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Abstract—We investigate efficient channel learning and oppor-
tunity utilization problem in cognitive radio networks (CRN).
We find that the sensing order of multiple channels and channel
accessing policy play a critical role in designing effective and
efficient scheme to maximize the throughput. Leveraging this
important finding, we propose a near optimal online channel
access policy. We prove that, our policy can converge to an
optimal point in a guaranteed probability. Further, we design a
computational efficient channel access policy, integrating optimal
stopping theory and multi-armed bandit policy effectively. The
computational complexity is reduced from O(KN

K) to O(K),
where N is the number of channels, andK is the maximum num-
ber of sensing/probing times in each procedure. Our simulation
results validate our policy, showing at least 40% performance
improvement over statistically optimal but fixed policy.

I. INTRODUCTION

In cognitive radio networks, effective channel utilization
plays an important role in improving system performance.
Existing schemes can be classified into two categories based
on whether channel statistics are known as a prior or not.
On one hand, optimal stopping theory (OSP) [1]–[6] has
been applied in dynamic spectrum access if the channel
statistics information is available, making decision according
to instantaneous observation. On the other hand, when there
is no prior knowledge, the MAB (multi-armed bandit theory)
[7]–[12] is used to tackle this problem, achieving a tradeoff
between channel exploration and exploitation. It is naturally
and widely believed that, these two theoretical paradigms are
sufficient to tackle online channel access problem.
However, there is still a gap between these two paradigms,

which makes the learning and utilizing processes difficult.
Optimal stopping theory focuses on the current observation
of channel states. Comparing the observations with some
statistic results, the OSP theory will lead to an optimized
threshold-based channel sequential sensing/probing and ac-
cessing (SSPA) strategy. What left the end user to do is
selecting a time to stop sensing/probing and then accessing
the channel. Different from optimal stopping theory, the MAB
framework refines the statistical results using every instanta-
neous observation, and at every timeslot selects a channel to
sense/access based on channel statistics. It is proved that MAB
based approaches often lead to optimal fixed channel accessing
in a large time horizon.
To tackle above issues, we formulate this as an observation

V.S statistics problem in time scale. It is different from the

conventional channel exploitation and exploration tradeoff
problem. At each step, the observation is not only accounted
for statistics, it might be also a direct stimulus for next
step decision, i.e., whether to use current channel for data
transmission with the observed channel quality or to further
observe another channel. Moreover, the learning and utiliza-
tion process can be seamless integrated together for efficient
spectrum access. In other words, there is no fix borderline
between exploration and exploitation processes in our scheme,
we integrate both processes in a more intelligent and adaptive
way. In this way, the time constraints in transmission and
stochastic behavior in channel states can be solved in a unified
theoretic framework.
Notice that, due to the time cost and resource constraints

in the learning process, obtaining a complete channel statistics
distribution is difficult. With only limited knowledge, the OSP
theory framework is not workable if it is not revised, and the
optimal decision might be difficult to reach. In this work, we
first propose a myopic algorithm. Although the algorithm may
not always converge to the optimal solution, we do have the
following important insight when designing the algorithm. We
note that sensing order indeed plays important role for online
channel access policy. Order can also be leveraged for building
an efficient channel learning and opportunity finding scheme.
Leveraging this insight, we present a confidence interval
estimation (CIE)-based learning policy, which achieves a near
optimal balance for exploration and exploitation. Further, we
build an OSP in MAB approach, seamlessly integrating the
two paradigm in an efficient and effective channel learning
and utilizing scheme. To the best of our knowledge, it is the
first work on integrating OSP and MAB in one framework
for solving the spectrum access problem. The computational
overhead and time cost are considered in this investigation,
which are important extensions for both MAB and OSP
theoretical framework.
The contribution of this paper is three folds.
Firstly, we find that the sensing order of multiple chan-

nels and channel accessing policy play a critical role in
designing effective and efficient scheme to maximize the
overall throughput. With appropriate sensing order, current
observations can be leveraged for opportunistic access and
reducing the computational overhead.
Secondly, we present a near optimal learning policy using

confidence interval estimation, which provide an efficient and
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Fig. 1. Online learning of optimal sequential channel sensing, probing and accessing

effective balance between channel exploration and exploita-
tion. We’ve proved that, our proposed policy converges to
optimal SSPA strategy with guaranteed probability.
Thirdly, we present a computational efficient policy with

slight performance loss, reducing the complexity from
O(KNK) to O(K), where N is the number of channels, and
K is the maximum number of sensing/probing times in a SSPA
process.
The rest of the paper is organized as follows. In Section

