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Abstract— The smart grid introduces new privacy implications
to individuals and their family due to the fine-grained usage
data collection. For example, smart metering data could reveal
highly accurate real-time home appliance energy load, which
may be used to infer the human activities inside the houses.
One effective way to hide actual appliance loads from the
outsiders is Battery-based Load Hiding (BLH), in which a battery
is installed for each household and smartly controlled to store
and supply power to the appliances. Even though such technique
has been demonstrated useful and can prevent certain types
of attacks, none of existing BLH works can provide probably
privacy-preserving mechanisms. In this paper, we investigate
the privacy of smart meters via differential privacy. We first
analyze the current existing BLH methods and show that they
cannot guarantee differential privacy in the BLH problem.
We then propose a novel randomized BLH algorithm which
successfully assure differential privacy without considering real-
world constraints, and further propose the Multitasking-BLH-
Exp3 algorithm which adaptively update the BLH algorithm
based on the context and the constraints. Results from extensive
simulations show the efficiency and effectiveness of the proposed
method over existing BLH methods.

Index Terms—Smart Grid, Smart Meter, Privacy, Differential
Privacy, Data Disclosure

I. INTRODUCTION

With the rapid development of the advanced meter infras-
tructure (AMI) [1] as part of a move to smart grids, the
privacy issues regarding the electricity usage information are
receiving more and more attention recently. AMI is composed
of networked smart meters, but these smart meters not only
collect register reads, the monthly electricity consumption
information for billing purposes, but also collect interval data
(typically the minute-level or second-level electricity usage
profile) for controlling purposes. On one hand, this fine-
grained information enables trending, forecasting and fault de-
tection analysis, which leads to a more efficient and robust grid
system; on the other hand, this information reveals important
personal information – human behaviours. For example, by
applying None-Intrusive Load Monitoring (NILM) techniques
[2]–[6], attackers can efficiently derive the appliance usage
patterns of the residents from the fine-grained energy usage
profile.

The concept of NILM is proposed as opposed to intru-
sive load monitoring (ILM). In ILM, there is an individual
monitor for each appliance while in NILM there is only
one monitor to acquire the aggregate energy consumption
of all the appliances. The target of NILM is to derive the

energy usage profile of each appliance from this aggregated
information. The techniques to realize NILM include edge
detection, pattern recognition, quadric integer programming,
etc. NILM is originally designed to support the construction
of smart homes [4], [5], which learns the lifestyle of the
residents, monitors ageing and problematic appliances, and
consequently provides safe environment for the alone elder
people. However, the NILM technique also enables malicious
third parties to acquire the residents behavior patterns, which
will reveal the vacant times, the number and the location of
the residents inside a house, or even the ages and brands of
the appliances. This may cause severe security hazards. For
example, if a burglar acquires this information, he immediately
knows when and where to break in. In fact, Rouf et al. [7]
have shown that they can spoof the energy usage information
from real world deployed meter systems as a third party and
realize the analysis mentioned above (identifying unoccupied
residences or people’s routines).

Due to these privacy implications, the deployment of smart
meters have encountered obstacles from the public outcry [8],
[9]. Some parts in North America and Europe have already
banned the deployment of the smart meters [10]. Furthermore,
the disputes over the law aspects of AMI is also ongoing
[11]. Considering the smart meter system’s great benefits,
addressing the privacy issues of smart metering data is crucial
to the deployment of smart grid systems.

One effective way to deal with the privacy leakage from the
smart meters is Battery-based Load Hiding (BLH). The main
idea of BLH is to install a battery for each household and
use the energy provided (discharge of the battery) and energy
consumed (charge of the battery) by the battery to perturb the
real energy consumed by the household appliances. By doing
so, the real energy consumption of the appliances is hidden in
the energy consumption reported by the smart meter. The main
challenges faced by the BLH schemes come from the con-
straints on the capacity and the maximum charging/discharging
rate of the battery.

Existing BLH schemes generally try to flatten the energy
consumption observed by the smart meters. The representative
BLH schemes include the Best Effort (BE) scheme [12], the
Non-intrusive Load Levelling (NILL) scheme [13] and the
Stepping Framework (SF) [14]. These schemes share the same
principle: try to maximize the “distance” between the energy
consumed by the appliances and the energy consumption
reported by the smart meter. The definition of “distance”
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differs from scheme to scheme, but it is based on the entropy
theory in general. Other metrics measuring the privacy also
include the number of events detected, the cluster classification
based metrics, regression based metrics, etc.

Even though current BLH schemes have been demonstrated
useful in privacy leakage prevention, they all have certain
weaknesses. First of all, their privacy evaluation metric is
steamed from the general information theory. The relationship
between these metrics and the real privacy is unclear, i.e.,
there lacks a rigorous definition of the privacy which leads
to provably privacy-preserving mechanisms. Moreover, the
attacks considered by current BLH schemes are generally
limited to edge detection based NILM methods. Thus, it is
possible that they are potentially vulnerable for other kinds of
attacks. Therefore, there is a need to formally define privacy
in BLH problem and design new provably privacy-preserving
BLH schemes.

In this paper, we investigate the privacy issues of the smart
meters in the differential privacy context, which is originally
proposed by Dwork et al. [15]–[17] as a privacy measure
for database queries. Differential privacy mainly captures the
increased risk to one’s privacy incurred by participating in
a database. It measures the difference of the output distri-
bution before and after an item is put into the dataset. The
mechanisms developed under this definition achieve provable
privacy in statistic queries, machine learning, and pricing. The
most common way to achieve differential privacy is to add
noise to the real query result. We study and analyze the BLH
problem in the differential privacy context, and formally define
the privacy of it.

