
A 6-Approximation Algorithm for Computing Smallest
Common AoN-supertree With Application to the

Reconstruction of Glycan Trees

Kiyoko F. Aoki-Kinoshita?, Minoru Kanehisa??, Ming-Yang Kao? ? ?, Xiang-Yang
Li†, and Weizhao Wang§

Abstract. A node-labeled rooted tree T (with root r) is an all-or-nothing subtree
(called AoN-subtree) of a node-labeled rooted tree T ′ if (1) T is a subtree of the
tree rooted at some node u (with the same label as r) of T ′, (2) for each internal
node v of T , all the neighbors of v in T ′ are the neighbors of v in T . Tree T ′

is then called an AoN-supertree of T . Given a set T = {T1, T2, · · · , Tn} of n
node-labeled rooted trees, smallest common AoN-supertree problem seeks the
smallest possible node-labeled rooted tree (denoted as LCST) such that every
tree Ti in T is an AoN-subtree of LCST. It generalizes the smallest superstring
problem and it has applications in glycobiology. We present a polynomial-time
greedy algorithm with approximation ratio 6.

1 Introduction

In smallest AoN-supertree problem we are given a set T = {T1, T2, · · · , Tn} of n
node-labeled rooted trees and we seek the smallest possible node-labeled rooted tree
LCST such that every tree Ti in T is an all-or-nothing subtree (called AoN-subtree) of
LCST. Here a tree Ti is an AoN-subtree of another tree T if (1) Ti is a subtree of T ,
and (2) for each node v of tree Ti, either all children nodes of v in T are also children
of v in Ti, or none of the children nodes of v in T is a child node of v in Ti. The widely
studied shortest superstring problem (e.g., [1–7]), which is known to be NP-hard and
even MAX-SNP hard [5], is a special case of smallest supertree problem where each
string can be viewed as a unary rooted tree. The best known approximation ratio for
shortest superstring problem is 2 1

2 [6]. The simple greedy algorithm was also proven to
be effective [4, 5], with the best proven approximation ratio 31

2 [4]. Here, we present a
polynomial-time 6-approximation algorithm for smallest supertree problem.

The superstring problem has application in data compression and in DNA sequenc-
ing, while the supertree problem also has vast applications in glycobiology. In the field
? Kanehisa Laboratory, Bioinformatics Center, Institute for Chemical Research, Kyoto Univer-

sity. Email: kiyoko@kuicr.kyoto-u.ac.jp
?? Bioinformatics Center, Institute for Chemical Research, Kyoto University, and Hu-

man Genome Center, Institute of Medical Science, University of Tokyo. Email:
kanehisa@kuicr.kyoto-u.ac.jp

? ? ? Dept. of Electrical Engineering and Computer Science, Northwestern University. Email:
kao@cs.northwestern.edu. Supported in part by NSF Grant IIS-0121491.

† Dept. of Computer Science, Illinois Institute of Technology. Email: xli@cs.iit.edu,
wangwei4@iit.edu. Xiang-Yang Li is partially supported by NSF CCR-0311174.

of glycobiology, for the study of glycans, or carbohydrate sugar chains (called glycome
informatics), much work pertains to analyzing the database of known glycan structures
themselves. Glycans are considered the third major class of biomolecules next to DNA
and proteins. However, they are not studied as much as DNA or proteins due to their
complex tree structure; they are branched structures. In recent years, databases of gly-
cans [8] have taken off, and the application of theoretical computer science and data
mining techniques have produced glycan tree alignment [9,10], score matrices [11] and
probabilistic models [12] for the analysis of glycans. In this work, we look at one of
the current biggest challenges in this field, which is the characterization of glycan tree
structures from mass spectrometry data. The retrieval of what glycan structures these
data represent still remains a major difficulty. In this work, we will assess this problem
theoretically in application to any glycan structure. By doing so, it would be straightfor-
ward to apply algorithms to quickly annotate any mass spectrometry data with accurate
glycan structures, thus enabling the rapid population of glycan databases and resulting
biological analysis.

