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Abstract:|We are often required to generate a

Delaunay mesh whose element size is within a constant

factor of a control spacing function, i.e., well-conformed,

in addition to the fact that each mesh element has small

aspect ratio, i.e., well-shaped. However, generating well-

shaped Delaunay meshes is an open problem for a long

time. Observe that slivers have small radius-edge ratio

thus the Delaunay triangulation of well-spaced point set

can not guarantee a sliver-free mesh.

In this paper, we present a re�nement-based method

that, given a PLC domain with no acute input angles,

guarantees to generate a well-shaped and well-conformed

Delaunay mesh. Speci�cally, for any tetrahedron � gen-

erated by this algorithm, its radius-edge ratio is at most

a small constant %0 > 2, which can be given as an input

parameter. Moreover, we show that there is a constant

�0 > 0 depending on %0 such that V=L
3
� �0, where V

is the volume of � and L is the shortest edge length of

� . Thus, the algorithm generates a well-shaped Delau-

nay mesh: the aspect ratio of each tetrahedron is at most

a constant depending on %0. The size of each tetrahe-

dron element is also within a small constant factor of

the given control spacing.

Keywords: Mesh generation, mesh quality, De-

launay triangulations, slivers, computational geom-

etry, algorithms.

1 Introduction

This paper presents a quality guaranteed re�nement

method to generate a well-shaped Delaunay mesh

respecting to a control spacing. The input could

be a three-dimensional polyhedral domain with no

small angles or an almost good 3D Delaunay mesh.

The well-shaped mesh is measured by the largest

aspect ratio of all its tetrahedron elements. While

the almost good Delaunay mesh is measured by the
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largest radius-edge ratio of all its elements. Notice

that a bound on the radius-edge ratio eliminates all

tetrahedra with large aspect ratio except slivers. In

other words, our algorithm generates a sliver-free

Delaunay mesh.

Mesh quality measure. In this paper, we ex-

clusively consider three-dimensional meshes whose

elements are tetrahedra. The size and shape of the

triangles and tetrahedra is important because it in-

uences the convergence and stability of numerical

algorithms such as the �nite element method, see

Strang and Fix [21]. We assume that the spatial

domain is given in terms of its piecewise linear com-

plex boundary (PLC) [22]. 1 Moreover, we also

assume that there are no small input angles in the

domain. This assumption will guarantee that there

is no in�nite loop during the boundary protection

step.

The aspect ratio of an element is usually de�ned

as the ratio of the radius of its circumsphere to the

radius of its inscribed sphere. The smaller the

aspect ratio, the better the tetrahedron is. Unfor-

tunately, there is no method that guarantees to gen-

erate a Delaunay mesh whose elements have small

aspect ratio for a PLC domain until this work.

An alternative but weaker quality measurement

is to use the radius-edge ratio introduced by Miller

et al. [16]. It is the ratio of the circumradius to the

shortest edge length of the tetrahedron. The mesh

whose elements have small radius-edge ratio is called

almost good mesh. There are numerous methods

[5, 18, 19, 17, 12, 15] that guarantee to generate a

mesh with small radius-edge ratio. Here, the radius-

edge ratio of a mesh is the maximum radius-edge

1PLC de�nes a domain using a set of polytopes S, such

that (1) For each polytope of S, its boundary is a union of

polytopes in S. (2) S is closed under intersection. (3) If

dim(P \ Q) = dim(Q), then P � Q and dim(P ) < dim(Q).

In two dimensions, PLC is also called Planar Straight Line

Graph (PSLG).
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ratio among all of its elements. Similarly, the aspect

ratio of a mesh is the maximum aspect ratio among

all of its elements.

Not any tetrahedron, which has small radius-

edge ratio, has small aspect ratio. Slivers are the

only tetrahedra that have small radius-edge ratio

but have large aspect ratio. The ubiquity of slivers

in 3-dimensional Delaunay triangulations has been

recognized at least since the experimental study of

Cavendish, Field and Frey [3].

To be consistent with previous work [4, 9], we

say a mesh has the Ratio Property [%0] if all its

tetrahedra have radius-edge ratio at most %0. For

later convenience, we will use R� , L� and �(�) to

denote the circumradius, the shortest edge length

and the radius-edge ratio of an element � .

Generating almost good mesh and spacing

control In two dimensions, many methods [1, 5,

6, 12, 15, 18, 22] guarantee to generate well-shaped

meshes, i.e., with small radius-edge ratio. Surpris-

ingly, in three dimensions, generating well-shaped

meshes is considerably more di�cult. The main dif-

�culty comes from how to generate a sliver-free De-

launay mesh. Talmor [22] notices that even well-

spaced vertices do not prevent slivers from its De-

launay triangulation. Even so, generating a three-

dimensional mesh with small radius-edge ratio is

well understood. J. Shewchuk [19] extended the

Delaunay re�nement method to three dimensions

by proving that all tetrahedra will have radius-edge

ratio no more than 2. The sphere packing based

methods, see Miller et al. [17] and Li et al. [15],

guarantee to generate meshes with small radius-edge

ratio and the size of each tetrahedron is within a

small constant factor of the element size require-

ment. However, all these methods fail to address

the problem of slivers.