The BLH problem is not directly solved by a simple
perturbation because the noise (i.e., the energy provided or
consumed by the battery) in a real smart grid is constrained
by the features of the battery, such as capacity, maximum
charge/discharge rates. Taking these fundamental constraints
into consideration, we further model the BLH problem as a
multiple armed bandit (MAB) problem [18], [19], which is
an online sequential decision problem. We utilize the Exp3
algorithm ( [20]) for MAB to adaptively update the noise
distribution in BLH.

The rest of this paper is organized as follows. We briefly
review related works on NILM and BLH in Section II and
introduce backgrounds of differential privacy and MAB in
Section III. We then introduce our system model and the
formal BLH problem under differential privacy setting in
Section IV. In Section V, we analyze current BLH schemes
from the perspective of differential privacy. We then propose a
randomization algorithm which can assure differential privacy
in Section VI. Section VII presents results from simulation
evaluations and Section VIII concludes this paper with some
possible future work.

II. RELATED WORK

A. NILM Techniques

The most important category of the NILM technique is
the edge detection based mechanism [2]–[4]. These detection

methods aim to capture the event when an appliance is turned
on or turned off. By analyzing the sharp changes in the
aggregated energy usage profile from the smart meter, these
mechanisms could also efficiently derive which appliance is
turned on/off. The common features used for analysis include
the shape, the amount, the duration, and the time constraint of
the changes.

Other methods try to capture the steady state features of
the energy usage. Inagaki et al. [5] propose an quadratic
integer programming based method which tries to find the
combination of appliances whose composite current is closest
to the observed current. Another technique, ElectriSense [6], is
based on the fact that most modern electronics and fluorescent
lighting employ switch mode power supplies, which will
generate high frequency electromagnetic interference (EMI).
By analyzing the features of the EMI, ElectriSense can derive
which appliances are in operation. As most smart meters do
not have the ability to measure EMI, we do not consider this
kind of privacy attacks.

All above mechanisms are generally proposed in the coop-
erative context, i.e., the NILM algorithm could have all the
needed aggregated information. Rouf et al. [7] show how to
acquire the energy consumption data as a malicious third party
in the real world. As the meter system is non-cooperative, they
can only acquire partial information of the data using various
methods. However, they have shown it is possible to derive the
appliance usage information utilizing this partial information.

B. BLH Mechanisms

Current BLH mechanisms generally aim to flatten the
energy consumption observed by the smart meter. Mechanisms
of this kind try to maintain a constant external load seen by the
smart meter. The main difference among these mechanisms is
how to react when the battery is too low or too high. In the Best
Effort (BE) scheme [12], when the energy level of the batter
reaches the minimum level or the maximum level, it requires
the battery to charge/discharge at the maximum rate. In the
Non-Intrusive Load Levelling scheme (NILL) [13], instead of
charging or discharging the battery at the maximum rate, the
system chooses a charging/discharging rate that is related to
the energy consumption of the appliances.

Yang et al. [14] analyze the above two mechanisms and
show that these two mechanisms will disclose the true energy
consumption when the battery is too low or too high. In
addition, they propose a stepping framework (SF) for the BLH
system. In this framework, instead of trying to maintain a
single constant external load, the BLH system can choose a
load to be seen by the smart meter from a set of predefined
values according to the current energy consumption level of
the appliances.

The problem with all above BLH mechanisms is that they
lack a theoretical discussion and evaluation of their system.
The BE system is evaluated in terms of relative entropy,
clustering classification and correlation/regression while the
NILL and the stepping framework mainly evaluate their system
in terms of entropy. However, there is no clear evidence to
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show how these metrics are directly related to the privacy.
Even if a system achieves a high score according to these
metrics, how private the system is and whether the system is
safe to the attacks other than the attacks mentioned in their
papers remain to be questioned.

III. BACKGROUNDS

A. Differential Privacy

The concept of differential privacy is originally introduced
by Dwork [17]. In [17], Dwork prove that it is infeasible to
achieve the universal privacy in the database, i.e., it is impos-
sible to achieve that “access to a statistical database should not
enable one to learn anything about an individual that could not
be learned without access”. In contrast, he proposes a weaker
definition: differential privacy, which captures the increased
risk to one’s privacy incurred by participating a database. Ever
since differential privacy is introduced, a bunch of privacy
mechanisms [21]–[24], which can achieve provable privacy
by the rigorous definition, have been proposed in the areas of
data mining, statistical query, and many related areas.

In this paper, by leveraging the powerful usage of differen-
tial privacy, we will use it to study smart metering data privacy.
Here, we exploits the following definition of (δ, ε)-differential
privacy.

Definition 1. Given an n-dimension datasets Dn, a random-
ized algorithm is (δ, ε)-differentially private if ∀x, y ∈ Dn that
differs only in one element and all S ∈ range(A),

Pr[A(x) ∈ S] ≤ eε × Pr[A(y) ∈ S] + δ,

where range(A) denotes the output range of A.

