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ABSTRACT
We present SmartLoc, a localization system to estimate the location
and the traveling distance by leveraging the lower-power inertial
sensors embedded in smartphones as a supplementary to GPS. To
minimize the negative impact of sensor noises, SmartLoc exploits
the intermittent strong GPS signals and uses the linear regression to
build a prediction model which is based on the trace estimated from
inertial sensors and the one computed from the GPS. Furthermore,
we utilize landmarks (e.g., bridge, traffic lights) detected automat-
ically and special driving patterns (e.g., turning, uphill, and down-
hill) from inertial sensory data to improve the localization accuracy
when the GPS signal is weak. Our evaluations of SmartLoc in the
city demonstrates its technique viability and significant localization
accuracy improvement compared with GPS and other approaches:
the error is approximately 20m for 90% of time while the known
mean error of GPS is 42.22m.
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1. INTRODUCTION
Localization have attracted significant attentions in the past few

decades, and numerous techniques have been proposed to achieve
high accuracy localization. In outdoor scenarios, GPS (Global Po-
sitioning System) or its variants are the most common technolo-
gies to provide accurate position [3] for various applications, such

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distribut-
ed for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
MobiCom’13, September 30–October 4, Miami, FL, USA.

ACM 978-1-4503-1999-7/13/09.
http://enter the whole DOI string from rightsreview form confirmation.

as trace and tracking [8, 10] in the wild, and environmental mon-
itoring [6]. However, problems regarding low accuracy of GPS
in critical regions such as metropolises have proposed the idea of
war-driving and created the state of art large scale WiFi/GSM fin-
gerprint database for positioning, like Skyhook [1]. These methods
often sample and establish fingerprint databases, which are compu-
tationally intensive.

To study the severity of the GPS localization [5] errors in metropolis-
es, we conducted comprehensive experiments in downtown Chica-
go to evaluate the performance of GPS positioning. Based on the
experiment results, we observe that the GPS signals are very weak
and unstable in some roads due to highrises, or even blocked com-
pletely in some complicated road structures, such as tunnels and
underground. In addition, the largest location error we collected is
over 100m on the ground, and nearly 400m in the underground seg-
ments. Thus, improving the location accuracy is imperative when
the GPS signal is weak in metropolises.

In this work, we propose SmartLoc, a localization method which
improves the localization accuracy in metropolises by leveraging
embedded inertial sensors in smartphones to help improve the driv-
ing patterns according to various of road conditions. Although
exploiting the data collected from inertial sensors has been used
to measure the walking speed and distance of pedestrian in out-
door environment [2,4,7,9], realtime localization of driving cars in
metropolises is still far more challenging as such activity does not
have a cyclic pattern in sensor data.

To address these challenges, during the dead reckoning process
for calculating the current position of a car, we propose a dynamic
trajectory model to estimate the driving speed and velocity based on
current road condition, so that the impact of inherent noise and ac-
cumulated error could be reduced to a large extent. We also design
a calibration strategy based on road infrastructures (e.g., bridge,
traffic lights, uphill, and downhill) and driving status (e.g., turns,
stops), which are inferred from the sensory data.

SmartLoc also exploits the current coarse-grained estimation of
location to confine the search space, so that a much more accurate
localization could be achieved through matching the road infras-
tructures and driving status.

2. APPROACH
The purpose of SmartLoc is to use inertial sensors in the smart-

phone to estimate the movement of the vehicle, and lively provide
locations based on the traveling distance and orientation with high
accuracy but low energy consumption. Remarkably, we not on-



ly address the inaccuracy caused by the complex infrastructures in
downtown area, but also exploit them to improve the localization
accuracy.

2.1 Self-learning Predictive Model
According to the Newton’s Law, we can obtain the distance af-

ter applying a double integration on the acceleration. However,
the noises from the accelerometer will be are accumulated so that
the estimation error gets enormously huge in just several minutes.
However, we observe from our preliminary experiments that the
majority of the road segments with bad GPS signals (error ≥ 30m)
are usually shorter than 400m, which takes only 20-30 seconds to
drive through in a normal condition. On the one hand, such dis-
tance is long enough to navigate drivers to wrong places, on the
other hand it is short enough to endure the errors to some extent.
Therefore, we propose the following predictive dynamic trajecto-
ry estimating model which adaptively calibrates itself using GPS
signals and dead reckoning.