For numerical simulations, we have to generate

a well-shaped mesh whose element sizes also con-

form well to a given control spacing function. A con-

trol spacing function speci�es the desired element

size at each point of the domain. Here the element

size is typically measured by the nearest neighbor

function or edge length function. Several heuris-

tics and algorithms had been developed to generate

well-conformed meshes. Splitting the longest edge,

or subdividing the simplexes are among the most

used heuristics [2, 8]. Shimada [20] used the parti-

cle simulation to �nd a good mesh vertices set, then

constructed the �nal mesh using Delaunay triangu-

lation of the found vertices. However, above algo-

rithms do not provide any theoretical guarantees on

qualities of the generated meshes.

Over the years, the algorithms that provide the-

oretical quality guarantees had also been developed.

These include the sphere packing based algorithm

by Miller et al. [17], and the biting method by Li

et al. [15]. Chew [6] also had developed a re�ne-

ment based algorithm which generates good surface

meshes respecting to control spacing function. Li

[12] developed a similar algorithm that works for

any dimensions also. It systematically de�nes what

is bad element, and inserts the circumcenter of each

bad element as new mesh vertex.

Eliminating slivers. Slivers are notoriously com-

mon in tetrahedral meshes. The numerical accu-

racy usually depends on the smallest dihedral angle

among all tetrahedra of the mesh. Di�erent numer-

ical methods may have di�erent dependency on the

smallest angle, but it is always necessary to gener-

ate a mesh whose smallest dihedral angle is not too

small. Observe that several algorithms guarantee to

generate almost good meshes. Unfortunately, the

smallest angle of a sliver could be as small as pos-

sible. Therefore, removing slivers from an almost

good mesh is one of the major tasks for mesh gener-

ation. There had been numerous e�orts [7, 4, 9, 11]

that try to achieve this either experimentally or the-

oretically. However, we will focus only on the the-

oretical approaches, because they have theoretical

guarantees to back up the performance. Before this

work, there are only a few theoretical approaches

due to the hardness of the problem.

Chew [7] sketched an algorithm that eliminates

slivers by adding points near the circumcenters of

some tetrahedra. The algorithm terminates with

a sliver-free mesh except possibly original slivers in

the mesh. Notice that this algorithm results in a

constant density mesh: every tetrahedron has cir-

cumradius no larger than one unit. In addition, his

algorithm does not address the slivers near bound-

ary completely.

Recently, Cheng, Dey, Edelsbrunner, Facello,

and Teng [4] developed an algorithm that, given

an almost good Delaunay triangulation, constructs

an assignment of weights to mesh vertices so the

weighted Delaunay triangulation has small aspect

ratio, i.e., free of slivers. We call it weighted Delau-

nay based method. We refer the reader to [4] for

a description of weighted Delaunay triangulations.



However, the algorithm fails to address the bound-

ary situation completely. It is possible that there

are some bad elements near the domain boundary,

which is unacceptable by several numerical meth-

ods. Recently, Edelsbrunner, Li, Miller et al. [9] de-

veloped a new algorithm that perturbs the vertices

of an almost good Delaunay mesh such that the De-

launay triangulation of the perturbed vertices has

small aspect ratio. Unfortunately, both algorithms

[4, 9] are lack of boundary treatment.

Our results. The main result of this paper is a

re�nement-based technique that generates a well-

shaped Delaunay mesh whose elements size approx-

imately equals the control spacing. It, by re�ning

bad elements, �rst generates an almost good mesh

whose element size conforms to the control spac-

ing. It then removes slivers by adding point around

the circumcenter of bad element (with large radius-

edge ratio or slivers) such that it avoids creating new

small slivers at the same time. 2 It keeps adding

points until the mesh has small radius-edge ratio

and does not have sliver. We prove that for any

bad element � , there is a point p around its cir-

cumcenter that the insertion of p will not introduce

new small sliver. Observe that, the insertion of p

will de�nitely eliminate � . However, when the to-

be-inserted point p encroaches boundary triangles

or segments, we split these boundary triangles or

segments instead of adding point p. We prove the

termination guarantee of our algorithm by showing

that the distance between the closest mesh vertices

is just decreased by a constant factor compared with

that of the input mesh. This method can be com-

bined with previous method such as [4] and [9] to

avoid over-re�ning the mesh.

Our algorithm di�ers from Chew's algorithm in

that it generates a non-uniform mesh and eliminates

all original slivers without introducing new slivers

in �nal mesh. Notice that if there are slivers in

the original mesh, then Chew's algorithm can not

guarantee to remove them even they are not near the

domain boundary. Chew claimed that his algorithm

works for non-uniform mesh, but, to the best of our

knowledge, there are no any proofs available.

2Here, a created sliver is small if its circumradius is less

than some constant factor of the circumradius of this bad

element. We will give exact de�nition later.

Outline. The remainder of the paper is structured

as follows. Section 2 introduces the basic concept

such as Delaunay triangulation, sliver, sliver regions

and their basic related properties. Our re�nement-

based algorithm is presented in Section 3. It spec-

i�es how to remove slivers or elements with large

radius-edge ratio by avoiding creating small slivers.

The termination and quality guarantee of the algo-

rithm is presented in Section 4. Section 5 concludes

the paper with discussions.

2 Preliminaries

Generating a mesh whose elements have small as-

pect ratio and their sizes conform to a given control

spacing function is one of the most important steps

in numerical simulations. The aspect ratio of an el-

ement is usually de�ned as the ratio of the radius of

its circumsphere to the radius of its inscribed sphere.

An alternative but weaker quality measurement is

radius-edge ratio, which is the ratio of the circumra-

dius to the shortest edge length of the tetrahedron.