Informally, this definition says if two datasets differs only
in one element, the outcome of the query A over these two
datasets should be indistinguishable. The closer ε and δ are to
zero, the more private A is. One common way to achieve such
A is to add special noise to the original queries. In addition,
suppose f(·) is some query function over the dataset. The
global sensitivity ∆f is defined as follows:

∆f = max
x,y
|f(x)− f(y)|,

for all x, y that differing in at most one element. Then,
when ∆f = 1, the function f(·) achieves (ε, δ)-differential
privacy if noises from the binomial distribution B( 1

2 , n) − n
2

is added to it, where n is number of queries, and n satisfies
n ≥ −64 ln(δ)/ε2 [16].

B. MAB Problems and Relative Solutions

The multi-armed bandit problem [18], [19] is a sequential
decision problem defined by a set of actions. At each step,
the system can choose an action from the action set and
some payoff is observed. The fundamental issues in the
MAB problem is to handle the trade off between exploration
and exploitation in sequential experiments to maximize the
payoffs. According to the nature of the payoff rewarding
process, the MAB problem can be categorized as stochastic,

adversarial and Markovian [18]. In the stochastic MAB, the
reward follows some distribution; in the adversarial MAB, the
reward is given in an arbitrary manner; in the Markovian
MAB, the reward is given according to the state of the
arm. Different MAB problems have different solutions. The
stochastic MAB is generally solved by upper confidence bound
(UCB) based schemes [25]. The adversarial MAB is mainly
solved by the Exp3 algorithm [20] and its variations. The
Markovian MAB is usually tackled with Gittins indices [18],
[19].

We define a contextual bandit problem for our BLH prob-
lem, and use the S-Exp3 algorithm [18] to guarantee the lower
bound of the reward (defined later) in this paper. The generic
contextual bandit problem is shown as follows.

Contextual Bandit Problem
Known parameters: K arms to choose & number of rounds n ≥ K
For each round t = 1, 2, · · ·
(1) Forecaster chooses It ∈ {1, · · · ,K}
(2) Adversary chooses a gain vector gt = (g1,t, · · · , gK,t) ∈ [0, 1]K

(3) Forecaster receives gIt,t and learns nothing else.

Typical objective function to maximize in MAB problem is
the pseudo-regret R̄n = maxiE [

∑n
t=1 gi,t −

∑n
t=1 gIt,t].

IV. PROBLEM FORMATION

A. System Model

The battery with capacity C is connected to the original
house hold electricity network, and charging or discharging
it (whose maximum rates are both β) adds noises (i.e., the
battery energy b(t)) to the real load of the appliances d(t),
which constitutes the smart meter’s reading s(t) = b(t)+d(t),
and the c(t) is the energy stored at the battery at time t. Table I
summarizes the notations and Figure 1 shows the BLH system
we have. In addition, we use dmax to denote the upper bound
of the d(t) over the entire time domain. We assume a discrete
time domain having equal-length intervals (e.g., smart meter’s
data collection cycle) in this paper, then we have the following
constraints for any t ∈ {0, 1, 2, · · · }:

c(t) = c(0) +
∑t
i=0 b(i) Accumulated Usage

0 ≤ c(t) ≤ C Capacity Requirement
−β ≤ b(t) ≤ β Charging/Discharging Rate
s(t) ≥ 0 Households Cannot Emit Energy

Battery
Control

Battery

Smart Meter

Appliances

d(t)

b(t)

s(t)

I(t)

c(t)

Fig. 1. The BLH system.
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TABLE I
IMPORTANT NOTATIONS

C Capacity of the battery
β Maximum charging/discharging rate

s(t) Smart meter’s reading
b(t) Battery’s energy consumption

b(t) > 0 means battery is being charged
c(t) Energy stored at the battery
d(t) Appliances’ energy consumption
I(t) Set of running appliances

B. Adversary Model

The battery is out of adversaries’ control, and they can only
access the smart meters’ reading. Adversaries are interested
in the real load of household’s appliances d(t), and they
try to analyze the time-series data s(0), s(1), · · · to infer the
appliances usage pattern (i.e., distribution of the usage).

Adversaries are assumed to be ignorant, in the sense that
they may have some general ‘common sense’ about the energy
consumption patterns (high-usage in evenings and low-usage
in midnights), but they do not have detailed and targeted prior
information on specific household’s appliances usage pattern.

C. Problem Formulation

Given the definition of (δ, ε)-differential privacy in Sec-
tion III, we can formulate the BLH problem as follows.

Problem 1 (BLH Problem). Given the dataset I(t) and
the query function f(·) over I(t) which returns d(t) (i.e.,
f(I(t)) = d(t)), we aim to devise a randomization algorithm
A which adds b(t) as a noise to the query result to hide
d(t) from the adversaries so that (δ, ε)-differential privacy is
guaranteed with good δ, ε.

It seems the solution is already given in [16], but we cannot
directly use it because ∆f is larger than 1 and n may be
smaller than −64 ln(δ)/ε2 in the smart grid context. Thus,
we need to find a good randomization algorithm which is
differentially private in the smart grid context.

V. ANALYSIS OF EXISTING BLH SCHEMES WITH
DIFFERENTIAL PRIVACY

In this section, we first analyze the existing BLH schemes
from the perspective of differential privacy. More specifically,
we mainly analyze existing BLH schemes by showing the best
δ (the smallest δ) they can achieve. We use δ as the metric to
measure the existing BLH scheme since if δ is large enough,
we can achieve arbitrarily small ε. If δ = 1, Pr[A(x) ∈ S] ≤ 1
is for sure, i.e. any scheme can achieve a (0, 1)-differential
privacy.

