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Abstract

A triangular mesh in 3D is a decomposition of a given
geometric domain into tetrahedra. The mesh is well-
shaped if the aspect ratio of every of its tetrahedra is
bounded from above by a constant. It is Delaunay if the
interior of the circum-sphere of each of its tetrahedra
does not contain any other mesh vertices. Generating
a well-shaped Delaunay mesh for any 3D domain has
been a long term outstanding problem. In this paper,
we present an e�cient 3D Delaunay meshing algorithm
that mathematically guarantees the well-shape quality
of the mesh, if the domain does not have acute angles.
The main ingredient of our algorithm is a novel re�ne-
ment technique which systematically forbids the forma-
tion of slivers, a family of bad elements that none of
the previous known algorithms can cleanly remove, es-
pecially near the domain boundary | needless to say,
that our algorithm ensure that there is no sliver near
the boundary of the domain.
Keywords: Mesh generation, Delaunay triangula-
tions, slivers, computational geometry, algorithms.

1 Introduction

Mesh generation is the process of breaking a domain
into a collection of primitive elements. In this paper we
exclusively consider three-dimensional Delaunay meshes
whose elements are tetrahedra. A mesh is Delaunay if
the circumsphere of any tetrahedron element does not
contain any mesh vertices inside. We assume that the
spatial domain is given in terms of its piecewise linear
complex boundary (PLC) [16].

The size and shape of the tetrahedra is important
because it in
uences the convergence and stability of
numerical algorithms such as the �nite element method;
see Strang and Fix [15]. Generating meshes with small
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aspect ratio is one of the most important steps in
numerical simulations. The aspect ratio of a tetrahedron
is usually de�ned as its circumradius divided by its
inradius. The aspect ratio of a mesh is the largest
aspect ratio of all of its tetrahedral elements. A mesh is
well-shaped if it has small aspect ratio. Unfortunately,
currently there is no method that guarantees to generate
well-shaped 3D Delaunay meshes. An alternative but
weaker quality measurement is to use the radius-edge

ratio [10]. It is the circumradius divided by the shortest
edge length of the tetrahedron. The radius-edge ratio
of a mesh is the maximum radius-edge ratio among
all of its elements. A mesh is almost good if it has
small radius-edge ratio. Numerous methods [3, 7, 9, 11,
13, 14] guarantee to generate 3D almost-good Delaunay
meshes.

Slivers are the only elements that have small radius-
edge ratio but have large aspect ratio. Talmor [16]
notes that even well-spaced vertex set does not prevent
slivers from its Delaunay triangulation. Thus the main
di�culty of three-dimensional mesh generation comes
from the existence of slivers. Mitchell and Vavasis
[12] use oct-trees to generate a well-shaped tetrahedral
mesh for a domain bounded by a speci�ed polyhedral
boundary. But the �nal mesh is not Delaunay. The
Delaunay re�nement or sphere packing based method
fail to address the problem of slivers.

Chew [4] sketched an algorithm that eliminates
slivers by adding points in a randomized manner. For
each tetrahedron with circumradius larger than the
unit length, it adds a random point within a half unit
of the circumcenter to the point set. Chew showed
that there exists a point that will not introduce new
slivers with circumradius less than one unit. The
Delaunay triangulation is then updated if no new sliver
is introduced by the new point. However, his algorithm
generates constant density meshes. In addition, his
algorithm does not address the slivers completely.

Recently, Cheng et al. [2] developed an algorithm
that, given an almost good Delaunay triangulation,
constructs an assignment of weights so the weighted
Delaunay triangulation is free of slivers inside. We refer
the reader to [2] for a description of weighted Delaunay



triangulations. Then Edelsbrunner et al. [5] developed
a new algorithm that perturbs the vertices of an almost-
good mesh such that the Delaunay triangulation of
perturbed vertices is free of slivers inside. Notice that
there are no any boundary treatments by these two
algorithms presented in [2] and [5].

The main result of this paper is a re�nement-based
technique that generates meshes with small aspect ratio.
It �rst eliminates all tetrahedra with large radius-edge
ratio. It then adds points around the circumcenter of
any sliver � so that it avoids creating new small slivers
at the same time. Here a created sliver is small if
its circumradius is less than a constant b factor of the
circumradius of this sliver � . It keeps adding points
until the mesh has small radius-edge ratio and does
not have slivers. The tetrahedra with large radius-
edge ratio have priority over slivers to be re�ned. We
prove that for any element � of an almost-good mesh,
there is a point p around its circumcenter such that the
insertion of p will not introduce new small slivers. When
circumcenter of bad tetrahedron encroaches boundary
triangles or segments, we split these boundary triangles
or segments instead of re�ning that bad tetrahedron.
We prove the termination guarantee of our algorithm
by showing that the distance between the closest mesh
vertices is just decreased by a constant factor compared
with that of the input mesh. Our algorithm di�ers from
Chew's algorithm in that we generate a non-uniform
mesh and our algorithm eliminates all original slivers
without introducing any slivers in �nal mesh.