2.1 Delaunay Triangulation

Delaunay triangulation is widely used to generate

tetrahedral meshes because it provides a bridge to

prove the theoretical quality guarantees on several

meshing algorithms. There are abundant of well-

studied algorithms to construct them [3, 10]. A tri-

angulation of a vertex set in general position is a

Delaunay triangulation if the circumsphere of each

tetrahedron does not contain any mesh vertices in

its interior. For Delaunay triangulations, there are

numerous nice properties. For example, after in-

serting a new vertex p, all new tetrahedra created

in the Delaunay triangulation of new vertex set are

incident to p, i.e., have p as one of its vertices. Fur-

thermore, the new triangulation can be updated by

local operations. The nearest neighbor graph de-

�ned by a vertex set is contained in the Delaunay

triangulation of the vertex set. In other words, the

shortest edge length of the Delaunay triangulation is

the closest distance among mesh vertices. This fact

is used in proving the termination guarantee of our

algorithm. The Delaunay triangulation maximizes

the radius-edge ratio for two-dimensional vertex set,

but not always for three-dimensional vertex set.



2.2 Spacing Function

A spacing function f() is used to specify the ideal

element size at every point of the domain 
. Given

an input domain 
, the geometry structure of the

domain boundary contributes to the ideal spacing

speci�cation of a well-shaped mesh that could be

generated on 
. Ruppert [18] introduced the con-

cept called local feature size to capture the geometry

features. He has observed that lfs() changes slowly

within the domain. Formally, a function f() is �-

Lipschitz if for any two points x, y in the domain,

jf(x) � f(y)j � �jjx � yjj:

Then the Lipschitz coe�ciency of lfs() is bounded

from above by 1 [18]. In addition, the numerical er-

ror estimation also determines the size of the mesh

elements. Therefore, the spacing function is the

combination of the geometry condition and the nu-

merical condition.

On the other hand, we can deduce the spacing

function de�ned by a well-shaped mesh M over a

domain 
. There are several ways to do so. Edge

length function El() and nearest neighbor function

N() [12, 22] are two of the most used ones. Here

El(x) is the length of the longest edge of all elements

containing point x; N(x) is the distance from x to

the second closest mesh vertex. Therefore, a mesh

conforms well to a given control spacing f() if N()

(or EL()) is within a small constant factor of f().

It is simple to show that we can not generate

well-shaped and well-conformed mesh for an arbi-

trary spacing function. Speci�cally, we require that

the spacing function to have an �-Lipschitz condi-

tion for a small constant �.

2.3 Parameterizing Slivers

A tetrahedron has small aspect ratio implies that

it has small radius-edge ratio, but not vice versa.

Sliver is the tetrahedron that has small radius-edge

ratio, but the aspect ratio could be as large as pos-

sible. Let's study in detail how to de�ne sliver by

considering a tetrahedron pqrs. LetV be its volume

and L be its shortest edge length. As [4], we de�ne

� = �(pqrs) = V=L
3 as a measure of its quality.

Call tetrahedron pqrs a sliver if �(pqrs) � %0 and

�(pqrs) < �0, where �0 > 0 is a constant that we

specify later. It is useful to relate this measure with

a distance-radius ratio de�ned in [4, 9]. LetD be the

Euclidean distance of point p from the plane passing

through qrs and let Y be the radius of the circum-

circle of qrs, see Figure 1. We call triangle qrs the

base-triangle. The following lemma shows that the

value D=Y is no more than a constant factor of �

for any tetrahedron.

α
r

l
D

p

Y

s

q

Figure 1. D=Y depends on the ordering of the four ver-

tices, but all four such values are no more than a

constant factor of � for any tetrahedron pqrs.

Lemma 2.1 [Distance-Radius Quality] For

any tetrahedron pqrs, D � 12�Y , where � = V

L3 .

Proof. Let l be the shortest edge length of tri-

angle qrs, S be the area of triangle qrs. Then

S � l
2 sin(�)=2), where � is the smallest angle of

qrs, i.e., sin(�) = l

2Y
. It follows that S � l

3
=(4Y ).

Notice that V = S �D=3 = �L
3. It implies that

D = 3�L3
=S

� 3�L3

l3=(4Y )

� 12�Y;

because L � l.

Observe that the above lemma is true for any

tetrahedron and does not depends on which vertex is

ordered �rst. Notice that, it is also proved in [4] that

D � 3
�%

3

0

�Y , if tetrahedron has Ratio Property [%0].

For convenience, we will use D � c1Y , where c1 =

12�. The following lemma will verify our de�nition

of �(�) for tetrahedron � .

Lemma 2.2 [Aspect Ratio, Distance-Radius]
[14] For any tetrahedron � , if �(�) � �0 and �(�) �
%0, then the aspect ratio of � is at most

p
3%3

0

�0
.

Proof. Let R� , r� be the circumradius and in-

radius of � . Let Si, i = 1; 2; 3; 4 be the area of four

face triangles. Then we have Si � 3
p
3

4
R
2
�
. Then

V =

4X

i=1

1

3
Si � r� �

p
3R2

�
r�



And we also have

V � �0L
3
�
� �0(

R�

%0
)3

The lemma follows from
p
3R2

�
r� � �0(

R�

%0
)3.

In the rest of paper, we will use (c; R) to denote

a sphere centered at point c with radius R.