Velocity Estimator: Because of the inherent noises and mea-
surement errors, the traditional velocity estimation model is no
longer reliable. In this case, we denote the velocity Vi at the end of
a timeslot i as

Vi = Vi−1 + β · ai ·∆t+ µ

where β is the parameter to be learned and adjusted in real time, ai
is the average measured acceleration during the timeslot i, and µ is
the noise.

When GPS signals are strong, both Vi and Vi−1 could be achieved
from the GPS directly, and the mean linear acceleration ai is ex-
tracted from the accelerometer. Then we regress the model to find
the best β, and calculate the noise µ hiding behind. When the lo-
calization through GPS is unreliable, we use the trained model pro-
posed to predict the velocity Vi.

Distance Estimator: For general cases, the trajectory distance
gathered from GPS indicates the distance with some error. There-
fore, letting G(∆ti) be the distance during a timeslot i read from
GPS, which could be presented as:

G(∆ti) = λ1 · Vi−1 ·∆t+
1

2
· âi ·∆t2 + η

where âi is the actual acceleration in the time slot i. Here λ1 is
multiplied to reflect the error in the estimated speed Vi−1 for the
time slot i− 1. Since the known measured acceleration ai contains
both inherent noise and measurement errors, by assuming that these
error follows normal distribution, we define the measured acceler-
ation as: ai = (1 + ε)âi + δ, where âi is considered as the true
acceleration which cannot be obtained. Then, we use the following
formula to estimate the distance G(∆ti):

G(∆ti) = λ1 ·Vi−1 ·∆t+λ2
1

2
·ai ·∆t2 +λ3 ·∆t2 +λ4 ·∆t+η (1)

where λ1, · · · , λ4 are parameters to be learned by our regression
model. When GPS signals are strong (GPS error is ≤ 20m), based
on the Vi−1, ai is computed using the sensory data and the distance
from GPS, we train our model using Eq. (1), which is in turn used to
predict the distanceG(∆ti) in the time slot i when GPS signals are
bad. From the predicted trajectory distance G(∆ti), the location at
the timeslot i could be estimated based on the obtained location,
distance and orientation.

2.2 Calibration By Landmarks
The road infrastructures, including tunnels, bridges, crossroads

and traffic lights, cause large noises in the GPS data, which results

in large drift in the distance estimation if it is not treated rigorously.
In this work, we exploit the precise location of these infrastructures
that are available in Google Map to calibrate the localization with-
out any extra cost.

Traffic Light: When the vehicle stops due to the traffic lights
and drives through crossroads, unique patterns appear in the read-
ings of sensors (Figure 1(a)). Actually, when vehicles encounters
traffic lights, the whole process can be divided into two phases,
braking and speeding up respectively. However, in rush hours with
terrible traffic, the location where cars stop may not be near the
crossroad, but with a certain distance from the crossroad. In this
case, SmartLoc adjusts the moving distance based on the estimated
stopping location from the empirical data, i.e., subtracting the dis-
tance from the car to the crossroad. However, the distance between
the car and the crossroad is determined by the traffic condition, it
is difficult to measure the exact distance from the car to the cross-
road. The main approach adopted by SmartLoc is to subtract the
n·L
2

, where L indicates the average length of a vehicle, and n repre-
sents the current possible number of vehicles waiting for the green
light. We calculate the number of vehicle based on the observed
data, and n is also related to different time periods.