A. The BE scheme

The Best Effort (BE) scheme [12] tries to maintain a steady
state where the system exposes a constant external load s(t) =
Kc to the smart meter. However, there are four cases that
BE could not maintain this steady. These cases are listed as
follows:


c(t− 1)− d(t) +Kc < 0 1) Battery energy is too low
c(t− 1)− d(t) +Kc > C 2) Battery energy is too high
d(t)−Kc > β 3) Charging is too fast
Kc − d(t) > β 4) Discharging is too fast

If case 1) or case 2) occurs, BE switches its target output
load to the current true demand i.e. s(t) = d(t). If case 3)
occurs, BE charges at the maximum rate. If case 4) occurs
BE discharges at the maximum rate.

Now we anaylze BE scheme from the perspective of
differential privacy. Recall that in differential privacy, we
mainly focus on two datasets that differ only in one item.
Correspondingly, in BLH, we mainly focus on two time points
t1 and t2 where the sets of operating appliances I(t1) and
I(t2) only differ in one appliance. If BE can maintain a
constant external load, it obvious that s(t1) = s(t2). If BE
cannot maintain the constant external load, i.e. the system
encounters case 1), 2), 3) or 4) as described above, the system
will charge or discharge at the maximum rate. Then, we have:

s(t1) = d(t1)&s(t2) = d(t2) Case 1) and 2)
s(t1) = d(t1) + β&s(t2) = d(t2) + β Case 3)
s(t1) = d(t1)− β&s(t2) = d(t2)− β Case 4)

Since I(t1) and I(t2) differ in one element, as long as
|d(t1) − d(t2)| 6= β, which is a trivial case, we have
d(t1) 6= d(t2). This indicates s(t1) 6= s(t2) in all cases. Let
S1 = {d(t1), d(t1) + β, d(t1) − β} and S2 = {d(t2), d(t2) +
β, d(t2)− β}, then we have

Pr[s(t1) ∈ S2] = Pr[s(t2) ∈ S1] = 0

⇒
{
Pr[s(t1) ∈ S1]− eε ∗ Pr[s(t2) ∈ S1] ≤ δ
Pr[s(t2) ∈ S2]− eε ∗ Pr[s(t1) ∈ S2] ≤ δ

⇒
{
δ ≥ Pr[s(t1) ∈ S1]

δ ≥ Pr[s(t2) ∈ S2]

⇒δ ≥ Pr[BE is not in steady state]

which means the δ that BE can achieve is larger than the
probability that the system encounters cases 1), 2), 3) and 4).

The probability of the system enters the non-steady state
in BE is mostly determined by the load patterns. If the load
is constantly above or below predetermined Kc, it is likely
that the system will enter the non-steady state. Thus, the
differential privacy of BE could not be guaranteed.

Theorem 1. The BE cannot guarantee differential privacy for
BLH problem.

B. The NILL scheme

The Non-Intrusive Load Levelling scheme (NILL) [13]
defines three states: (1) the stable state where the residue
energy in the battery is neither too low or too high; (2) the
low recovery state where maintaining the Kc will deplete
the residue battery energy; (3) the high recovery state where
maintaining the Kc will overcharge the battery.

In the stable states, there are two sub states: (S1) the battery
charge rate could maintain Kc; (S2) the battery charge rate
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could not maintain Kc. In the first sub state, s(t) = Kc; in
the second sub state s(t) = d(t) + β or s(t) = d(t) − β. If
the battery is too low, the system will enter the low recovery
state; if the battery is too high, the system will enter the high
recovery state.

In the low recovery state, there are also two sub states: L1)
d(t) ≤ β and L2) d(t) > β. In the previous case, s(t) is set
to β; in the later state, the external load s(t) is set to be d(t),
i.e the real load. The system will return to the stable state
if the residue energy in the battery is larger than 0.8C i.e.
c(t) > 0.8C, where C is the capacity of the battery.

In the high recovery state, the external load s(t) is set to be
d(t)− 0.5AMP . The system will return to the steady state if
c(t) > 0.5C or d(t) > 4.5AMP + d(t− 1).

Now we analyze the NILL algorithm from the perspective
of differential privacy. In the state S1, S2, L2 and the high
recovery state, two neighbouring sets of appliances I(t1) and
I(t2) that differ in only one appliance will have distinct
external load. Using a similar analysis as that used in BE,
we can derive that δ that NILL can achieve should be larger
than the probability that the system is in state S1, S2, L2 and
the high recovery state.

Again, the chance that NILL encounters S1, S2, L2 and
the high recovery state is determined by the pattern of d(t).
There is no guarantee of the δ.

Theorem 2. The NILL cannot guarantee differential privacy
for BLH problem.

C. The Stepping Framework

The schemes under the stepping framework (SF) [14] try to
maintain the external load of the algorithm to be multiples of
β. If the real load satisfies (k−1)β ≤ d(t) ≤ kβ, the external
load s(t) will be set to (k − 1)β or kβ. Suppose the largest
energy consumption of an appliance is bmax. If bmax > 2β,
clearly a data set containing bmax and a data set that doesn’t
contain bmax will never output the same external load (as a
matter of fact, no scheme can). In this case, δ = 1. Therefore,
we focus on the case where bmax < 2β.