2.4 Picking Region

The re�nement algorithm is based on the following

observation. Any tetrahedron � will not be in the

Delaunay triangulation if we add any vertex that

is inside the circumsphere of � . However, to avoid

creating a very short edge in new triangulation, we

only pick a point from sphere (c� ; �R� ), where � <

1 is a constant to be speci�ed later in 4.2.3. For

convenience, we will always use c� , and R� to denote

the circumcenter and circumradius of � . We call

(c� ; �R� ) the picking region for tetrahedron � .

When c� is close to domain boundary, the dis-

tance of points from (c� ; �R� ) to the domain bound-

ary can be very small. Or to be worse, the sphere

(c� ; �R� ) could be outside the domain thus we can

not select any point. Therefore, we protect the do-

main boundary by splitting some boundary trian-

gles or segments instead of selecting points from

(c� ; �R� ).

The basic scheme of boundary protection is

same as the classic Delaunay re�nement methods.

For a triangle qrs, its equatorial sphere is the small-

est sphere containing points q, r, s. For a segment

qr, its diametric sphere is the smallest sphere con-

taining points q, r. So qr is a diameter of its di-

ametric sphere. Without confusion, sometimes we

will just use the circumsphere to denote the smallest

sphere containing an element (triangle or segment).

A point c encroaches boundary if it is contained in

the circumsphere of any boundary triangle or seg-

ment. Let (c� ; R� ) be the circumsphere of tetra-

hedron � . Assume c� encroaches the circumsphere

(c�; R�) of boundary triangle or segment �. By us-

ing triangular inequality, it can be proved [19] that

R� � R�=2 if the element � contains the projection

of c� on �.

For a boundary triangle qrs, let (cqrs; Rqrs) be

its circumcircle. We call circle (cqrs; �Rqrs) the pick-

ing region of triangle qrs. An analog de�nition for

boundary segment is de�ned as follows. Let qr be a

boundary segment and c be its middle point. Then

p

q

r

s

Rc

l

v

c

p

q

r

R

c

vu wrv

R

(a) (b) (c)

Figure 2. Circumcenter c does not encroach any bound-

ary; c encroaches a boundary triangle; c encroaches

a boundary segment.

the segment on qr centered at c with length 2�jjqrjj
is called the picking region of qr. Without confusion,

we will use (c� ; �R� ) to denote the picking region of

element � . Here R� is the circumradius of � ; � can

be a tetrahedron, triangle or segment. The picking

region of � has the same dimension as � .
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Figure 3. The picking region of a tetrahedron, a boundary

triangle and a boundary segment.

Notice that, as classic Delaunay re�nement, we

require that the circumspheres of all tetrahedra,

boundary triangles and segments do not contain any

vertex inside. In other words, if any boundary tri-

angle � is encroached by the circumcenter of a bad

tetrahedron � , then we select a point p from the

picking region of � instead of from that of � . We

protect the boundary segment similarly. Observe

that we can not select an arbitrary point inside the

picking region to re�ne the mesh. We will study in

detail how to select point inside the picking region.

2.5 Sliver Regions

We then begin studying conditions under which a

point p creates sliver pqrs with base-triangle qrs

based on above Lemma 2.1. This had been done in

[9], but for completeness, we still include it here.

Let (z; Z) be the circumsphere of a tetrahedron

pqrs and let (y; Y ) be the circumcircle of the triangle

qrs. If pqrs has the Ratio Property [%0] then Y �
Z � p

3%0Y .



Recall that, in the current context, we identify

tetrahedron pqrs as a sliver if �(pqrs) = V

L3 is less

than some threshold �0 and it has Ratio Property

[%0]. We now prove that if pqrs is a sliver, then the

distance P from p to the closest point on the circle

(y; Y ) can not be too large. This lemma had been

proved in [9, 14], but for completeness of presenta-

tion, we restate the lemma for later reference. The

bound on P presented here is better than [9].

Lemma 2.3 [Torus Lemma] [14] If tetrahedron

pqrs is a sliver (�(pqrs) � �0 and �(pqrs) � %0),

then P � c2Y , where c2 = 48%0�0.

Notice that, the constant c2 is over-estimated.

The actual constant could be much smaller.

Forbidden regions. For any base triangle qrs,

there is a set of point p such that pqrs is a sliver

(i.e., �(pqrs) � �0 and �(pqrs) � %0). We call them

the forbidden region Fqrs of base triangle qrs. The

actual shape of the forbidden region is an hourglass,

see [7] By the Torus Lemma 2.3, Fqrs is contained in

the solid torus of points at distance at most P from

the circle (y; Y ), as illustrated in Figure 4. The vol-

ume of that torus is the perimeter of the circle times

the area of the sweeping disk, which is 2�Y � �P 2.

Notice that this torus region is an over-estimate of

the forbidden region Fqrs for base triangle qrs.

q

r
y

x

y s

Figure 4. Every base triangle qrs that forms a tetrahedron

with p de�nes a forbidden region inside a torus of

points around the circumcircle of qrs.

We summarize the above discussions by the fol-

lowing lemma for later reference.

Lemma 2.4 [Forbidden Volume] [14] For any

base triangle qrs, the volume of the forbidden region

Fqrs is at most c3Y
3
, where c3 = 2�2(48%0�0)

2
.

Recall that, when the circumcenter c of a

bad element � is contained inside some equato-

rial spheres or diametric spheres, we will split the

boundary triangles and/or segments instead of se-

lecting a point around c. In other words, we only

select points from a plane or from a segment for

protecting boundary. To make it possible that the

selected point will not create new small slivers, we

�rst need that the intersection of the forbidden re-

gion with any plane or segment is small. The follow-

ing lemma will bound the area of the intersection of

the forbidden region with any plane.