2 Preliminaries and Problem Definition

In the remainder of this paper, unless explicitly stated otherwise, a tree is rooted. The
relative positions of the children could be significant or non-significant. The tree is
called an ordered tree if the relative positions of the children of each node is significant,
that is, there is the first child, the second child, the third child, etc., for each internal
node. Otherwise it is called a non-ordered tree. The size of a tree T , denoted as |T |, is
the number of nodes in T . The distance between nodes u and v in a tree T is the number
of edges on the unique path between u and v in T . Given a node u in a tree T rooted at
node r, the level of u is the distance between u and the root r. The height of a tree T is
the maximum level over all nodes in the tree. A node w is an ancestor of a node u if it
is on the path between u and r; the node u is then called a descendant of w. If all leaf
nodes are on the same level, the tree is called regular. Given a rooted tree T , we use
r(T) to denote the root node of T .

In this paper, we consider the trees composed of nodes with labels that are not
necessary to be unique. We assume that the labels of nodes are selected from a totally
ordered set. Each node hasx a unique ID. Given a tree T and a node u of T , a tree T ′

rooted at u is an AoN-subtree (representing All-or-Nothing subtree) of T if for each
node v that is a descendant of u, either all children of v in tree T are in T ′ or none of
the children of v in T is in T ′. Note that the definition of the AoN-subtree is different
from the traditional subtree definition. For example, consider a tree T in Figure 1 (a)
and tree T1 in Figure 1 (b). Tree T1 is an AoN-subtree of T . Tree T2 in Figure 1 is not an
AoN-subtree of T since tree T2 only contains one of the two children of node v4. Given
two trees T1 and T2, if T is an AoN-subtree of both T1 and T2, then T is the common
AoN-subtree of T1 and T2. If T has the maximum number of nodes among all common
AoN-subtrees, then T is the maximum common AoN-subtree. Given a tree T and an
internal node u of T , let T (u) be the tree composed of node u and all descendants of u
in T . Obviously, T (u) is an AoN-subtree of T .

If tree T ′ is an AoN-subtree of T , then T is an AoN-supertree of T ′. In this paper, we
assume that there is a set T of n rooted trees {T1, T2, · · · , Tn}, where ri = r(Ti) is the

3v2

v4 v5

v6

v7 v8

v9 v10 v11

v12 v13

v1

v

3v2

v4 v5

v6

v7 v8

v9 v10

v12 v13

v1

v11

1T

v
3v2

v4 v5

v6

v7 v8

v9 v10

v12 v13

v1

v11

2T

v

(a) Tree T (b) T1 is an AoN-subtree of T (c) T2 is not an AoN-subtree of T

Fig. 1. Illustration of AoN-subtree Notation

root of the tree Ti. Here trees Ti could be ordered or non-ordered. If tree T is an AoN-
supertree for every tree Ti for 1 ≤ i ≤ n, then T is called a common AoN-supertree
of T1, T2, · · · , Tn. If T has the smallest number of nodes among all common AoN-
supertrees, then T is smallest common AoN-supertree and is denoted as LCST(T). In
smallest AoN-supertree problem we are given a set T of n node-labeled rooted trees
and we seek smallest common AoN-supertree LCST(T).

3 Find the Maximum Overlap AoN-subtree

Our algorithm for finding smallest common AoN-supertree is based on greedy merging
of two trees that have the largest overlap. Given two trees T1 and T2, with root r1 and
r2 respectively, if an internal node u of T1 satisfying that (1) u = r2 and (2) T1(u) is an
AoN-subtree of T2, then T1(u) is an overlap AoN-subtree of tree T2 over T1, denoted
by T1(u) = T1eT2. Note that if tree T is an overlap AoN-subtree of T2 over T1, it is not
necessary that T is an overlap AoN-subtree of T1 over T2. If T has the largest number
of nodes among all overlap AoN-subtrees of T2 over T1, then T is the largest overlap
AoN-subtree. Let L(T1, T2) be the largest overlap AoN-subtree of T2 over T1 and note
that L(T1, T2) is not necessarily symmetric. If we remove L(T1, T2) from T2, then the
remaining forest is denoted as T2 − T1.

Here, we assume that the tree is non-ordered. If the tree is ordered, then find the
largest overlap AoN-subtree is trivial. Without loss of generality, we assume that the
labels of the tree are integers from [1,m]. We abuse the notations little bit here by using
u to also denote the label of a node u with ID u if it is clear from context. Given two
trees T1 and T2, we define a total order-relation ≺ of two trees as follows.
1. If r(T1) < r(T2), we say T1 ≺ T2. If r(T2) < r(T1), we say T2 ≺ T1.
2. If r(T1) = r(T2), we further let that {u1, u2, · · · , up} be all the children of r(T1)

in T1 and {v1, v2, · · · , vq} be all the children of r(T2) in T2. W.l.o.g., we also
assume that the children are sorted in an order such that T1(ui) º T1(uj) for
any 1 ≤ i < j ≤ p and T2(vi) º T2(vj) for any 1 ≤ i < j ≤ q. Let k the
smallest index such that either T1(uk) ≺ T2(vk) or T2(vk) ≺ T1(uk). We have
three subcases: a) If T1(uk) ≺ T2(vk), we say T1 ≺ T2; b) If T1(uk) ≺ T2(vk),
we say T1 ≺ T2; c) Such k does not exist. If p < q, then T1 ≺ T2; if p > q then
T2 ≺ T1; if p = q, then T1 P T2.