The remainder of the paper is structured as follows.
Section 2 introduces the basic concept such as Delaunay
triangulation, sliver, picking regions. Our re�nement-
based algorithm is presented in Section 3. It speci�es
how to avoid creating new small slivers, how to eliminate
existed slivers, and how to remove elements with large
radius-edge ratio. The termination guarantee of the
algorithm is presented in Section 4. In Section 5,
we show that the generated well-shaped mesh has size
within a constant factor of the size of any almost-good
meshes for the same domain. Section 6 concludes the
paper with discussions.

2 Preliminaries

2.1 Delaunay Triangulation Due to their nu-
merous desirable properties, and the abundance of the
well studied algorithms to construct them [1, 6], Delau-
nay triangulations are widely used in generating tetra-
hedral meshes. The following properties about Delau-
nay triangulations are extensively used in this paper.
After inserting a new vertex p, all new tetrahedra cre-
ated in the Delaunay triangulation of the new vertex set
are incident on p. And the new Delaunay triangulation

can be obtained by e�cient operations local the new ver-
tex. The nearest neighbor graph de�ned by a vertex set
is contained in the Delaunay triangulation of the vertex
set. In other words, the shortest edge length of the De-
launay triangulation is the closest distance among mesh
vertices. This fact is used in proving the termination
guarantee of our algorithm.

2.2 Parameterizing Slivers For later conve-
nience, we use R� , L� and �(�) to denote the circumra-
dius, the shortest edge length and the radius-edge ratio
of an element � . Let pqrs be a tetrahedron with volume
V and the shortest edge length L. As [2, 5], we de�ne
� = �(pqrs) = V=L

3 as a measure of its quality. Call
pqrs a sliver if �(pqrs) � %0 and �(pqrs) < �0, where
%0, �0 are constants that we specify later.
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Figure 1: A sliver example.

The following lemma veri�es our de�nition of �(�)
for tetrahedron � .

Lemma 2.1. The aspect ratio of � is at most
p
3�(�)3

�(�)
.

The proof is omitted here. Hereafter, we use (c; R) to
denote the sphere centered at a point c with radius R.

For any base triangle qrs, there is a set of points p
such that pqrs is a sliver. We call them the forbidden

region Fqrs of base triangle qrs. Let Y be the circum-
radius of triangle qrs. The following lemmas proved in
[8] are essential for analyzing our algorithm.

Lemma 2.2. [Forbidden Volume] For any base tri-

angle qrs, the volume of the forbidden region Fqrs is at

most c3Y
3, where c3 = 2�2(48%0�0)

2.

Lemma 2.3. [Forbidden Area] For triangle qrs and

a plane H, the intersection of the forbidden region Fqrs

with H has area at most c4Y
2, where c4 = 192�%0�0.

Lemma 2.4. [Forbidden Length] For triangle qrs

and a line L, the intersection of the forbidden region

Fqrs with L has length at most c5Y , where c5 =
16
p
3%0�0.



2.3 Picking Region A tetrahedron is called bad

if it has large radius-edge ratio or is a sliver. The
algorithm removes each bad tetrahedron by inserting
a point inside its circumsphere. We then discuss where
to select such point. Let's consider a tetrahedron � . We
only pick a point from the interior of sphere (c� ; �R� ),
where � < 1 is a constant to be speci�ed later. We call
the solid ball (c� ; �R� ) the picking region of � .

A PLC domain satis�es the projection condi-
tion [14] if for any vertex p encroaching a boundary
triangle, there is a boundary triangle that contains the
projection of p inside. We will always assume that the
input domain satis�es the projection condition. We only
split the boundary triangle containing the projection of
the encroaching point p. We always assume that the
PLC domain does not have acute angles similar to [14].
This will guarantee that the boundary protections ter-
minate in �nite number of steps.

For a triangle qrs, its equatorial sphere is the small-
est sphere containing points q, r, and s. For a segment
qr, its diametric sphere is the smallest sphere contain-
ing points q and r. Without confusion, sometimes we
will just use circumsphere to denote the smallest sphere
containing a triangle or segment. A point encroaches

boundary if it is contained in the circumsphere of any
boundary triangle or segment. Here a triangle is bound-
ary triangle if it belongs to a two-dimensional Delaunay
triangulation of a boundary face; a segment is boundary
segment if de�nes the polygonal boundary faces. We call
the element, whose circumcenter encroaches a bound-
ary triangle or segment, the encroaching element; that
boundary triangle or segment is called the encroached

element. Shewchuk [14] proved the following radii rela-
tion between the encroaching element and encroached
element.

Lemma 2.5. [Encroachment Relations] The cir-

cumradius of the encroached element is at least 1p
2
fac-

tor of the circumradius of the encroaching element.

We are now in the position to study how to split the
encroached boundary triangles or boundary segments.
Consider a boundary triangle qrs. Let (cqrs; Rqrs) be
its circumcircle. We call the disk (cqrs; �Rqrs) the
picking region of qrs. A point from the picking region is
inserted if triangle qrs is encroached. Then consider an
encroached boundary segment qr. Let c be its middle
point. Then a point from segment qr with distance no
more than �jjqrjj to c is selected to split qr. In other
words, the picking region of qr is a subsegment on qr

centered at c with length 2�jjqrjj. Without confusion,
we will use (c� ; �R� ) to denote the picking region of an
element � . Here � can be a tetrahedron, a triangle or a
segment. See Fig. 2 for illustrations.
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Figure 2: The picking region of a tetrahedron, a
boundary triangle and a boundary segment respectively.