We will give an instance to derive the lower bound of
δ for the stepping frameworks. We create two neighbouring
appliance sets I(t1) and I(t2) that differ only in one appliance
with energy consumption bmax. Without loss of generality,
suppose d(t1) = kβ + b

′
, d(t2) = kβ + b

′ − bmax and
d(t1) < (k + 1)β. Suppose b

′
< bmax, s(t1) is chosen from

{kβ, (k+1)β} and s(t2) is chosen from {kβ, (k−1)β}. Then,
we require 1) δ ≥ Pr[s(t1) = (k + 1)β] 2) δ ≥ Pr[s(t2) =
(k− 1)β] We also require that I(t1) appear consecutively for
N times and I(t2) appear for another N times consecutively.
Let Pr[s(t1) = kβ] = p and Pr[s(t2) = kβ] = p

′
, then due

to the constraint of the battery, we have

{
−C ≤ Npb′ −N(1− p)(β − b′ ) ≤ C
−C ≤ N(1− p′ )(β + b

′ − bmax)−Np′ (bmax − b
′
) ≤ C

⇒
{
pb

′ − (1− p)(β − b′ ) = 0

(1− p′ )(β + b
′ − bmax)− p′ (bmax − b

′
) = 0

when N � C

⇒

p = 1− b
′

β

p
′

= 1− bmax−b
′

β

⇒

Pr[s(t1) = (k + 1)β] = 1− p = b
′

β

Pr[s(t2) = (k − 1)β] = 1− p′ = bmax−b
′

β

⇒ δ ≥
bmax

β

when b
′

is close to 0

⇒ ε =
p

p′
=

β − b′

β + b′ − bmax
=

β

β − bmax

Therefore, we can also conclude with the following theorem:

Theorem 3. The SF schemes cannot guarantee differential
privacy for BLH problem.

VI. NOVEL BLH SCHEMES ACHIEVING DIFFERENTIAL
PRIVACY

In this section, we first give two randomization algorithms
which generate noises to assure differential privacy, and then
present which noise to choose from the candidate set given
by the randomization algorithms in a real life scenario by
considering the constraints from the battery and system over
time period.

A. Randomization Algorithms

We now present two randomization algorithms to generate
noises to assure differential privacy.

1) Coarse-grained Noise: As a first step, we present the
first randomization algorithm as Algorithm 1.

Algorithm 1 BLH based on Coarse-grained Noise
Input: I(t) and f(·), s.t., f(I(t)) = d(t)
Output: AC(f(·)) = s(t).

1: AC(f(·)) = f(·) + r · bmax, where r is generated
from B( 1

2 , n) − n
2 and n ≥ −64 ln(δ)

ε2 . In other words,
the battery chooses a noise r · bmax from the noises
set {−n2β, (1 −

n
2 )β, ..., (n2 − 1)β, n2β} and charges or

discharges accordingly.
2: return AC(f(·))

Theorem 4. Algorithm 1 ensures (δ, ε)-differential privacy as
long as n satisfies n ≥ −64 ln(δ)

ε2 .

Proof: Recall that if we add a binomial noise B( 1
2 , n)− n

2
that satisfies n ≥ −64 ln(δ)/ε2, we can achieve (δ, ε)-
differential privacy for a query f(·) with global sensitivity
1 (Section III).

We have defined the query function f(I(t)) = d(t) for the
set of appliances at time t. However, the global sensitivity ∆f
in our BLH problem is the energy consumption of the most
energy consuming appliance, which is assumed to be bmax.
Therefore, we first define a new query f

′
(·) over the set of

I(t) as
f

′
(I(t)) = d(t)/bmax
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In this case, the global sensitivity ∆f
′

= 1 and s(t) = f(I(t))·
dmax. Then, the following randomization algorithm A for the
function f

′
achieves (δ, ε)-differential privacy:

A(f
′
(·)) = f

′
(·) + r, r ∼ B(

1

2
, n)−

n

2
s.t. n ≥

−64 ln(δ)

ε2

Finally, our randomization algorithm AC for the query
function f in our BLH problem is:

AC(f(·)) = f(·) + r · bmax, r ∼ B(
1

2
, n)−

n

2
s.t. n ≥

−64 ln(δ)

ε2

which is (δ, ε)-differentially private.
2) Fine-grained Noise: The above algorithm is coarse-

grained in the sense that the smallest unit of noise is bmax.
Now, we introduce a fine-grained randomization algorithm
whose noise unit is 1 (Algorithm 2).

Algorithm 2 BLH based on Fine-grained Noise
Input: I(t) and f(·), s.t., f(I(t)) = d(t)
Output: AF (f(·)) = s(t).

1: AF (f(·)) = f(·)+r, where r is generated from B( 1
2 , n)−

n
2 and n ≥ −3 ln θ

Θ2(ε) . In other words, the battery chooses
chooses a noise from {−n2 ,−

n
2 + 1, ..., n2 − 1, n2 } and

charges/discharges accordingly.
2: return AF (f(·))

Theorem 5. Algorithm 2 ensures (δ, ε)-differential privacy as

long as n satisfies n ≥ −3 ln θ
Θ2(ε) , where Θ(ε) = (1−l)e

ε
bmax−1

2(1+e
ε

bmax )

Proof: Suppose there are two neighbouring appliance sets
I(t1) and I(t2) and d(t1)− d(t2) = bj , where bj denotes the
difference of energy consumption of two sets. Then we have
s(t1) = d(t1)+noise and s(t2) = d(t1)+noise+bj . Finding
the bound of the probability that s(t1) and s(t2) give the same
value is equivalent to find the bound of the probability that
generated noise is x and x+ bj . The larger bj is, the greater
the possible probability gap will be. As bj ≤ bmax. We only
need to find a bound of the probability that an arbitrary noise
is x and x+ bmax.