II, we briefly present the system model and problem formula-
tion. Section III describes our two algorithms separately. Our
numerical simulation results are presented in Section IV. We
conclude our paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cognitive radio network with potential channel
set Ω = {1, 2, . . . , N}. Each cognitive user is operated in
constant access time (CAT) mode [1]. The access time T for
channel observation and data transmission is a constant. Such
CAT scheme has been widely used for theoretical analysis in
many wireless communication studies [2] [3] [10]. We denote
each communication session as an epoch.
The channel state consists of two elements: availability and

quality. Denote ai(j) as the availability of channel i in the jth
epoch. Availability state is ai(j) ∈ {0, 1}, where ai(j) = 0
indicates the primary user is transmitting over channel i in jth

epoch, and vice versa, ai(j) = 1. We assume that the channel
idle probability θi ∈ [0, 1] (i ∈ Ω) is not known to user as
a prior, but can be available through learning. The channel
quality is characterized by the instantaneous received signal
noise ratio (SNR) q, which corresponds to a transmit rate
ln (1 + q) nats/s (1 nat is defined as log2e(≈ 1.443)bits).
We consider a typical multipath propagation environment (i.e.,
Rayleigh fading), and thus the received instantaneous SNR is
distributed exponentially [5] [13], and the p.d.f is given by

p(q) =
1

γ
e−

q
γ , q > 0

Where γ is the average received SNR. Denote qi(j) as
the quality of channel i in jth epoch, and qi(j) is under
exponential distribution with mean value γi. Note that, the
exact value of γi is also not known to user as a prior.

Naturally, the duration T is smaller than channel coherence
time but much shorter than the sojourn time of primary user
activities. It is reasonable to consider that the channel state
is stable during T . As the interval time between epochs is
relatively long in multi-user networks (as discussed in [1]),
the channel states are independent in each epoch. This basic
assumption is consistent with previous studies such as [3] [5]
[8] [10].

The online learning process of SSPA is shown in Fig.1.
In SSPA, user could sense/probe/access only one channel at
a time. At the start of epoch j, user needs to determine
a SSPA strategy 〈�ψ(j), �π(j)〉. The sensing order �ψ(j) =
(s1(j), s2(j), . . . , sK(j)), which is a permutation of channels,
determining the channel sensing/probing order in epoch j.
While the accessing rule �π(j) = (Γ1(j),Γ2(j), . . . ,ΓK(j))
is a sequence of SNR threshold, which helps determining
whether to access the channel for transmission or not. Ac-
cording to strategy 〈�ψ(j), �π(j)〉, the SSPA procedure of epoch
j proceeds step by step as follows. Note that, each channel
sensing/probing process in an epoch means a step. First, user
senses channel s1(j) to acquire channel availability as1(j)(j).
If as1(j)(j) = 1 (i.e., channel is idle), user further probes
the channel, acquiring instantaneous received SNR qs1(j)(j).
After that, the user would compare qs1(j)(j) with the first
access threshold Γ1(j) in �π(j) to determine whether to access
the channel or go on SSPA process. If the channel is busy,
user needs to wait for a constant channel probing time before
switching to next channel. Such scheme is introduced for
transceiver synchronization [4]. As a result, each step costs
a constant time τ . Then, the maximum number of steps
one could take in one epoch is K = min

(
N, �T

τ
�
)
, where

�·� represents round-down function. When user decides to
access channel for data transmission after kth channel sens-



ing/probing, the immediate throughput reward is

r(j) = ck ln
(
1 + qsk(j)(j)

)
= (1− kβ) ln

(
1 + qsk(j)(j)

)
(1)

Where β = τ
T
is the normalized observation cost, and ck =

1 − kβ denotes the normalized remaining transmission time
at step k. The actual throughput can be easily obtained by
scaling our reward with a constant T

ln 2 .
We define the deterministic learning policy χ to be a map

from observation history F to SSPA strategy 〈�ψ, �π〉. Determin-
ing a SSPA strategy 〈�ψ, �π〉 in each epoch includes: 1) selecting
K channels from channel set Ω, 2) arranging the order of the
selected K channels for sequential channel sensing/probing,
and 3) obtaining the accessing rule for channel accessing.
Our main goal is to devise a learning policy guiding the
system converging to the throughput-optimal SSPA strategy.
Meanwhile, we need the cost on learning as small as possible.
In the rest of this paper, we denote χ the learning policy and
〈�ψ, �π〉 as the joint SSPA strategy, in which �ψ is the sensing
order and �π is the accessing rule.