3 Re�nement Algorithms

In this section, we present the re�nement-based algo-
rithm to generate well-shaped Delaunay meshes.

3.1 Algorithm Outline For any bad element in
the mesh, we add a point p inside its picking region.
The insertion of point p removes this bad element, but
may create many new bad tetrahedra. It is possible
that inserting any point in the picking region will create
a new sliver [8]. The algorithm has the following four
components.

Algorithm: Remove-Sliver-by-Refinement (%0,
�0, �, b)

Enforce Empty Encroachment: For any en-
croached boundary segment, add its midpoint and
update the Delaunay triangulation. For any en-
croached boundary triangle, add its circumcenter
c and update the Delaunay triangulation. If c

encroaches any boundary segment, we split the
encroached boundary segment instead of adding c.

Clean Bad Elements: For any bad tetrahedron � ,
�nd a point p in its picking region whose insertion
avoids creating small slivers. If such p does not
exist, then add the circumcenter c� of � .

Here, tetrahedra with a large radius-edge ratio have
priority over slivers to be split.

If the circumcenter c� encroaches boundary, we
apply the following rules instead.

Encroach Equatorial Sphere: For any encroached
boundary triangle �, add a point p, whose insertion
avoids creating new small slivers, from the picking
region of �. If such p does not exist, then add the
circumcenter c� of �. Update the Delaunay trian-
gulation. However, if c� encroaches any boundary
segment, apply the following rule instead of �nding
p from (c�; �R�).

Encroach Diametric Sphere: For any diametric
sphere of boundary segment, if it contains point c�



or c� inside, then add a point p, whose insertion
avoids creating new small slivers, from the seg-
ment's picking region. If such p does not exist, we
split the segment by adding its midpoint. Update
the Delaunay triangulation.

3.2 Select Point in Picking Region The key
part of the algorithm is to �nd a point p whose insertion
avoids creating new small slivers. One approach is
based on a randomized selection as Chew did [4]. We
randomly select a point p from the picking region and
construct a local mesh whose elements are all incident
on p. If there is a small sliver in the local mesh, we
discard p and reselect a new point from the picking
region randomly. The above procedure is repeated for
constant rounds. By de�ning slivers and small slivers
properly, we can show that the above procedure is
expected to �nd point p if such a point exists.

4 Termination Guarantee

In this section, we prove that the algorithm will termi-
nate if we de�ne what is bad element properly. After
the algorithm terminates, the generated mesh elements
have small aspect ratio.

4.1 Existence Notice that the tetrahedra with
large radius-edge ratio have priority to be re�ned than
the slivers. Miller et al. [10] proved that, given an
almost-good mesh, the lengths of edges sharing a com-
mon vertex are within a constant factor of each other,
where the constant depending on the radius-edge ratio
of the mesh. We call it the length variation bound �0.

Lemma 4.1. [Constant Small Slivers] There are at

most constant number of triangles that can form small

slivers with points from the picking region of an element.

Proof. Let's consider an element � of an almost-
good mesh. Let T be set of all triangles that can
form small slivers with points from (c� ; �R� ) in the new
Delaunay triangulation. Assume that triangle qrs forms
a sliver pqrs together with a point p from the picking
region. Then edges of pqrs have lengths at most 2Rpqrs,
which is at most 2bR� from Rpqrs � bR� . Then the
edges incident on vertex q before point p is introduced
have length at least 2bR�=�0, where �0 is the length
variation bound of meshes with radius-edge ratio %0. It
implies that the closest distance among all vertices of
all triangles of T is at least 2bR�=�0.

It is simple to show that the vertices of all triangles
in T are inside the sphere (c� ; (� + 2b)R� ). Then
by a volume argument, we know that the number of
vertices of T is bounded from above by a constant. For
convenience, we will useW to denote such constant.

It remains to show that, given an almost-good mesh,
there is a point in the picking region of any element
to avoid creating new small slivers. The following
conditions are su�cient: (1) W � c3(bR� )

3
< (�R� )

3; (2)
W �c4(bR� )

2
< (�R� )

2; and (3) W �c5bR� < �R� , where
W is a constant depending on %0, � and b. Recall that
c3 = 2�2(48%0�0)

2, c4 = 192�%0�0, and c5 = 16
p
3%0�0.

In other words, the �0 used to de�ne sliver has to satisfy
all three inequalities.

Volume : �0 � �

p
�

48
p
2Wb�%0b

� (%0�2)
p
%0�2

192�%4
0

p
W

;

Area : �0 � �
2

192�W%0b
2 � (%0�2)2

768�W%
5
0

;

Length : �0 � �
2

768W 2%0b
2 � (%0�2)2

3072W 2%
5
0

:

We summarize the above discussions by the follow-
ing Existence Theorem.

