the Gabriel
242125 Graph. Thus, the Gabriel graph are formed by these edges

then fora > 0,b > 0
@ AiAiJrz, 0 S 1 S n—3, andAn,2An,1.

Va? + % — 2abpn Obviously, the spanning ratio of this graph %‘S—(A()Al)
a’+b 2abpy it b > ap ) - Y p 9 grap Ao ALl
c =vn-—1.

max{azr; + bra} =
901,90}2{ ! 2} 11— p?
max{az: +br2} = ap  ifb<am (6) B. Reative Neighborhood Graph (3 = 2)

xr1,r9
For Relative Neighborhood Graph, the lower bound of the spanning
ratio isn—e. We review the example used in [10], illustrated by Figure

Wheng € [0, 1], we prove that the spanning ratio is at most

- _ ) 1—10522(1+u1) 2 (b)
(B,n) = (n—1) J Here,ar = 60° — § and = 60° + 24. Notice that all triangles are
We prove this bound similar to the cagec [1,2]. Whenk = 3, it similar. Assume that = Z3. Then in triangledy, —1 A A1, 1 <

is easy to verify the correctness of the bound. Suppose whenn k¥ < n—1,wehavedi_1Ap = v Apo1Aer = ApApsr = *

this bound holds. Fok = n we also construct the fade factor trBe  Thus,Da(AoAr) = "' + 327" v*. Wheny is sufficiently close
and assume the fade factors of the rootara@ndz,. Assume there t0 1, we haveDq(AoA,) is sufficiently close ton — 1. Thus, the
aren, leaf nodes in roos left subtree and, leaf nodes in its right SPanning ratio of the relative neighborhood graph is sufficiently close
subtree, where; +n, < n—1. We havey(G) < U(B, m + 1)z + ©On— 1L

U(B,n, + 1)xz. Leta = U(B,n; + 1) andb = U(B,n, + 1). We

also prove it by cases: C.1>p>0case
Casel: b < ap. Inthis casewe havg(G) < mU(B,m +1) < Wheng € [0, 1], Eppstein [12] presents a fractal construction that
U(B,n). provides a non-constant lower bound on the spanning ratio, and his

) < VeR+ti_2abu - resultis summarized below:
. ) N Theorem 3: For anyn = 5* + 1, there exists a set ef points in the

and it reaches the maximum when = b. Thus ¢(G) < ane whoses- skeleton with3 € (0, 1] has the spanning rati(n°),

UB, )/ 2z = U(B,n). wherec = log; 52— andu = /1 — 3.
In this paper, we give a different construction that achieves a better

lower bound. Suppose that= arccos(y/1 — 82), andf = 7 — «.

. Then for anyn = 2* + 1, let P(8, k) be a path o2* segment (defined

A. Gabriel Graph (5 = 1) along our construction). Figure 3 illustrates our constructiors-of
Gabriel Graph is a special case @fskeleton with = 1. We skeleton fom points, which is described as follows.

construct a set ofv points whose Gabriel graph has spanning ratio 1) If ¥ = 1, construct a triangleA ABC such thatZABC =

Case 2. b > api. In this case we have(G

[1l. L OWER BOUND OF/3-SKELETON

exactly\/n — 1 as follows. ZACB = %%, s0/BAC = =, ThenP(B,1) is segments
1) LetA; Ao be the diameter of a unit circlé;. BAC. Call segmenBC the supporting segment of P(3,1).
2) We then generate a poidt, from A;_; and A, for k > 2. 2) If k > 1, first constructP(83,1) = BAC. Then construct two
Draw a circleCy—1 usingA,_1 and Ax_» as diameter, and let P(B,k—1), scale the supporting segments to lengtB||, and
sin LA Ap—1Ak—2 =sin Lay_1 = ﬁ align their supporting segments #B and BC' respectively.