III. COMPUTATIONAL EFFICIENT POLICY: AN OSP IN
MAB APPROACH

To reduce the computational complexity, we consider a
decoupling approach where in each epoch, the joint decision-
making process is separated into two phases: sensing order
selection and accessing rule derivation. We formulate the
sensing order selection across epochs as a multi-armed bandit
problem, and obtain the accessing rule using optimal stopping
theory. We call this decoupling approach as ‘OSP in MAB’.
In this learning policy, the user just needs to calculate the
accessing rule of the selected order in each epoch, thus the
computational complexity is greatly decreased.

A. Algorithm Description
We consider each sensing order as an arm, and the order

selection problem across epochs is formulated as a multi-
armed bandit problem. At each epoch, user chooses an arm
according to the historical reward statistics, obtaining the
immediate throughput reward as well as refining the statistics.
During an epoch, finding the optimal SSPA strategy under the
chosen sensing order �ψ is formulated as an optimal stopping
problem. The accessing rule �π

(
�ψ,
{
�̂
θ, �̂γ

})
that maximizes the

immediate throughout in current epoch is derived by backward
deduction.
1) Order Selection Across Epochs: In each epoch, user

selects a sensing order and proceeds SSPA according to
the corresponding optimal accessing rule (the acquisition of
accessing rule is introduced in Section III-A2). The reward
is recorded for achieving optimal sensing order. Always, we
need to select the currently best sensing order to maximize
immediate reward. Note that, there is still a need to carefully
explore other suboptimal orders to improve overall throughput.
We leverage the UCB1 [14] approach in order to achieve

a proper balance between exploitation and exploration. Two
variables are used for each order �ψm (1 ≤ m ≤ M ): μ̂m(j)

is the average value of all the observed rewards of order �ψm

up to the epoch j, and no
m(j) is the number of times that �ψm

having been chosen up to epoch j. They are both initialized
to zero and updated according to the following rules:

μ̂m(j) =

{
μ̂m(j−1)no

m(j−1)+rm(j)
no
m(j−1)+1 , if order �ψm is selected

μ̂m(j − 1), else
(2)

no
m(j) =

{
no
m(j − 1) + 1, if order �ψm is selected

no
m(j − 1), else

(3)
At the very beginning, each order is chosen only once. As

the progress goes on, one would always choose the order with
highest index μ̂u

m(j) in the jth epoch. Where

μ̂u
m(j) = μ̂m(j) + rmax

√
2 ln j

no
m(j)

(4)

is composed of two items defining the exploration vs. exploita-
tion trade-off [14]. The maximum achievable immediate re-
ward in one epoch is given by rmax = (1− β) log (1 + qmax).
The first item in Equ.(4) is the average throughput μ̂m(j) up to
epoch j. The second item is related to the size of the one sided
confidence interval (according to Chernoff-Hoeffding Bounds)
for the average reward. In summary, the sensing order with
higher average reward μ̂m(j) as well as smaller no

m(j) has
the higher priority to be selected. As the enumerator 2 ln j
increases sub-linearly with epoch j, there is a tendency for
user in favor of the sensing order with the highest average
reward as time goes by.
2) Accessing Rule in One Epoch: As the sensing order

�ψ(j) = (s1(j), s2(j), . . . , sK(j)) has been determined by
Equ.(4), given the current statistics

{
�̂
θ, �̂γ

}
, the accessing rule

�π(j) = (Γ1(j),Γ2(j), . . . ,ΓK(j)) that maximizes immediate
throughput reward can then be derived by backward deduction.
Then, the SSPA in current epoch is carried out as follows: se-
quentially sense/probe channels according to channel sequence
(s1(j), s2(j), . . . , sK(j)), and access channel sk(j) (1 ≤ k ≤
K) when the observed channel quality qsk(j)(j) ≥ Γk(j).
The complete procedure of OSP in MAB approach is then

listed in Fig.2.

B. Complexity Analysis
As shown in Fig.2, since user needs only to calculate

the optimal stopping rule for the given sensing order, the
computational complexity is O (K). Comparing with CIE-
based learning policy, the computational complexity is greatly
reduced.
However, such computational benefit comes at the cost of

higher storage overhead. The OSP in MAB learning policy
needs to record two variables for each possible sensing order
and four variables for each channel statistics, thus the storage
overhead is O

(
NK

)
.

Moreover, as we stated before, the OSP in MAB policy is
a compromised approach that decouples the joint optimization
into two phases, and the two phases are optimized separately.