Lemma 2.5 [Forbidden Area] [14] For any base

triangle qrs and a plane H, the area of the intersec-

tion of the forbidden region Fqrs with H is at most

c4Y
2
, where c4 is a constant depending on �0 and

%0.

Proof. We prove it for c4 = 192�%0�0. The area

is at most �(Y +P )2��(Y �P )2 = 4�Y P . It is at

most 192�%0�0Y
2 from Lemma 2.3.

Similarly, we have the following lemma to

bound the length of the intersection of the forbidden

region Fqrs with any line.

Lemma 2.6 [Forbidden Length] [14] For any

base triangle qrs and a line L, the length of the in-

tersection of the forbidden region Fqrs and L is at

most c5Y , where c5 is a constant depending on �0

and %0.

Proof. We prove it for c5 = 16
p
3%0�0.

The length is at most 2
p
(Y + P )2 � (Y � P )2 =

4
p
Y P . As shown by segment xy in Figure 4. It is

at most 16
p
3%0�0Y from Lemma 2.3.

2.6 Bounds on Small Slivers

For any bad tetrahedron � (sliver or tetrahedron

with large radius-edge ratio) in the mesh, we add a

point p inside its circumsphere. The insertion of new

point p removes the previous bad element, but may

create new bad elements incident to p. One may

try to avoid creating any new slivers by selecting a

point from the picking region of � . Unfortunately, it

is not always possible to do so, see [14]. We give the

following example to show that inserting any point

in the picking region will create a new sliver pqrs,

see Figure 5.

However, notice that the new slivers that can

not be avoided by inserting p always have large cir-

cumradius. In other words, we could avoid creating
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Figure 5. A base triangle qrs that forms a sliver with any

point p inside the picking region of an element � .

any new small sliver whose circumradius is within a

small constant factor of R� . To be speci�c, we call

a new sliver pqrs a small sliver if its circumradius

Rpqrs � bR� , where b is a constant to be speci�ed

later. For all other slivers with Rpqrs > bR� , we

call them large slivers respected to � . The following

lemma shows that we only have to avoid creating a

constant number of small slivers during any single

re�nement step.

Lemma 2.7 [Constant Small Slivers] [14] Let
p be any point in the picking region (c; �R� ) of an

element � . Then there is at most constant number

of new slivers pqrs incident on p such that Rpqrs �
bR� .

Proof. First, we show that the circumradius of

small sliver is not too small. The length E of longest

edge of pqrs satis�es E � (1��)R� . From the Ratio

Property [%0], we have Rpqrs � E=2 � (1��)R�

2
. For

any edge e of small sliver pqrs, the length of e is at

most 2Rpqrs � 2bR� . In other words, all vertices of

small sliver pqrs are in sphere (p; 2bR�). And from

the Ratio Property [%0], we have jjejj � Rpqrs

%0
�

1��
2%0

R� . In other words, all vertices of small slivers

incident on p are not too close.

Then the lemma follows from a volume argu-

ment.

We will use W to denote the number of small

slivers incident on a point p in the picking region.

Notice that, in above lemma 2.7, the element � could

be tetrahedron, boundary triangle or boundary seg-

ment. Observe that this lemma and the lemmas

bounding the volume, area, length of the forbidden

region of an element together imply the existence

of point p in the picking region that avoids creating

small slivers.

3 Re�nement Algorithm

Herein, I build upon the algorithmic framework of

Ruppert[18] and Shewchuk [19] to design a new

triangular/tetrahedral Delaunay re�nement algo-

rithm. This algorithm generates meshes whose sim-

plex elements have radius-edge ratio no greater than

%0 in 3D, where %0 > 2 is a user speci�ed constant.

Any generated tetrahedron � will have �(�) � �0

for a constant �0 depending on %o. In other words,

all mesh elements have small aspect ratio. In addi-

tion, the element size is approximately equal to the

control spacing function.

We �rst study how to make the mesh conform-

ing to the spacing function. Notice that, given a

control spacing f(), a mesh element is good if both

the radius-edge ratio is bounded from above and the

element size is within a small constant factor of f().

We use the following de�nition to distinguish the

good elements from the bad elements in our re�ne-

ment algorithm.

De�nition 3.1 [B-Bad Element] Given an �-

Lipschitz control spacing f(), a simplex is B-bad el-

ement if
R

f(c)
> B, where f(c) is the control spacing

value at its circumcenter c. The ratio
R

f(c)
is called

the radius-center-spacing ratio.

We found that Chew also use the similar def-

inition. His algorithm inserts the circumcenter of

the tetrahedron whose circumradius is larger than

the spacing de�ned at its circumcenter. After no

such tetrahedron exists, it then inserts the circum-

center of the tetrahedron that has large radius-edge

ratio. However, in this algorithm, we only �rst in-

sert the circumcenter of tetrahedron whose radius-

center-spacing ratio is larger than B. It automat-

ically guarantees to generate an almost good and

well-conformed mesh. For later convenience, we will

use �(�) to denote the radius-center-spacing value of

tetrahedron � . Recall that �(�) is the radius-edge

value of � ; �(�) is the volume per cube of shortest

edge length for � . Then slivers are the only possible

bad elements after this re�nement procedure. We

then try to �nd a point in the picking region of a

sliver to eliminate each sliver.