Theorem 4.1. [Existence] Given an almost-good

mesh, there is a point in the picking region of each ele-

ment whose insertion will not introduce small slivers.

4.2 Termination We then show that the algo-
rithm terminates. We �rst classify the bad elements to
three classes: original slivers in the mesh, created slivers

by inserting some points, tetrahedra with large radius-

edge ratio. See Figure 3 for data 
ow illustration of

Tetrahedron
circumcenter

Face-triangle
circumcenter Midpoints

Segment

Original slivers

Large R/L

circumcenter
Tetrahedron

circumcenter
Face-triangle
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Segment

Created Slivers

Figure 3: Data
ow diagram illustrating the bad ele-
ments evolution.

these three bad tetrahedra. Then the operations of the
algorithm are categorized as eliminating original slivers,
eliminating created slivers, and eliminating tetrahedra
with large radius-edge ratio. Observe that the distance
among mesh vertices generated by this algorithm will
possibly decrease along the insertion of new points. For
example, the insertion of a point p in the picking region
of a sliver � could possibly decrease the shortest distance



by a constant factor. However, on the other hand, we
will show that the shortest distance for any intermediate
mesh is at least a constant factor of that of the original
mesh. Then by a volume argument, we know that the
algorithm will terminate. For convenient, we use lorg

to denote the shortest edge length of the original mesh
after enforcing that all equatorial spheres of boundary
triangles and diametric spheres of boundary segments
are empty.

4.3 Eliminate Original Slivers For simplicity,
assume that the input mesh is almost-good. Let's �rst
study the case of eliminating original slivers of the
input mesh. Notice that in the algorithm, we do not
distinguish the original slivers from the created slivers
by point insertion. For the sake of convenience of
analysis, we assume that all original slivers are removed
�rst.

Lemma 4.2. [Original Slivers] After eliminating all

original slivers, the length of the shortest edge of the

mesh is at least (1� �)=4 of that of the original mesh.

Proof. We consider an original sliver � and assume
that point p is inserted to eliminate � . If p is selected
from the picking region of � , then for a mesh vertex v

jjv � pjj � (1� �)R� � (1� �)L�=2 � (1� �)lorg=2:

If p is selected from the picking region of an
encroached boundary triangle or boundary segment �,
then R� � R�=2. And R� � L�=2 � lorg=2 implies

jjv � pjj � (1� �)R� � (1� �)lorg=4:

Then the lemma follows.

4.4 Eliminate Large Radius-Edge Ratio

Then let's study the scenario when we insert
points to remove tetrahedra with large radius-edge
ratio. These tetrahedra could be original or be created
by inserting points. Consider a tetrahedron � with
R� � %0L� . The following lemma bounds the shortest
edge length after a point p is inserted to process � .

Lemma 4.3. [Large Radius-edge Ratio] The length

of the shortest introduced edge after eliminating � with
R�

L�
> %0 is at least

(1��)%0
2

L� .

Proof. There are two cases when eliminating a
tetrahedron � with large radius-edge ratio.

The �rst case is that a point p from the picking
region of � is inserted to remove � . The length of the
shortest edge introduced after inserting p is at least
(1� �)R� � (1� �)%0L� .

The second case is that the circumcenter c� en-
croaches domain boundary. Assume that c� encroaches
the circumsphere (v;Rv) of a boundary triangle or seg-
ment. Recall that Rv � R�=2. Thus the shortest edge
introduced after selecting p from (v; �Rv) has length at
least 1��

2
R� � 1��

2
%0L� . Notice that it may need split-

ting the domain boundary several times till tetrahedron
� is eliminated. The above argument is true for each
boundary splitting.

Thus, if (1� �)%0 � 2, inserting points to eliminate
any tetrahedron with radius-edge ratio larger than %0

will not introduce shorter edges to the mesh.

4.5 Eliminate New Created Slivers It remains
to show that the shortest edge length will not decrease
when points are inserted to eliminate created slivers.
Let's consider a sliver � created by inserting a point
from the picking region of an element; say f(�). In other
words, f(�) is responsible for creating the new sliver � .
Element f(�) is called the parent of sliver � . There
are three cases: f(�) is a sliver; f(�) is a tetrahedron
with large radius-edge ratio; f(�) is a boundary triangle
or segment encroached by a bad element directly or
indirectly.

Let us �rst consider the case that f(�) is a sliver.
Then we have R� � bRf(�) because the insertion of
point in the picking region of sliver f(�) will always
avoid creating small slivers.

Lemma 4.4. [Large Sliver- Sliver] The length of

the shortest introduced edge after eliminating sliver � is

at least 1��
4
b � Lf(�), where Lf(�) is the shortest edge

length of the parent sliver element f(�).

Proof. First consider the case that the circumcenter
c� of � does not encroach the boundary. The shortest
edge introduced after inserting a point from the picking
region of � has length at least (1 � �)R� , which is at
least (1� �)bRf(�) � (1� �)bLf(�)=2.

Then consider the case that c� encroaches the
circumsphere (v;Rv) of a boundary triangle or segment
directly or indirectly. Notice that Rv � R�=2. Thus the
length of the shortest edge introduced after inserting a
point from (v; �Rv) is at least

1��
2
R� , which is at least

(1��)b
4

Lf(�). Then the lemma follows.