Now we consider adding a binomial noise to the real
demand. Suppose the noise is drawn from B( 1

2 , n) − n
2 ,

then the probability of adding a noise x is Pr[x + n
2 ] =(

n
n/2+x

)
1

2n The probability of adding a noise x + bmax is
Pr[x+ n

2 + bmax] =
(

n
n/2+x+bmax

)
1

2n Then we have
Pr[x+ n

2
]

Pr[x+ n
2

+ bmax]

=
(n
2

+ x+ 1)(n
2

+ x+ 2)...(n
2

+ x+ bmax)

(n
2
− x− bmax + 1)(n

2
− x− bmax + 2)...(n

2
− x)

≤(
n
2

+ x+ 1
n
2
− x− bmax + 1

)bmax

Suppose bmax ≤ l
2n where 0 ≤ l ≤ 1. Then, we have:

x ≤
(1− l)e

ε
bmax − 1

2(1 + e
ε

bmax )
∗ n→

Pr[x+ n
2

]

Pr[x+ n
2

+ bmax]
≤ eε

Since bmax and l are known parameters, we further define

Θ(ε) =
(1− l)e

ε
bmax − 1

2(1 + e
ε

bmax )

According to the Chernoff bound, we have

Pr[y >
n

2
+ Θ(ε)n] = Pr[y >

n

2
(1 + 2Θ(ε))] ≤ e(−

nΘ2(ε)
3

)

and n ≥
−3lnδ

Θ2(ε)
→ e(−

nΘ2(ε)
3

) < δ

Then, as long as n ≥ −3lnδ
Θ2(ε) the following randomization

algorithm AF guarantees (δ, ε)-differential privacy.

AF (f(·)) = f(·) + r, r ∼ B(
1

2
, n)−

n

2
s.t. n ≥

−3 ln θ

Θ2(ε)

B. Noise Selection under Constraints

In the aforementioned algorithms, the battery can choose
a noise to add to d(t) by charging or discharging itself. The
battery draws the noise from a binomial distribution, but it is
not always feasible to add the desired noise owing to several
constraints on the battery and the system over the time period
as summarized as follows: ∀t : 1) 0 ≤ c(t) ≤ C; 2) −β ≤
b(t) ≤ β; 3) s(t) >= 0.

Therefore, we need to update the distribution according
to the context (c(t), b(t), d(t)). Since we cannot foresee the
future’s usage pattern, this forms an online selection problem
with constraints. We solve this non-trivial problem by solving
the following contextual multi-armed bandit (MAB) problem,
which is defined as follows.

Problem 2 (Contextual Multi-Armed Bandit Problem For
Noise Selection). Given a set of arms {k1, · · · , km} which
satisfy −β

bmax
< k1 < k2 < ...km−1 < km < β

bmax
.

Our randomization algorithm AC or AF need to choose an
arm ki at t and modify q(t) as

q(t) = min{
2(β − |ki|)
bmax

,
2(c(t)) + ki

bmax
,

2(C − c(t)− ki)
bmax

,
2(d(t) + ki)

bmax
}

Then, the randomization algorithm (AC or AF ) chooses ri,t
from the binomial distribution B( 1

2 , q(t))−
q(t)

2 + ki.
If we deem δ as a predefined value and set q(t) = −64 ln(δ)

ε2

forAC or q(t) = −3lnθ
Θ2(ε) forAF , we can acquire ε as a function

of the arm ki and the time t, which we denote as ε(i, t).
Then, the loss of each arm ki at time t is defined as:

Li,t = (1− α) ·
∣∣∣∣12 − c(t− 1) + ri,t

C

∣∣∣∣+ α · e−ε(i,t)

The battery needs to choose arms in a online manner such
that following pseudo-regret is minimized:

R̄n = max
i
E

[
n∑
t=1

LIt,t −
n∑
t=1

Li,t

]

The “Context” comes from different (c(t), d(t)) pairs. q(t)
is updated every time (c(t), d(t)) is changed, and thus the ran-
domization algorithm (AC or AF ) have a different binomial
algorithm to choose the noise from.
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The reason to use Li,t as the loss is: 1) the closer ε is to
zero the more private the algorithm will be; 2) we need to
consider the potential danger of exhausting or overcharging
the battery and try keep the residue energy of the battery to
be around C

2 .
Given the above MAB problem, we use the following BLH-

Exp3 algorithm (Agorithm 3, a fast variant of Exp3 [20]), as
a building block to choose the noises at each t.

Algorithm 3 BLH Exp3

Parameters: η =
√

2 lnK
nK , p1 = (p1,1, p2,1, · · · , pm,1) =

( 1
m , · · · ,

1
m ), ∀i : L̂i,1 = 0

1: Find the m arms between ( −βbmax
, β
bmax

) which are uniform
randomly distributed.

2: for all round t′ = 1, 2, · · · , n do
3: Choose a noise kIt′ where I ′t ∼ pt′
4: For the noise kIt′ , compute the estimated loss lIt′ ,t′ =

LI
t′ ,t

′

pI
t′ ,t

′
. For other noises, set the estimated loss as 0.

5: Update every ki’s cumulative loss

L̂i,t′ = L̂i,t′−1 + li,t′ .