3.1 Algorithm Outline

The algorithm is built upon the classic Delaunay

re�nement method. It can be implemented by a

small modi�cation from classic Delaunay re�nement



code. As calssic Delaunay re�nement, we assume

that the input domain does not have small angles.

Recall that small angles in the input domain may

cause in�nite splittings to protect domain boundary.

We give the formal description of our re�nement

method as follows.

Algorithm: Remove-Sliver(%0, �0, �, b, B)

Enforce Empty Encroachment: For any dia-

metric sphere of boundary segment, if it con-

tains any vertex inside, then add its middle

point and update the Delaunay triangulation.

For any equatorial sphere of boundary trian-

gle, if it contains any vertex inside, then add

its circumcenter and update the Delaunay tri-

angulation. If the circumcenter encroaches any

boundary segment, we split the boundary seg-

ment instead of adding that circumcenter.

Clean Bad Elements: For any bad tetrahedron �

(�(�) > B, �(�) > %0 or �(�) � �0), add a point

p in the picking region of � such that it avoids

creating small slivers. If the circumcenter c�
encroaches boundary, we applied the following

rules instead of adding point p. Here the ele-

ment with �(�) > B has priority to be re�ned.

Encroach Equatorial Sphere: For any equato-

rial sphere of boundary triangle �, if it con-

tains point c� inside, then add a point p in the

picking region of � that avoids creating new

small slivers. Update the Delaunay triangula-

tion accordingly. But if the circumcenter c� of

� is contained in the diametric sphere of any

boundary segment, we apply the following rule

instead of adding p from (c�; �R�).

Encroach Diametric Sphere: For any diametric

sphere of boundary segment, if it contains point

c� or c� inside, then add a point p in the seg-

ment's picking region that avoids creating new

small slivers. Update the Delaunay triangula-

tion accordingly.

Notice that we can also apply the third and

fourth steps to enforce the empty boundary en-

croachment property (the �rst step). Let MC be

the mesh generated after the �rst step. We call

it Delaunay-re�nement-conforming mesh. In other

words, all equtorial spheres of boundary triangles

and dimetric spheres of boundary segments are

empty of mesn vertices inside.

Notice that we have to select a point p in the

picking region of bad tetrahedron (or boundary tri-

angle, segment) that avoids creating new small sliv-

ers. Let (c� ; R� ) be the circumsphere of the element

de�ning this picking region. We randomly select

a point p from the picking region and construct a

local mesh whose elements are all incident on p. If

there is a sliver introduced in the local mesh with

circumradius less than bR� , we discard p and rese-

lect new point. The above procedure is continued

until the local mesh is free of small slivers. Here,

the local mesh is all tetrahedra that are incident on

p. By de�ning sliver and small slivers properly, we

can show that the above procedure is expected to

terminate in constant rounds.

For the sake of easy analyzing, we will assume

that we �rst re�ne tetrahedra that is large compared

with the spacing de�ned at its circumcenter; fol-

lowed by eliminating the slivers.

3.2 Enforcing Element Size

The main idea to guarantee the element size is as fol-

lows. Recall that the given control spacing function

f() is �-Lipschitz; (x; r) denote the sphere centered

at point x with radius r. Let � be the constant

such that there is no intersection among a set of

spheres S = f(x; �f(x)) j x 2 Mcg de�ned on the

mesh vertices of Mc. In other words, S is a sphere

packing. We call sphere (x; �f(x)) the protection

sphere of mesh vertex x. By carefully selecting B

and �, the B-bad quality measure makes sure that

adding points around the circumcenter of any B-

bad element will not introduce any overlap among

all protection spheres. Then by a simple volume

argument, we know that the algorithm is guaran-

teed to terminate by just re�ning the tetrahedron

with large radius-center-spacing ratio. After the al-

gorithm terminates, the de�nition of the B-bad el-

ement will ensure that the resulted mesh elements

are well-conformed, if B and � are selected properly.

Moreover, we can also show that the radius-edge ra-

tio of each tetrahedron is bounded from above by a

constant after enforcing the control spacing func-

tion.



4 Termination and Quality

Guarantee

Notice that, the elements with large �(�) will have

priority to be re�ned over the elements with large

�(�), or small �(�). Then we �rst prove that after

some �nite steps, all elements will have �(�) � B.

4.1 Termination without Large Ele-

ment

It had been established in [15]: if N(x) � 2�
1���f(x),

then the protection sphere (x; �f(x)) does not over-

lap with any other protection sphere. Recall that

after the Delaunay-re�nement-conforming mesh is

constructed, a point p around the circumcenter of

B-bad element is \responsible" for all point inser-

tions. If the circumcenter encroaches any subfacets

or subsegments, then we add a point around the

circumcenter of the encroached boundary triangle

or the middle point of the encroached segments. If

the circumcenter of the encroached boundary trian-

gle also encroaches some segments, we add a point

near the middle point of each encroached segment.

instead of adding a point around the circumcenter

of boundary triangle.

If we only add the circumcenter, instead of

adding a point around the circumcenter in the pick-

ing region, [12] proved the following theorem.

Theorem 4.1 [Termination by Circumcen-
ter] If B � 4�

1�(5+2
p
2)��

, then the algorithm will

not introduce any vertex whose protection sphere is

overlapped with already existed protection spheres.