Then we study the second case that the parent f(�)
is a tetrahedron with large radius-edge ratio.

Lemma 4.5. [Large Sliver -Large R/L] Assume

sliver � is created by eliminating tetrahedron f(�) with
R�

L�
> %0. Then the length of the shortest edge introduced

by eliminating sliver � is at least
(1��)2%0

4
�Lf(�), where

Lf(�) is the shortest edge length of f(�).



Proof. We �rst consider the case that the circum-
center c� of � does not encroach the boundary. The
shortest edge e introduced by eliminating � has length
at least (1 � �)R� . Assume that � = pqrs is created
by the insertion of point p from the picking region of
f(�). Then the shortest edge connected to p has length

at least (1 � �)Rf(�). From R� � kp�qk
2

, we have

R� � (1��)Rf(�)

2
. Then the length of e is at least

(1� �)2Rf(�)

2
:

We then consider the case that c� encroaches the
circumsphere (v;Rv) of a boundary triangle or segment
directly or indirectly. Notice that Rv � R�=2. Thus the
length of the shortest edge introduced after selecting a
point from (v; �Rv) is at least

1��
2
R� , which is at least

(1� �)2Rf(�)

4
:

Then Rf(�) � %0Lf(�) completes the proof.

It remains to show that splitting a sliver � created
by splitting a boundary triangle or segment � will not
introduce shorter edges.

Lemma 4.6. [Large Sliver- Boundary] Assume

sliver � is created by splitting a boundary triangle or

segment �. Then the length of the shortest edge intro-

duced by eliminating � is at least

� jej � (1��)2%0Lp(�)
8

, where Lp(�) is the shortest edge

length of p(�) and p(�) has large radius-edge ratio.

� jej � (1��)bL�
4

, where L� is the shortest edge length

of � and parent element p(�) is a sliver.

Proof. Recall that we split � because there is a bad
tetrahedron whose circumcenter encroaches the domain
boundary. Let p(�) be that bad tetrahedron. There are
two cases about p(�): it is a sliver or it is a tetrahedron
with large radius-edge ratio.

Let us �rst study the case that p(�) has radius-
edge ratio larger than %0. Then as proved by previous
lemmas, the length of the shortest edge e introduced

by splitting � is at least
(1��)2R�

4
, where R� is the

circumradius of �. Notice that here, we may need split
boundary triangles or segments if the circumcenter of
sliver � encroaches the domain boundary. It is always
true that R� � Rp(�)=2. From Rp(�) � %0Lp(�),
we have R� � %0Lp(�)=2, where Rp(�) and Lp(�) is
the circumradius and the shortest edge length of p(�)
respectively. Consequently, we have

jej � (1� �)2%0Lp(�)

8
:

We then study the case that p(�) is a sliver. Recall
that the mesh should be almost-good when we split
sliver p(�). Then the Existence Theorem 4.1 guarantees
that � is not a small sliver, i.e., R� � bR�. Notice that
the length of the shortest edge e introduced by splitting

� is at least
(1��)R�

2
, which is at least

(1��)bR�

2
. The

fact that R� � L�=2 implies that jej � (1��)bL�
4

.

The above lemma implies that, if (1 � �)b � 4 and
(1 � �)2%0 � 8, eliminating a created sliver � will not
introduce shorter edges.

4.6 Main Theorem Combining all the above
analysis, we have the following theorem.

Theorem 4.2. [Shortest Edge Length] The length

of the shortest edge introduced by eliminating all original

slivers is at least (1� �)=4 factor of that of the original

mesh. If we select b, � and %0 such that (1 � �)b � 4
and (1 � �)2%0 � 8, the shortest edge length of the

mesh will never decrease after all the original slivers

are eliminated.

Consequently, the shortest distance between all
mesh vertices is at least 1��

4
factor of that of the

original mesh. It is straightforward to show that the
above algorithm is guaranteed to terminate by a volume
argument. Then re�nement algorithm generates well-
shaped three-dimensional Delaunay meshes.

5 Good Grading Guarantee

This section is devoted to study the mesh size of
the generated mesh, or more speci�cally, the relation
between the nearest neighbor function N() de�ned
by the �nal mesh and the local feature size function
lfs() de�ned by the input domain. Here N(v) is the
distance from v to the second nearest mesh vertex;
and mathitlfs(x) is the radius of the smallest sphere
centered at x intersects two non-incident input segments
or input vertices.