Notice that here T1 ¹ T2 if T1 ≺ T2 or T1 P T2; T1 º T2 if T1 Â T2 or T1 P T2;
T1 Â T2 if T2 ≺ T1. More formally, Algorithm 1 summarizes how to decide the order-
relation between two non-ordered trees.

Algorithm 1 Decide the relationship of two trees.
Input: Two trees T1 and T2.
Output: The relationship between T1 and T2.
1: Label all internal nodes in T1 WHITE and all leaf nodes BLACK.
2: repeat
3: Pick any internal node in T1 such that all children nodes are marked BLACK, say u. Sort

all children nodes of T1(u) in the order as {u1, u2, · · · , up} such that T1(ui) º T1(uj)
for any 1 ≤ i < j ≤ p.

4: Mark u BLACK.
5: until all internal nodes in T1 are BLACK.
6: Mark all internal nodes in T2 WHITE and all leaf nodes BLACK.
7: repeat
8: Pick any internal node in T2 such that all children nodes are with marked BLACK, say

u. Sort all children nodes of T2(u) in the order as {v1, v2, · · · , vp} such that T2(vi) º
T2(vj) for any 1 ≤ i < j ≤ p.

9: Mark u BLACK.
10: until all internal nodes in T2 are BLACK.
11: If r(T1) < r(T2) then return T1 ≺ T2. end if
12: If r(T1) > r(T2) then return T1 Â T2; end if
13: Assume {u1, u2, · · · , up} are children nodes of r(T1) and {v1, v2, · · · , vp} are children

nodes of r(T2).
14: for i = 1 to min(p, q) do
15: If T1(ui) ≺ T2(vi) return T1 ≺ T2; if T1(ui) Â T2(vi) return T1 Â T2.
16: If p < q return T1 ≺ T2; if p > q return T1 Â T2; if p = q return T1 P T2.

In Algorithm 1, we first compute a lexicographic ordering of a tree and the compute
the order-relation of two trees. Note for any two siblings of a common parent, we can
compare the order of them by a breadth first search. Thus, the worst case happens when
the tree is a complete binary tree and all nodes have the same label, which takes time
O(n2). Thus, for a tree T of n nodes, we have

Lemma 1. Algorithm 1 computes the ordering of a tree T in time O(n2).

We present a recursive method (Algorithm 2) that decides whether one tree is an
AoN-subtree of another. Given two trees T1 and T2, we then show how to find the
largest overlap tree of T2 over T1. First, we order the trees T1 and T2, and then find
the internal node u such that T1(u) is an AoN-subtree of T2 and |T1(u)| is maximum.
From Lemma 1, the ordering of trees T1 and T2 need O(|T1|2 + |T2|2). Notice that for
any internal node u of T1, checking whether T1(u) is an AoN-subtree of T2 takes time
O(|T1(u)|. Thus, the total time needed is

∑
u∈T1

|T1(u)| ≤ |T1|2. Thus, we have

Lemma 2. Finding largest overlap tree has time complexity O(|T1|2 + |T2|2).
We expect a better algorithm to find the largest overlap AoN-subtree based on the

fact that there exists efficient linear time algorithm that can find a largest common sub-
string of a set of strings. However, designing such efficient algorithm is not the scope
of this paper. We leave it as a future work.

Algorithm 2 Decide whether a tree T2 is an AoN-subtree of T1.
1: Flag ← FALSE;
2: For each internal node in T1, order its p children from left to right as u1, u2, · · · , up such

that for any pair of children ui and uj , T1(ui) ¹ T1(uj) for i < j. Similarly, we also order
the children of each internal node in T2 similarly. Assume that the children of r(T2) from
left to right is {v1, v2, · · · , vq}.