It is proved by analyzing the three cases of in-

serting points to a mesh: inserting the circumcenter

of a bad tetrahedron, inserting the circumcenter of

an encroached triangle; inserting the middle point

of an encroached segment. [12] shows that the re-

�nement algorithm is guaranteed to terminate by a

simple volume argument. It is achieved by de�ning

the protection sphere by constant � = B

4+(5+2
p
2)�B

.

Here we assume that there exists � > 0 such that

f(x) � � for all x.

The following theorem, by a similar analysis,

shows that our method is guaranteed to terminate

with no large element, if B and � are selected prop-

erly.

Theorem 4.2 [Terminate without Large El-
ement] If B � 4�

(1��)(1�(5+2
p
2)��)

, then the re�ne-

ment algorithm will not introduce any vertex whose

protection sphere is overlapped with already existed

protection spheres.

The following theorem guarantees a good

radius-edge ratio for all mesh simplices after each

tetrahedron � with �(�) > B is re�ned.

Theorem 4.3 [Radius-Edge Ratio] If B <
1
�
,

then for all mesh elements �

�(�) � B

2�(1� �B)
:

Proof. Assume that � has four vertice p; q; r; s.

For any point v on the circumsphere (c; R) of tetra-

hedron pqrs, we have f(v) � f(c) � �R � (1 �
�B)f(c). Then the length l of the shortest edge of

� satis�es l � 2�f(v) � 2�(1��B)f(c). Recall that
R � Bf(c). Then it follows that R

l
� B

2�(1��B)
, if

B <
1
�
.

The theoretic guarantee of the radius-edge ra-

tio of the generated mesh is almost 2 (by setting

B su�ciently small), which matches the result of

Shewchuk's 3D Delaunay re�nement algorithm [19].

Moreover, after the algorithm re�nes all tetrahedra

with large radius-center-spacing ratio, we know that

all protection spheres centered at mesh vertices do

not overlap. Thus it implies the following statement

about the nearest neighbor of every mesh vertex.

Theorem 4.4 [Nearest-neighbor] For every

mesh vertex p,

N(p) � 2�=(1 + ��)f(p):

The above lemma had been proved in [12]. No-

tice that this lemma only studies the nearest neigh-

bor function after all tetrahedra with large radius-

center-spacing ratio are re�ned. Observe that the

nearest neighbor values of the mesh vertex may be

decreased after eliminating slivers. However, we can

show that it only decreases by at most a constant

factor.

4.2 Termination of Algorithm

We then prove that the algorithm will terminate in

removing slivers if we de�ne what is bad element



properly. After the algorithm terminates, we know

that all tetrahedron � in the �nal mesh satis�es Ra-

tio Property [%0] and �(�) � �0. In other words, the

generated mesh elements have small aspect ratio.

In addition, the mesh conforms well to the spacing

function.

First of all, we classify the bad elements to three

classes: original slivers in the mesh, created slivers

by inserting some points, large radius-edge elements.

Notice that, for the classical Delaunay re�nement

method, the termination is guaranteed by showing

that the shortest distance among any two mesh ver-

tices is not decreased. However, the distance among

mesh vertices generated by this method will possibly

decrease along the insertion of new points. For ex-

ample, the insertion of a point p in the picking region

of a sliver � could possibly decrease the shortest dis-

tance by a constant factor. But, on the other hand,

we will show that the shortest distance will not de-

crease too much. Then by a volume argument, we

know that the algorithm will terminate. To be con-

venient, we will use lpre to denote the shortest edge

length before inserting a point p; use laft to denote

the shortest edge length after inserting a point p; use

lorg to denote the shortest edge length of original

mesh after the �rst step of our algorithm (enforce

empty boundary encroachment).

4.2.1 Eliminate Original Slivers.

Assume � is an original sliver after large elements

are removed. Notice that R� � lpre=2. Then we

have laft � 1��
2
lpre. Assume that there are m orig-

inal slivers in the input mesh. Then after inserting

points in the picking region of all initial slivers, the

shortest edge of the mesh is at least ( 1��
2
)mlorg.

This may be very bad, even there is a bound on the

decreasing of shortest edge length. We will show

that the shortest edge after eliminating all original

slivers is decreased by only a constant factor that is

not dependent on m.

Lemma 4.5 [Original Slivers] After eliminat-

ing all original slivers, the shortest edge of the mesh

is at least (1� �)=4 of that of the original mesh.

Proof. For simplicity, assume that pi, i =

1; 2; : : : ; are the points inserted to remove original

slivers �j , j = 1; 2; : : : respectively. Notice that,

it may need insert many points to remove a sliver

whose circumcenter encroaches domain boundary.

Some of the original slivers may be eliminated by se-

lecting point from the picking region of other sliver.

Let (ci; Ri) be the sphere responsible for select-

ing point pi, i.e, pi is selected from (ci; �Ri). Then

for any i < j, inserting pj implies that point pi

is not contained in sphere (cj ; Rj). This is from

the Delaunay property. In other words, we have

jjpi�cj jj � Rj . It implies that jjpi�pj jj � (1��)Rj .

If point pj is selected from the picking region of

an original sliver �k, then Ri = Rk. It implies that

jjpi � pj jj � (1� �)Rk � (1� �)lorg=2:

Assume that pj is selected from the picking re-

gion of a boundary triangle or boundary segment.

In other words, there is an original sliver �k, whose

circumcenter c� is contained in sphere (cj ; Rj); or c�
encroaches the circumsphere (c�; R�) of a boundary

triangle �, and c� is contained in the circumsphere

(cj ; Rj) of a boundary segment. In both cases, we

have Rj � R�=2. Notice that R� � lorg=2. We have

jjpi � pj jj � (1� �)R�=2 � (1� �)lorg=4:

Then the lemma follows.