We study the spacing relations among intermediate
meshes by using similar idea as Ruppert and Shewchuk
did. With each vertex v, associate an insertion edge

length ev equal to the length of the shortest edge
connected to v immediately after v is introduced into
the Delaunay mesh. Notice that v may not have to
be inserted into the mesh actually. For the sake of
convenience of analyzing, we also de�ne a parent vertex

p(v) for each vertex v, unless v is an input vertex.
Intuitively, for any noninput vertex v, p(v) is the vertex
\responsible" for the insertion of v. We discuss in detail
what means by responsible here. If v is inserted inside
the picking region of a tetrahedron � with �(�) � %0,



then p(v) is the most recently inserted end point of the
shortest edge of � . If v is inserted inside the picking
region of an original sliver � , then p(v) is an end point
of the shortest edge of � . If v is inserted inside the
picking region of a created sliver � , then p(v) is the
vertex of � that is responsible for creating � , i.e., the
most recently inserted vertex of � . If v is inserted
inside the picking region of an encroached boundary
triangle or segment, then p(v) is the encroaching vertex.
For the sake of simplicity, always assume that the
encroaching vertex is not an input vertex, because
Ruppert [13] and Shewchuk [14] showed that the
nearest neighbor function N() de�ned on the Delaunay
mesh after enforcing the domain boundary is within a
constant factor of the local feature size function, i.e.,
N(v) � lfs(v).

Notice that the parent vertex p(v) of v does not need
to be inserted into the mesh actually. We then show
that the insertion edge length ev for any introduced
mesh vertex v is related to that of its parent vertex
p(v). Notice that here v may not be inserted due to
encroaching also.

Lemma 5.1. [Insertion Edge Length] Let v be a

vertex of the �nal mesh generated and let p = p(v) be

the vertex responsible for the insertion of v. Then we

have ev � lfs(v) for an input vertex v; and ev � C � ep
for Steiner point v, where

1. C = (1��)%0 if v is selected from the picking region

of a tetrahedron with R�

L�
> %0;

2. C = 1��p
3

if v is selected from the picking region of

an original sliver;

3. C = 1��
1+�

b if v is selected from the picking region of

a created sliver and the parent f(�) is also a sliver;

4. C = 1��
2

if v is selected from the picking region

of a created sliver and the parent element f(�) has
radius-edge ratio more than %0;

5. C = 1��
1+�

b if v is selected from the picking region of

a created sliver and the parent f(�) is a boundary

triangle or segment encroached by a sliver;

6. C = 1��
2

if v is selected from the picking region

of a created sliver and the parent element f(�) is

a boundary triangle or segment encroached by a

tetrahedron with large radius-edge ratio;

7. C = 1��p
2(1+�)

if v is selected from the picking region

of an encroached boundary triangle or segment.

Proof. If v is an original input vertex, then the length
ev of the shortest edge connected to v is at least lfs(v)

from the de�nition of lfs(v). Thus ev � lfs(v) and the
theorem holds.

Then consider non-input vertex v. Assume that v
is selected from the picking region of an element � . It
is always true that ev � (1 � �)R� , where R� is the
circumradius of � .

If � is a tetrahedron with radius-edge ratio at least
%0, then parent p is one of the end points of the shortest
edge of � . Here p could be the most recently inserted
Steiner vertex or an original vertex of � . Let L� be the
length of the shortest edge pq of � . Then q is original
vertex or is inserted before p. In both cases, we have
ep � kp� qk. 1 Then ep � kp� qk = L� � R�

%0
. Thus

ev � (1� �)R� � (1� �)%0 � ep:

If � is an original sliver, then parent p is one of the
end points of the shortest edge of � . Assume � has four
vertices p, q, r, s. Let L� be the length of the shortest
edge pq of � . Then R� � Y � L�=

p
3, where Y is the

circumradius of triangle pqr. Similar to previous case,
we have ep � kp� qk �

p
3R� . Thus

ev � (1� �)R� �
1� �p

3
� ep:

Then consider that � is a created sliver. There are
three cases about the parent element f(�) of � : f(�)
is a sliver; f(�) has large radius-edge ratio; f(�) is an
encroached boundary triangle or segment. Recall that
the parent vertex p = p(v) is the most recently inserted
vertex of � .

We �rst study that the parent element f(�) is a
sliver. Recall that the insertion of p = p(v) from the
picking region of sliver f(�) will always avoid creating
small slivers. Thus, we have R� � bRf(�), where Rf(�)

is the circumradius of element f(�). The length of the
shortest edge connected to p is ep � (1+�)Rf(�). Thus,
we have

ev � (1� �)bRf(�) �
1� �

1 + �
b � ep:

Then we study that parent element f(�) has radius-
edge ratio at least %0. Assume that tetrahedron � has
four vertices p; q; r; s. Notice that ep is no more than
kp� qk. We also have R� � kp� qk=2. Thus, we have

ev � (1� �)R� �
1� �

2
� ep:

The �nal subcase is that the parent element f(�) is
an encroached boundary triangle or segment. We �rst

1It can not guarantee that ep = kp� qk, because the shortest

edge connected to p after p is introduced could be in other

tetrahedron incident on p.



consider the scenario that f(�) is encroached by a sliver
directly or indirectly. We then know that the insertion
of the parent vertex p of f(�) will always avoid creating
small slivers. Thus we have R� � bRf(�), where Rf(�)

is the circumradius of element f(�). The length of the
shortest edge connected to p is ep � (1+�)Rf(�). Thus,
we have

ev � (1� �)bRf(�) �
1� �

1 + �
b � ep:

We then consider the scenario that f(�) is en-
croached by a tetrahedron with large radius-edge ratio
directly or indirectly. Here parent p is selected from the
picking region of f(�). Assume that tetrahedron � has
four vertices p; q; r; s. Notice that ep is no more than
kp� qk. We also have R� � kp� qk=2. Thus, we have

ev � (1� �)R� �
1� �

2
� ep:

Finally, we study the situation that � is a boundary
triangle or boundary segment. Here p is always an
encroaching circumcenter of a bad tetrahedron or a
boundary triangle �. Notice that here p was considered
for insertion but was rejected due to encroaching. It
is simple to show that R� �

p
2R� , where R� is

the circumradius of �. Recall that we split boundary
triangle � only if it contains the projection of the
encroaching circumcenter inside. The length ep of the
shortest edge connected to point p (if it was inserted) is
at most (1 + �)R�. Thus we have

ev � (1� �)R� �
1� �p
2(1 + �)

� ep:

The previous lemma 5.1 is concerned about the
relationship between the insertion edge length of a child
and its parent, if there is any. For a vertex v, as [14],

we de�ne Dv =
lfs(v)

ev
. We call Dv the density ratio

at point v. Clearly, initially Dv is at most one for
an input vertex v, and after inserting new vertices, Dv

tends to become larger. Notice that Dv is de�ned just
immediately after v is introduced to the mesh; it is not
de�ned based on the �nal mesh. The next lemma will
discuss the relationship between Dv and Dp of parent
vertex p = p(v).

Lemma 5.2. [Density Ratio Relations] Let v be a

vertex with parent p = p(v) if there is any. Assume that

ev � C � ep. Then Dv � 1+�
1�� +

Dp

C
.

Proof. If v is inserted inside the picking region of
a bad tetrahedron � , p is then on the circumsphere of

� . Thus ev � (1 � �)R� , and kv � pk � (1 + �)R� ,
where R� is the circumradius of � . If v is inserted inside
the picking region of an encroached boundary triangle
or segment �, then p is inside the circumsphere of �.
Thus ev > (1 � �)R�, and kv � pk < (1 + �)R�, where
R� is the circumradius of �. In both cases, we have
kv � pk � 1+�

1�� ev .
From the 1-Lipschitz condition of the local feature

size function lfs(), we have

lfs(v) � lfs(p) + kv � pk

� Dp � ep +
1 + �

1� �
ev

� Dp

C
ev +

1 + �

1� �
ev:

The lemma follows by dividing both side by ev > 0.

Theorem 5.1. [Bounded Density] There are �xed

constants D1 � 1, D2 � 1 and D3 � 1 such that for

any vertex v inserted or rejected at the picking region

of a bad tetrahedron, Dv � D3; for any vertex v in-

serted or rejected at the picking region of an encroached

boundary triangle, Dv � D2; for any vertex v inserted

or rejected at the picking region of an encroached bound-

ary segment, Dv � D1. Hence, there is a constant

D = maxfD1; D2; D3g such that Dv � D for all mesh

vertex v.

Proof. We prove the theorem by induction. First
consider any original input vertex p, the length ep of
the shortest edge connected to p is at least lfs(p) from

the de�nition of lfs(p). Thus Dp =
lfs(p)

ep
� 1. Then

assume that the lemma is true for the parent vertex p

of vertex v. Hereafter, let � = 1+�
1�� .

If v is selected from the picking region of a tetra-
hedron � with radius-edge ratio at least %0, then ev �
(1� �)%0 � ep. Therefore, by above Lemma 5.1, we have

Dv �
1 + �

1� �
+

Dp

(1� �)%0
� �+

�Dp

%0
:

Notice that here point p could be an original input
vertex, or a Steiner vertex. In other words, we have
Dp � maxfD1; D2; D3g. Thus a su�cient condition
that one can prove that Dv � D3 is

�+
maxfD1; D2; D3g

(1� �)%0
� D3(5.1)

If v is selected from the picking region of an original
sliver � , then ev � 1��p

3
� ep. Here p is an original input

vertex, i.e., Dp � 1. Apply Lemma 5.1 to v. Thus a
su�cient condition that one can prove that Dv � D3 is

�+

p
3

1� �
� D3(5.2)



Then consider that v is selected from the picking
region of a created sliver � . There are three cases about
the parent element f(�) of � : f(�) is a sliver; f(�) has
large radius-edge ratio; f(�) is an encroached boundary
triangle or segment.

If parent element f(�) is a sliver, then ev � 1��
1+�

b�ep.
Here, we haveDp � D3. Thus a su�cient condition that
one can prove that Dv � D3 is

�+ �
D3

b
� D3(5.3)

If parent element f(�) is a tetrahedron with large
radius-edge ratio, then ev � 1��

2
� ep. The fact that p is

inserted from f(�) with large radius-edge ratio implies
that ep � (1 � �)%0 � ep(p), where p(p) is the parent
element of vertex p. Apply Lemma 5.2 to vertices v and
p(v). Notice that Dp(p(v)) � maxfD1; D2; D3g. Thus a
su�cient condition to prove Dv � D3 is

�+ 2�2 + 2�2
maxfD1; D2; D3g

%0
� D3(5.4)

We then study that the parent element f(�) is an
encroached boundary triangle or segment. We �rst
consider the scenario that f(�) is encroached by a sliver
directly or indirectly. Thus we have ev � 1��

1+�
b � ep.