Algorithm OSP in MAB
1: j = 0; for all 1 ≤ m ≤ M : μ̂m = 0, no

m = 0; for all
1 ≤ i ≤ N : θ̂i = 0, ns

i = 0, γ̂i = 0, np
i = 0

2: Sense and probe channels sequentially, guarantee that all
channels are probed at least one time

3: Update θ̂i, ns
i , γ̂i, n

p
i accordingly

4: for j = 1 : M do
5: Select order �ψj

6: Proceed SSPA with 〈�ψj , �π
(
�ψj ,

{
�̂
θ, �̂γ

})
〉

7: Update μ̂m, no
m, θ̂i, ns

i , γ̂i, n
p
i accordingly

8: end for
9: for j = M + 1 : L do
10: Select order �ψ(j) = �ψm that maximizes μ̂m +

rmax

√
2 log j

no
m

11: Proceed SSPA with 〈�ψm, �π
(
�ψm,

{
�̂
θ, �̂γ

})
〉

12: Update μ̂m, no
m, θ̂i, ns

i , γ̂i, n
p
i accordingly

13: end for

Fig. 2. Algorithm on OSP in MAB Policy

It is hard to prove the optimality of the approach. However,
although strict proof on the optimality is not available, we have
done extensive simulation, finding that the performance of the
OSP in MAB learning policy is close to that of CIE-based
learning policy.

IV. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we evaluate the proposed algorithm via
simulation and make performance analysis on the achieved
results.

A. Throughput Gain of Diversity Exploitation
Before investigating the performance of the proposed learn-

ing policy, we show first the throughput gap between the
mechanisms with diversity exploitation and without diversity
exploitation when channel statistics are known. For scheme
without diversity exploitation, user chooses only one channel
in each slot. Specifically, user senses/probes a chosen channel
in each epoch. If the channel is idle then the user will transmit
data with the maximum achievable rate. Otherwise, wait until
the next epoch. Such communication model is considered in
[7]–[12]. We now consider that user could always choose
the channel with the highest expected capacity in each slot,
thus leading to the maximum achievable throughput without
diversity exploitation. We call this method statically optimal
scheme. For diversity exploitation, we consider the SSPA strat-
egy. User sequentially senses/probes multiple channels in each
epoch. Each sensing/probing costs a normalized time, β = τ

T
.

Note that, the SSPA always proceeds with optimal sensing
order and accessing rule, which is derived by appealing to
optimal stopping theory.
The throughput gain is defined as the ratio of the throughput

in our optimal SSPA strategy and the statically optimalscheme,

which is shown in Fig.3. The result is derived from 100 groups
of independent parameters. In each group, the channel idle
probability is randomly generated in the range of [0, 1] and the
average received SNR is generated in the range of [5, 15]dB.
Comparing with the static scheme, the SSPA strategy could
achieve appreciable throughput gain, fully exploiting channel
diversity. It is clear that such diversity gain increases when
N increases or β decreases. This is reasonable, since more
channels would lead more instantaneous channel quality di-
versity, meanwhile, a higher β value indicates a higher cost
for diversity exploitation. It is shown that even when β is
very high, i.e., β = 0.05 (i.e. T = 1s when τ = 50ms), the
SSPA strategy could outperform static scheme about 40% in
throughput when N = 10. In the following subsection, we
evaluate the proposed policies that attain channel diversity by
learning when channel statistics are unknown.

B. Performance of Online Learning of SSPA
In this subsection, we consider the channel statistics are

unknown, and evaluate the performance of our proposed
learning policies. Five policies are considered for perfor-
mance comparison. They are myopic policy, CIE-based online
learning policy, OSP in MAB policy, genie-based policy and
order optimal single index policy. The genie-based policy is a
reference, which uses the optimal SSPA strategy derived from
full channel statistical information, and obtain the maximum
throughput. The order optimal single index policy is presented
by Lai et al. in [7]. Such learning policy has been proved to be
order optimal when without considering diversity exploitation,
i.e., user only senses/probes one channel in each slot.
Our experiment settings are as follows. We first run the

experiment 100 rounds independently. Each round consists of
5000 decision epochs. Similarly, the channel idle probability
is randomly generated in range [0, 1] and the average received
SNR is generated in range [5, 15]dB. At the very begining of
each decision epoch, the channel availability as well as channel
instantaneous quality (i.e. SNR) are generated independently
according to statistical parameters in current round. We run
the five policies under the same environment respectively. The
parameters in the simulations are as follows: the number of
channel N = 5, normalized sensing/probing cost β = 0.05, δ
in CIE policy is set to 0.01.
Then, we derive the regret of all the four policies (except

genie-based policy) by comparing their obtained accumulated
throughput with genie-based policy. The regret is shown in
Fig.4. Moreover, the averaged regret per epoch which defined
as ρ(L)