4.2.2 Eliminate Other Bad Elements

Let � be a tetrahedron that has large radius-edge

ratio or be a sliver created during the re�nement.

Notice that to eliminate � , we have to insert at

least one point inside the circumsphere of � . There

are two sources for inserting points: a point from

the picking region of � ; or the point from the pick-

ing region of boundary triangles or segments. Then

tetrahedron � will be eliminated in �nite steps [14].

Then we show that the shortest edge of the

mesh does not change much by eliminating the

tetrahedron with large radius-edge ratio or a cre-

ated sliver. Let � be such a bad element. Notice

that to eliminate � , we have to insert at least one

point inside the circumsphere of � . There are two

sources for inserting points: a point from the picking

region of � ; or the point from the picking region of

other tetraherdon, boundary triangles or segments.

Lemma 4.6 [Other Bad Elements] Assume

that tetrahedron � has large radius-edge ratio or is a

sliver created along point insertion. Then the short-

est edge length of the mesh after eliminating � is at

least

min(
(1� �)%0

2
;
(1� �)b

4
)



factor of the shortest edge length before � is elimi-

nated.

Proof. First, we consider the case when the cir-

cumcenter c of � does not encroach the domain

boundary. Assume p is inserted to remove element

� with radius-edge ratio R�

l�
> %0. The shortest edge

introduced after inserting p is at least (1 � �)%0l� .

In other words, we have laft � (1� �)%0lpre.

Then assume that � is a sliver created along

the insertion of point from the picking region of bad

elements. Let f(�) be that bad element. In other

words, f(�) is responsible for creating the new sliver

� . Then we have R� � bRf(�). The shortest edge

introduced after inserting point p is at least (1 �
�)R� , which is at least (1 � �)bRf(�). Recall that

for any tetrahedron f(�), we have Rf(�) > lf(�)=2.

Then the theorem follows.

It remains to show that the theorem is also

true when the circumcenter c encroaches the domain

boundary. Assume that c encroaches the circum-

sphere (v;Rv) of a boundary triangle or segment.

Notice that Rv � R�=2. Thus the shortest edge in-

troduced after selecting point p from (v; �Rv) is at

least 1��
2
R� .

If � is an element that does not satisfy the Ratio

Property [%0], then we have R� � %0L� . Therefore,

we have laft � (1��)%0
2

lpre.

If � is a sliver created during eliminating some

other bad elements f(�), we have R� > bRf(�).

Then we have laft � (1��)b
4

Lf(�). The lemma then

follows.

4.2.3 Main Theorem

Combining all above analysis, we have the following

theorem.

Theorem 4.7 [Shortest Edge Length] [14] If
we select b, � and %0 such that (1 � �)b � 4 and

(1 � �)%0 � 2, the shortest edge length of the mesh

will never decrease after all original slivers are elim-

inated,

Then given %0 > 2, we select � � 1 � 2
%0

to

de�ne the picking region and use b � 2%0 to de�ne

large slivers.

Notice that we have to make sure that there

is a point in the picking region that avoids creat-

ing new small slivers. Thus the following condi-

tions are su�cient: (1) Wc3(bR� )
3
< (�R� )

3; (2)

Wc4(bR� )
2
< (�R� )

2; (3)Wc5bR� < �R� . Re-

call that c3 = 2�2(48%0�0)
2; c4 = 192�%0�0 and

c5 = 16
p
3%0�0. In other words, the �0 used to

de�ne sliver has to satisfy all three inequalities.

Then we have the following main theorem.

Theorem 4.8 [Main Theorem] The re�nement

algorithm generates a mesh whose elements have

small aspect ratio. In other words, for any tetra-

hedron � , we have �(�) � %0 and �(�) � �0.

In [14], it is showed that the element size after

eliminating slivers of an almost good mesh is at least

a constant factor of that of the input mesh. There-

fore, we know that the generated �nal mesh not only

is well-shaped but also it is well-conformed.

5 Discussions

In this paper, we present re�nement based method

that generates well-shaped mesh respecting to a con-

trol spacing, i.e., the �nal mesh is a sliver-free De-

launay mesh. In other words, any tetrahedron gen-

erated in the mesh has radius-edge ratio no more

than %0 and the volume is at least �0 times the cube

of its shortest edge length. It solves a long standing

open problem.

Notice that the �0 derived from all the proofs

may be too small for any practical use (even, it is

better than previous results [4, 9]). We would like

to conduct some experiments to see what �0 can

guarantee that there are no small slivers created.

Observe that the picking region is su�ciently large,

so typically, the generated tetrahedron elements will

have much large � values than �0.

Recall that the termination guarantee does not

depend on the de�nition of sliver. Only the ex-

istence of point p, which will not introduce small

slivers, in the picking region depends on the sliver

de�nition. Based on this observation, we can have

a variation of this algorithm. We remove sliver �

only if we �nd a point p in the picking region of �

such that the new tetrahedra with circumradius less

than bR� is better. If the algorithm terminates, each

tetrahedron � of the generated mesh has �(�) � �0.

However, the termination guarantee is not so obvi-

ous. Unlike the algorithm presented by this paper,

this variation may re�ne the small slivers, and which

in turn introduces shorter edges to the mesh. We

leave the termination guarantee as an open prob-

lem. For more discussions, the reader is referred to

[13].
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