Figure 2 (a) illustrates such construction. We notice that the graph  Notice there are two possible ways to pla€és, k — 1), we
is divided into two parts, all points with the odd index and all points should choose the way such thfa¢3, k — 1) lies inside the tri-
with the even index. Itis not diftcult to prove the following properties angleAABC.
of the constructed point set. Lemmal: If ZBAC > ”T“’ then P(83, k) is a 3-skeleton of its

1) ArAgt2 = \/% for0 <k<n-—2. points, wheré = 7 — arccos(y/1 — 52).



Fig. 3. Constructings-skeleton with large spanning ratio fére [0, 1].

TABLE |
LOWER AND UPPER BOUNDS FOR SPANNING RATIONS Of-SKELETONS
HERE THE CONSTANTS USED ARE; = 1 — logs(3 + v/2 + 2u1),

02:%—%10g2(1+u1),03:%—%logQ(l-i- ‘”T“),AND

ca=1-— %logg(,ug +1). AND 1 = /1 — B2 AND p2 = (2 — 3)/8.
el | B=1 | Be(L,2) | B=2

OldLower | Q(n°") Q(v/n) Q(y/n) Q(n)

OldUpper |  O(n°?) O(y/n) O(n) O(n)

OurLower | Q(n°?) vVn—1 Q(y/n) n—1

OurUpper |  O(n°?) vn—1 O(n®*) n—1

PROOF In order to show thaf(3, k) is the 3-skeleton, we prove

that for any pair of no-adjacent poinisandv, they do not belong to
the B-skeleton. Obviously there must exist soine k such thatu
andv belong to the different copy of adjaceR{3, i), assume that
is the common point of these two copies, théndv > ZDAE =
=6 _ 9. m=6 — g which finishes our proof. Notice that th@

skeleton is still a connected graph. Thus, all line segments construcgs

belong tos-skeleton.

Obviously, if the length of the supporting segment is normalized
1, the spanning ratio is the total length of segment®{#, k).

Theorem4: For any 8 € [0,1], there exists a3-skeleton of
n = 2¥ 4+ 1 points such that its spanning ratio B((n —

Bt Vi-7.

1)%_% logs (1+ )), wherey

This theorem can be enhanced such that we can construct exam
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V. APPENDIX

In subsection II-C, we show that th&skeleton,3 € [1,2], has
gnning ration at mogtr — 1), wherey = max{1 — 1 log, (u2 +
1),9

(12)}, po (2 -p8)/B € (0,1]. We then show thal —

1 log, (p2 + 1) > g(pa).

to

that bothy,

Let f(z) = (15"

+ 1), For anyus € [0, 1], it is easy to verify

/¥ 4 1 anda®* (a > 1) are increasing of0, 1], wherea is

a fixed constant. Thug(z) increases ovel0, 1]. With f(0) =1 <
1

1+ ppand f(1) = (14 p2)® > 1+ po, the equatior(y > +

2g(n2) —
es

1 + p2 has exactly one solutiog(u2) over[0, 1]. In fact,
1

for any integerm, but with a small constant degradation of the spanningny solution to the inequalitf.y “2’ +1)29%2) > 14y, is an upper
ratio. For Gabriel Graph, from previous result by Eppstein [12], wisound.
Now we compare the the value df — %log,(u> + 1) and

get a spanning ratio dR(n°) for 0.077 < ¢ < 0.078, and applying
Theorem 4, we get a spanning ratio @{n°?) for 0.114 < c» <

smaller than the tight boun@(n%). In general, forg € [0, 1], our
lower bound is always better than the previous one, which is discus
in the full version of the paper.

IV. CONCLUSION

We studied the spanning ratio gfskeletons withs ranging from0
to 2. This class of proximity graphs includes the Gabriel graph and t

relative neighborhood graph. Table | summarizes our results compar *

with the previously best known results. F&r> 2, 3-skeletons are not

guaranteed to be connected. Thus, the spanning ratios leap to infinir.
Several open problems remain for investigation. It would be inter

esting to close the gap between our lower bound and the upper bo
for 8 € (0,1) and3 € (1,2). We conjecture that our lower bound for
B € (0,1) is already tight.
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