L
is also depicted in Fig.5. It is clearly shown in these

two figures that the order optimal single index policy performs
poor in respect of throughput per unit time. As shown in Fig.5,
even when L = 5000, there exists a constant throughput gap
between the optimal SSPA strategy and order optimal single
index policy. Similar to the regret of order optimal single
index policy, the regret of myopic policy is also approximately
linearly increased with epoch number L. The main reason
is that, the myopic policy converges to a sub-optimal SSPA
strategy, leading to a constant gap on throughput. It is obvious
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that our proposed two policies: CIE-based online learning
policy and OSP in MAB policy, perform well. The regret is
sub-linearly increased with L. Generally speaking, the CIE-
based online learning policy slightly outperformsOSP in MAB
policy in respect of system throughput. However, the OSP in
MAB policy would be more favorable in practical design for
lower computational complexity.

V. CONCLUSION

In this work, channel learning and opportunity utilization
problem is considered with the resource constraints and timing
cost. We find that the channel sensing order and accessing rule
is important for maximizing overall throughput. We leverage
it to design a low computation complexity algorithm. With
appropriate sensing order, observations can be leveraged for
opportunistic access and reduce the computational overhead.
The CIE-based method can achieve an efficient and effective
balance between channel exploration and exploitation. It con-
verges to optimal SSPA strategy with guaranteed probability.
However, the CIE-based method is in high computational
complexity. The OSP-MAB based method can significantly
reduce the complexity in computation, and there is slight
performance loss. Also, the storage complexity increases, but
it is acceptable.
In future work, we are to improve the overall network

performance in presence of multiple access contention from
secondary users should also be seriously considered. Also, we
are to implement our policy to cognitive radio platform, such
as USRP [15], and provide a working system for validation.
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[2] P. Chaporkar and A. Proutiére, “Optimal joint probing and transmission
strategy for maximizing throughput in wireless systems,” IEEE Journal
on Selected Areas in Communications, vol. 26, no. 8, pp. 1546–1555,
2008.

[3] N. B. Chang and M. Liu, “Optimal channel probing and transmission
scheduling for opportunistic spectrum access,” IEEE/ACM TRANSAC-
TIONS ON NETWORKING, vol. 17, pp. 1805–1818, 2009.

[4] T. Shu and M. Krunz, “Throughput-efficient sequential channel sensing
and probing in cognitive radio networks under sensing errors,” in
Proceedings of the 15th annual international conference on Mobile
computing and networking, ser. MobiCom ’09. New York, NY, USA:
ACM, 2009, pp. 37–48.

[5] H. Jiang, L. Lai, R. Fan, and H. V. Poor, “Optimal selection of channel
sensing order in cognitive radio,” IEEE Transactions on Wireless
Communications, vol. 8, no. 1, pp. 297–307, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1109/T-WC.2009.071363

[6] B. Li, P. Yang, J. Wang, Q. Wu, and X. yang Li, “Finding optimal action
point for multi-stage spectrum access in cognitive radio networks,” in
ICC, 2011.

[7] L. Lai, H. E. Gamal, H. Jiang, and H. V. Poor, “Cognitive
medium access: Exploration, exploitation and competition,” CoRR, vol.
abs/0710.1385, 2007.

[8] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players.” IEEE Transactions on Signal Processing, pp. 5667–
5681, 2010.

[9] A. Anandkumar, N. Michael, and A. Tang, “Opportunistic spectrum
access with multiple users: Learning under competition,” in INFOCOM,
2010, pp. 803–811.

[10] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 4, pp. 731–745, 2011.

[11] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation,” in DYSPAN, 2010.

[12] C. Tekin and M. Liu, “Online learning in opportunistic spectrum access:
A restless bandit approach,” in INFOCOM, 2011.

[13] Q. Zhang and S. A. Kassam, “Finite-state markov model for rayleigh
fading channels,” IEEE Transactions on Communications, vol. 47, pp.
1688–1692, 1999.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256, May
2002.

[15] R. Dhar, G. George, and A. Malani, “Supporting integrated mac and
phy software development for the usrp sdr.” VA, USA: USENIX
Association: Networking Technologies for Software Defined Radio
Networks, SDR06, Mar. 2006.