3: for each internal node u of T1 such that u = r(T2) and Flag==FALSE do
4: Assume that the set of “sorted” children nodes of u is {u1, u2, · · · , up}.
5: Flag ← TRUE if (1) p = q, and (2) tree T2(ui) is an AoN-subtree of T1(vi) for evey ui

with 1 ≤ i ≤ p.
6: Return Flag;

4 Approximate Smallest Common AoN-Supertree

We then consider how to find smallest common AoN-supertree given a set T of n regu-
lar trees {T1, T2, · · · , Tn}. Here, we assume that no tree Ti is an AoN-subtree of another
tree Tj . It is known that the problem of computing smallest common superstring, given
n strings, is NP-Hard and even MAX-SNP hard [5]. Notice that computing the smallest
common superstring is a special case of computing smallest common AoN-supertree
when all trees are restricted to a rooted unary tree. Thus, we have

Theorem 1. Computing smallest common AoN-supertree is NP-Hard.

4.1 Understanding the Structure of LCST

Notice that if a tree T is a common AoN-supertree of T = {T1, T2, · · · , Tn}, then for
each tree Ti, we can find an internal node u of T such that there is an AoN-subtree T (u)
of T root at u that matches Ti. When multiple such internal nodes u exist, we choose
any node with the lowest level, denoted by ri(T). For notational simplicity, we also
denote the AoN-subtree of T that equals to Ti rooted at ri(T) as Ti if it is clear from
the context. If ri(T) is an ancestor of rj(T), then we also say that Ti is an ancestor of
Tj . Similarly, if ri(T) is a descendant of rj(T), then we also say that Ti is a descendant
of Tj . If Ti is an ancestor of Tj and there does not exist a tree Tk such that Tk is an
ancestor of Tj and Ti is ancestor of Tk, then Ti is the parent of Tj and Tj is a child of Ti.
Lemma 3 and 4 (whose proofs are omitted due to space limit) showed that the notation
of child and parent is well defined in smallest common AoN-supertree LCST(T).

Lemma 3. If Ti is Tj’s parent in tree LCST(T), then either rj(LCST(T)) is a node in
Ti or a child of some leaf node of Ti.

Lemma 4. There is a unique tree Ti such that ri(LCST(T)) is the root of tree LCST(T).

Given a tree set T and a common AoN-supertree T , if any node in tree T is in a tree
Ti for some index i, then we call this common AoN-supertree condensed common AoN-
supertree. If a common AoN-supertree T is not a condensed common AoN-supertree,
then recursively apply the following process will generate a condensed common AoN-
supertree. First, we pick any node u ∈ T that is not in any tree Ti. Remove u, and let all

children of u in T become the children of u’s parent. Notice that this will not violate the
all-or-nothing property of the AoN-supertree. Thus, we will only consider condensed
common AoN-supertrees when we approximate smallest common AoN-supertree. No-
tice Lemma 3 and Lemma 4 implies the following lemma.

Lemma 5. The optimum tree LCST(T) is a condensed common AoN-supertree.

Notice that if T is a common AoN-supertree of T , then for any tree Ti, its parent is
unique. Together with Lemma 4, we have the following lemma.

Lemma 6. Given T and a condensed common AoN-supertree T , for any node ri(T),
either ri(T) is the root of T or there is a unique j where rj(T) is the parent of ri(T).

If we treat each tree Ti as a node, then Lemma 6 reveals that we can construct a
unique virtual overlap tree VT(T) as follows. Each vertex of the virtual overlap tree
corresponds to a tree Ti. If ri(T) is the root of tree T , then Ti is the root. Otherwise, Ti’s
unique parent in T , denoted by P(Ti), becomes its parent in VT(T) and all children in
T becomes its children in VT(T). When Ti is Tj’s parent, from Lemma 3, the root of
Tj is either in Ti or a child of a leaf node of Ti. If Tp and Tq are both children of Ti,
then Tp and Tq are siblings. Following lemma reveals a property of the siblings.

Lemma 7. If Tp and Tq are siblings, then Tp and Tq do not share any common nodes.

Thus, given a virtual overlap tree VT(T), the size of the condensed common AoN-
supertree is |T | = |Ti|+

∑
Tj∈T −Ti

|Tj −P(Tj)| =
∑

Tj∈T |Tj |−
∑

Tj∈T −Ti
|P(Tj)eTj |,

where Ti is the root in VT(T). Algorithm 3 will reduce the size of a condensed tree T .