Turning: Sometimes, vehicles may turn at intersections, which
could be detected by sensors. Figure 1(b) indicates the centripetal
force sensed by the accelerometer, and the scale of the acceleration
depends on the speed at which the vehicle is turning. Simultane-
ously, the angular velocity sensed by the gyroscope also reaches
up to 0.5 rad/s in our test case (Figure 1(c)), and the data from the
magnetometer changes as well with a large fluctuation. Finally, the
orientation of the smartphone also changes approximately 90 de-
grees when turning left or right. Although the angle may not be
accurate enough due to the large noise in the magnetometer (the
maximum error we experienced was approximately 30o), we are
still able to correctly determine the road segment to which the car
is turning by calibration. Figure 2(a) shows a case when vehicle
turns from the north, the angle is from about 350o to 100o, which
is east. We also compare the measured angle difference for turning
and lane changing (Figure 2(b)) since lane changing can be wrong-
ly detected as a turning. The angle difference when a car changes
its lane is much smaller than the one when a car make a turn.
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Figure 2: Turning or changing lanes, and Driving Trace
In fact, certain driving patterns, such as turing left or right and

stopping for traffic lights or stop signs, can be more accurately de-
tected and thus classified. To classify other road infrastructures,
we collect the sensor readings of those patterns to store as the fin-
gerprints, and then match the real-time sensor readings with the
trained fingerprints. To improve the classification and the matching
accuracy, we rely on the coarse-grained estimation of the location
from dead-reckoning first, and then we further use our predictive
regression model to confine the search space: only the road infras-
tructures (stored fingerprints) I within a certain distance δ from the
estimated location x will considered as the matching candidate for
the real-time pattern P achieved from the sensor data. We select
the infrastructure that maximizes the weighted matching score:
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Figure 1: Pattern of the sensor data collected in different road infrastructures when driving: (a) car stopping and crossing a traffic
light; (b), (c), and (d) car turning 90o; and (e) car crossing a bridge.
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(b) Overall Comparison
Figure 3: Distance prediction comparison among three meth-
ods and ground truth.

αM(I, P ) + (1− α)e−D(x,L(I))

where M(I, P ) is the matching score between the fingerprint of
an infrastructure I and the observed pattern P , α ∈ (0, 1) is a con-
stant, andD(x, L(I)) is the geodesic distance between the location
x and the location L(I) of infrastructure I . Then, the estimated lo-
cation x is updated as the location L(I∗) of the infrastructure I∗

which maximizes the weighted matching score.

3. PRELIMINARY RESULTS
We conduct a preliminary evaluations of SmartLoc in downtown

Chicago for over 100 different road segments ranging from 1km
to 10km. Since the inertial sensors provide the driving orientation,
combined with driving distance from the location in last timeslot,
the real-time location could be obtained. Thus, the key problem
becomes estimating the trajectory distance.

SmartLoc calibrates the location as soon as it detects specific
patterns, especially traffic lights and turnings. We compare the per-
formance of three different methods in detail: using inertial sensors
only, using sensors and landmark calibration, and using SmartLoc
with all learning model and calibration.

In this experiment, we assume the first 3400m is with reliable G-
PS signals, and the precise locations are accessible. The estimation
starts from 3400m, and the first three figures in Figure 3 indicate
the driving distance from the starting point versus the elapsed time.
Surprisingly, after combining our predictive regression model and
the noise canceling technique, SmartLoc’s result almost coincides
with the ground truth, as shown in Figure 3(a). For the first 900m,
the curve of SmartLoc nearly overlaps with the curve of the ground
truth. For the first 450m, the vehicle passes three crossroads with
all green lights, and the error is less than 20m in most of the time.
After the final traffic lights, the vehicle has to drive at a relatively
low speed because of the road construction. The predicted distance
consequently deviates from the ground truth a little, but at the end
of the road, the errors remain small. We plot all the estimated dis-
tances by three methods in Figure 3(b), with the X axis being the
ground truth distance and Y axis being the predicted distance, i.e.,
the perfect prediction will have a diagonal line. SmartLoc result-
s are distributed almost along the diagonal line, and pure sensor
approach deviates greatly.

The deviation of the results from the ground truth comes from
the accumulated errors from all time slots. Based on the previous
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Figure 4: Comparison of three methods.

experiments, we plot the error in every time slot in Figure 4(a).
SmartLoc with landmarks calibration has the smallest mean error
of the estimated locations for all time slots: 90% of them are lower
than 20m from the CDF in Figure 4(b). The other two approaches
have larger errors, and the last figure describes the CDF of the total
driving distance error.
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