6: Compute the new distribution

pt′+1 = (p1,t′+1, · · · , pm,t′+1),

where pi,t′+1 =
exp(−ηL̂i,t′)∑m
k=1 exp(−ηL̂k,t′)

.

Every time the battery is faced with the new context
(c(t), d(t)), it runs a separated new instance of BLH-Exp3
where every instance owns its own clock time t′. The clock
time t′ increases only when the battery encounters the same
context and thus recalling the corresponding BLH-Exp3 in-
stance (similar to a CPU’s multitasking). We denote this
algorithm as Multitasking-BLH-Exp3.

Lemma 1. The Multitasking-BLH-Exp3 algorithm guarantees
the following upper bound of the pseudo-regret until t = n:

R̄n = max
i
E

[
n∑
t=1

LIt,t −
n∑
t=1

Li,t

]
≤
√

2n|S|m lnm

where It is the battery’s arm selection (i.e., kIt ) at time t,
and S is the universe set of all contexts

The lemma is derived directly from the corresponding proof
in [18], which is omitted due to space limit.

VII. EVALUATION

In this section we will evaluate our proposed BLH schemes
based on real world electricity usage trace. The dataset we use
is the MIT REDD dataset [26] which provides second level
power consumption information of six houses for roughly one
month. Of these six houses, the data traces of two houses are
too sparse, thus we mainly use the traces of the other four.
An example of power consumption of a house is shown in
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Fig. 2. (a) An example of power consumption of a single house in the MIT
REDD data traces. (b) Time occupations of the appliances.
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(e) output load of MABN1

Fig. 3. Examples of the real load (a) and the corresponding outputs from
different algorithms (b-e).

Figure 2(a). We mainly analyze our and existing BLH schemes
from three aspects: 1) the differential privacy, i.e. (δ, ε); 2) the
mutual information metric used by Yang et al [14]; 3) the event
detection accuracy. We compare our schemes with BE, NILL
and the schemes under the stepping framework, namely LS1,
LS2, LC, RC. For our proposed schemes, we test the following
two: MAB using coarse noise generation scheme (Algorithms
1 and 3 together, denoted by MABN1) and MAB using fine
grained noise generation scheme (Algorithms 2 and 3 together,
denoted by MABN2). An example of the outcomes of these
algorithms is given in Figure 3.

As we discussed in Section VI, the differential privacy we
can get is directly related to the maximum energy consumption
of a single appliance and the maximum charge/discharge rate
of the battery. The greatest energy consumption of household
appliances is typically 3KW (such as washers and driers). If we
try to protect the differential privacy of those appliances, the
resulting maximum charge/discharge rate could be too large.
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However, as Figure 2(b) shows, in the power usage traces, the
energy consuming appliances (here we refer to the appliances
with power larger than 200W) only operates for about 11%
of the time and those works under 200W operates for more
than 90% of the time. This indicates that we can treat those
energy consuming appliances as outliers and only provide the
most commonly used appliances with high ranked privacy. In
our evaluations, we set the maximum energy consumption of
the appliances to be 200W and the maximum charge/discharge
rate we use for the battery is 1000W. For δ, we set its value to
be 0.2. The bound of ε for coarse grained noise is 3.2 and the
ε’s bound for fine grained noise (with a granularity of 50W)
is 20.43 in theory. However, as we will show later, the real
epsilon we acquired from real word data traces shows that the
actual ε we can get is better than these theoretical bound (the
bound is not tight for specific data traces).

Note that though we only provide differential privacy for
part of the appliances, we by no means provide less protection
for the appliances than existing BLH methods. Therefore,
we also measure the metric used by Yang et al. [14] for
comparison in our evaluations.

A. Differential Privacy

For differential privacy, we choose a granularity of 50W, i.e.,
the minimum set we consider for differential privacy is with
a range of 50. Here, we consider two cases: 1) consider the
energy consuming appliances; 2) do not consider the energy
consuming appliances. We denote our schemes under case one
as MABN1(LA) and MABN2(LA). For this case, we set the
energy consumption of the largest appliance to be 3000W.
For this specific setting, we temporarily set the maximum
discharge rate to 15KW to make it possible to achieve a δ
of 0.2. From Figure 4, we can see that under this setting, it
is infeasible to achieve desirable δ and ε. The main reason is
that under this setting, the added noise will quickly deplete
the energy of the battery or overcharge the battery. This will
make it hard to add the desirable noise in the long run.

0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Battery Capacity KWH

va
lu

e 
of

 δ

 

 

MABN1
MABN2
MABN1(LA)
MABN2(LA)

(a)

0.3 0.6 0.9 1.2 1.5
3

4

5

6

7

8

9

10

Battery Capacity KWH

va
lu

e 
of

 δ

 

 

MABN1
MABN2
MABN1(LA)
MABN2(LA)

(b)

Fig. 4. The changes of δ (a) or ε (b) with respect to battery capacity.

For the second case, we only compare the distribution
of neighbouring appliances sets It1 and It2 when |d(t1) −
d(t2)| < 200 (as the greatest energy consumption we consider
here is 200W). The changes of the observed δ and ε with
respect to the change of battery capacity are shown in Figure
4 too. We can observe that MABN1 performs worse than
MABN2 in terms of δ and ε. The reason is that the theoretical
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Fig. 5. (a) The changes of the mutual information between s′(t) and d′(t)
with respect to battery capacity. (b) The mutual information between s′(t)
and d′(t) for different houses when the battery capacity is set to 0.6KWH.

bound of MABN1 is given based a granularity of the maxi-
mum energy consumption of the appliances (which is 200W).
In this evaluation, however, we evaluate the algorithm in a
granularity of 50W. Thus, MABN1 doesn’t perform better than
MABN2 as the theoretical bound shows.