Notice that parent vertex p is from a boundary face or
segment. Then a su�cient condition to prove Dv � D3

is

�+ �
maxfD1; D2g

b
� D3(5.5)

We then consider the scenario that f(�) is en-
croached by a tetrahedron � with large radius-edge ratio
directly or indirectly. Thus we have ev � 1��

2
� ep. If

f(�) is encroached directly by �, then ep � 1��p
2(1+�)

�ec� ,
where c� is the circumcenter of tetrahedron �, i.e., the
parent vertex of p. If f(�) is encroached by the circum-
center p(p) of a triangle that is encroached by �, then we
have ep(p) � 1��p

2(1+�)
� ec� . Because � has large radius-

edge ratio, we have ec� � (1� �)%0ep(c�). Similarly, we
apply Lemma 5.2 to vertex v, p, p(p) and c�. Notice
that parent vertex p(c�) of c� could be from interior
or on boundary. Then a su�cient condition to prove
Dv � D3 is

�+ 2�2 + 2
p
2�3 + 4�4 +(5.6)

4�4
maxfD1; D2; D3g

%0
� D3

If v is selected from the picking region of a boundary
triangle � then ev � 1��p

2(1+�)
� ep. Here parent p could

be the circumcenter of a tetrahedron with large radius-
edge ratio or a sliver. In other words, Dp � D3. Thus a
su�cient condition that one can prove that Dv � D2 is

�+
p
2�D3 � D2(5.7)

If v is selected from the picking region of a boundary
segment �, then ev � 1��p

2(1+�)
� ep. Here parent p could

be the circumcenter of a tetrahedron or a boundary
triangle. In other words, Dp � maxfD2; D3g. Thus
a su�cient condition that one can prove that Dv � D1

is

�+
p
2�maxfD2; D3g � D1(5.8)

Notice that some inequalities are satis�ed if other
inequalities were satis�ed. One can show that above
inequalities are simultaneously satis�ed if we choose

D3 � %0(�+ 2�2 + 2
p
2�3 + 4�4) + 4�5 + 4

p
2�6

%0 � 8�6

D3 � �b+ �
2 +

p
2�3

b� 2�3
;

D3 � �+
p
3�;

D2 = �+
p
2�D3;

D1 = �+
p
2�2 + 2�2D3:

Thus, to guarantee a good grading on the �nal mesh
generated, we need that %0 > 8�6 and b > 2�3. The
following theorem concludes that the generated mesh
has good grading, i.e., for any mesh vertex v, N(v) is
at least some constant factor of lfs(v). Ruppert and
Shewchuk had similar theorems for classic Delaunay
re�nement methods; see [13, 14].

Theorem 5.2. [Good Grading] For any mesh vertex

v generated by re�nement algorithm, the distance con-

nected to its nearest neighbor vertex u is at least
lfs(v)

D+1
.

The proof is omitted here. Ruppert showed that
the nearest neighbor value N(v) of a mesh vertex v of
any almost-good mesh is at most a constant factor of
lfs(v), where the constant depends on the radius-edge
ratio. The above Theorem 5.2 shows that the nearest
neighbor N(v) for the sliver-free Delaunay mesh is at
least some constant factor of lfs(v). Then we have the
following theorem.

Theorem 5.3. [Linear Size] The size of the gener-

ated sliver-free Delaunay mesh is within a small con-

stant factor of any almost-good mesh for the same do-

main, where the constant depends on the radius-edge

ratio of the meshes.



This theorem also implies that given an almost-
good mesh with n vertices, our re�nement algorithm
will remove the slivers by introducing at most O(n)
new mesh vertices. Thus the time complexity of the
algorithm is O(n log n) given an almost-good mesh with
n vertices.

6 Discussions

In this paper, we present a re�nement based method
that guarantees to remove all slivers in the mesh. In
other words, any tetrahedron generated in the mesh has
radius-edge ratio no more than %0 and the volume is at
least �0 times the cube of its shortest edge length.

Notice that the �0 derived from all the proofs
may be too small for any practical use (even it is
better than previous results [2, 5]). We would like to
conduct some experiments to see what �0 can guarantee
that there is no small slivers created. Recall that the
termination guarantee does not depend on the de�nition
of sliver. Only the existence of point p, which will not
introduce small slivers, in the picking region depends
on the sliver de�nition. Based on this observation, we
can have a variation of this algorithm. We remove a
tetrahedron � with small value �(�) only if we �nd a
point p in the picking region of � such that the new
tetrahedra with circumradius less than bR� is better
(with larger V=L

3 value than �(�)). In other words,
there is a point p inside the picking region to improve the
local mesh quality. Moreover, we could have di�erent
de�nitions about slivers depending upon the location of
the tetrahedron: inside or near the domain boundary.
Then using the same proofs as before, we can prove that
it will generate a sliver-free three-dimensional mesh with
termination and quality guarantees.
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