B. Mutual Information
The mutual information used by Yang et al. [14] is de-

fined as follows. Given d(t) and e(t) over time series t =
1, 2, 3, · · · , n, the mutual information between s(t) and d(t)
is defined as

M(s, d) =
∑
t

∑
s(t)

∑
d(t)

log
p(s(t), d(t))

p(s(t))p(d(t))
.

The values that Yang et al. used are slightly different from
ours as the mutual information they evaluate is s′(t) = s(t)−
s(t−1) and d′(t) = d(t)−d(t−1), i.e. the mutual information
between the change of values. They mainly evaluate the how
robust their scheme is against edge detection. However, we
believe that the protection of the mutual information of the
absolute values is also important. It has been shown that the
operating appliances can be inferred purely based on d(t)
[5]. The simulation results of the mutual information for load
change and for absolute value are shown in Figure 5 and
Figure 6 respectively. We can see that the protections of
load change of MABN1 and MABN2 are better than all the
other algorithms. As for the protection of absolute load value,
MABN1 and MABN2 performs better than BE and NILL, but
worse than the schemes of the stepping framework. The main
reason is that the schemes under stepping framework tries to
maintain a small set of discrete values. This will hide more
information for the pure load. However, the schemes under
stepping framework is not aware of differential privacy and
could not provide the differential bound as our schemes do.

C. Events Detection Accuracy

Here we define the events based on the changes of the
overall energy consumption. We deem the change of demand
greater than 50W as an occurred event. The events detec-
tion accuracy is defined as the ratio between the accurately
occurred events and the total detected events from the load
output. Results are reported in Table II. It is obviously that
both our algorithm and stepping framework based methods
outperforms BE and NILL.
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TABLE II
EVENT DETECTION PRECISION. THE PRECISION IS DENOTED BY a/b, WHERE a IS THE AVERAGE NUMBER DAILY EVENTS THAT COULD ACCURATELY

DETECTED (THE DIFFERENCE OF LOAD CHANGE SHOULD NOT BE LESS THAN 10%) AND b IS THE AVERAGE NUMBER OF DAILY EVENTS THAT COULD BE
DETECTED FROM THE OUTCOME OF THE SCHEME.

Battery NILL BE LS1 LS2 LC RC MABN1 MABN2
0.3KWH 45.1/52.9(85.28%) 11.2/12.0(93.23%) 1.8/19.8(9.26%) 2.6/23.2(11.21%) 3.6/43.4(8.23%) 1.5/60.6(2.42%) 2.2/113.5(1.92%) 3.0/123.8(2.43%)
0.6KWH 42.5/50.4(84.36%) 7.8/8.9(87.16%) 1.8/19.4(9.31%) 2.3/21.4(10.83%) 3.3/40.2(8.12%) 1.6/60.2(2.71%) 2.1/110.1(1.87%) 2.6/122.5(2.13%)
0.9KWH 41.3/49.7(83.17%) 6.8/8.1(83.35%) 1.4/18.3(7.43%) 2.0/19.7(10.35%) 2.4/38.5(6.23%) 2.3/59.3(3.92%) 2.1/109.1(1.93%) 2.3/121.6(1.93%)
1.2KWH 40.2/49.4(81.45%) 6.5/7.9(82.21%) 1.3/18.3(7.11%) 1.8/19.0(9.26%) 2.8/38.0(7.38%) 2.4/58.7(4.13%) 2.3/108.2(2.13%) 1.5/121.8(1.27%)
1.5KWH 40.5/49.2(82.33%) 6.2/7.5(82.63%) 1.3/17.7(7.23%) 1.5/18.1(8.17%) 2.4/37.7(6.32%) 2.4/57.9(4.21%) 2.4/107.5(2.26%) 2.1/121.1(1.73%)
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Fig. 6. (a) The changes of the mutual information between s(t) and d(t)
with respect to battery capacity. (b) The mutual information between s(t) and
d(t) for different houses when the battery capacity is set to 0.6KWH.

VIII. CONCLUSION AND FUTURE WORK

Recent studies have reveal the privacy concerns on smart
metering data. Though current BLH solutions have been
demonstrated to be useful for certain kinds of attacks, the
information leakage risk of these solutions is much unknown.
There lacks a definition of privacy for the BLH solutions they
cannot guarantee differential privacy. We then propose novel
randomized BLH algorithms which can indeed achieve certain
differential privacy bound while not validating the battery
constraint. Results from extensive simulations demonstrate
the efficiency and effectiveness of the proposed method over
existing BLH methods.

There are several interesting challenges left for further
investigation. First, in this paper we formulate the BLH
problem as an online optimization problem. If we assume
the load of a day could be predicted, what performance,
from the perspective of differential privacy, could an offline
scheme achieve? This will give a general bound on the BLH
algorithms. Second, right now we have not considered the
economic cost/benefit of noise generation. On one hand, the
charge/discharge of the battery will decrease the lifetime of the
battery. On the other hand, considering the real time pricing
used in smart grid, where the electricity prices of different
hours are different, the battery could charge in low-price hours
and discharge in high-price hours to gain economic benefit.
To acquire economical benefit while satisfying certain privacy
requirement is still a challenging issue for the BLH solutions.
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