Algorithm 3 Find the largest overlap AoN-subtree.
Input: A tree set T and a condensed common super tree T .
Output: A new tree T .
1: for each tree Tj in VT(T) that is not a root do
2: if the overlap of Ti on Tj in tree T is not equal L(Ti, Tj) where Ti is P(Tj) then
3: Find the the node u ∈ Ti such that Ti(u) is L(Ti, Tj).
4: For each tree Tp who is a sibling of Tj and rp is an descendant of u, we construct a

new tree T new
p that equals T (rp). Similarly, we also construct the tree T new

j .
5: For each tree T new

p , remove T new
p − Ti from T . Tree T becomes T temp.

6: We overlap tree T new
j at node u. For each tree T new

p , we let root of T new
p be the child

of any leaf node in T temp. Update tree T as T temp.

Theorem 2. Algorithm 3 always maintains tree T as a condensed AoN-supertree. More-
over, for any tree Tj that is not a root, if Tj does not have a maximum overlap with its
parent, then Algorithm 3 decreases the size of T by at least 1.

PROOF. It is not difficult to observe that T temp is a condensed common AoN-supertree.
Thus, we focus on the second part. Without loss of generality, we assume that Tj , which
is not the root, does not have the maximum overlap with its parent Ti. Notice that for
each tree Tk who is a child of Ti and rk is a descendant of u (including Tj), there is an
overlap of Tk over Ti. It is not difficult to observe that the sum of the overlap is smaller

than the size of Ti(u). On the other hand, the maximum overlap of Tj over Ti is exactly
Ti(u). Thus, the overall overlap is increased by 1 at least. In order words, the size of
T temp is decreased at least by 1.

Theorem 2 shows that for any condensed tree T , we can decrease its size by apply-
ing Algorithm 3 as long as some tree does not have a maximum overlap with its parent.
Therefore, we can focus on the tree in which each non-root AoN-subtree always has a
maximum overlaps with its parent. We denote this kind of common AoN-supertree as
maximum condensed common AoN-supertree (MCCST). We then have

Theorem 3. Smallest common AoN-supertree LCST(T) is indeed a MCCST.

4.2 Compute Good MCCST

With understanding of structures of LCST in Section 4.1, we are now ready to present
our algorithm with constant approximation ratio. Notice that our focus now is to choose
maximum condensed common supertree (MCCST) with smaller size among all MCC-
STs. Given a tree set T , the naive way is to first compute L(Ti, Tj) for each pair of Ti

and Tj in T . After that, for each Tj , we choose the Ti such that L(Ti, Tj) is maximum
as its parent, which we call treelization. However, this solution does not guarantee a
valid virtual overlap tree due to two reasons.

i

a

a

b

a

c d

c

b

d

c

T

a

p

b

a

c d

c

b

da d b

T

b

q

b

a

c d

c

b

dc

T

c

(a) Tree Ti (b) Tp (c) Tq

Fig. 2. Illustration of confliction.

– First, it is possible that Tp and Tq choose the same tree Ti as their parent, and it
is not possible for Tp and Tq to have maximum overlap with Ti simultaneously.
In this case, we call tree Tp conflicts with Tq regarding Ti. One such example is
shown in Figure 2. The maximum overlap of tree Tp and Tq over Ti are shown in
Figure 2 (b) and (c) respectively. It is not difficult to observe that Tp and Tq can not
maximally overlap with Ti simultaneously.

– Second, it is possible that Tj chooses Ti as its parent and Ti chooses a tree Tk

who is a descendant of Tj as its parent. It thus creates a cycle in the virtual overlap
graph, which we called cycled tree.

If we ignore the second problem, then any treelization avoids the first problem in the
virtual overlap graph is a special forest with possibly several disconnected components
such that each component is a tree whose root may have one backward edge toward its
descendant. We call the forest a cycled forest.

In order to find the cycled forest with minimum size, we model it as a linear pro-
gramming problem. Here, xi,j = 1 if tree Tj chooses Ti as its parent; otherwise
xi,j = 0. Notice that for each tree Tj , it has exactly one parent, thus

∑
i:i 6=j xi,j = 1 for

each tree Tj . On the other hand, if xi,j = 1, then in order to avoid the first problem, any

tree Tk conflicting with Tj with respect to Ti should satisfy that xi,k = 0. The objective
is to minimize

∑
i 6=j xi,j · (|Tj −L(Ti, Tj)|), i.e., the total size of the trees with cycles.

Following is the Integer Programming we aim to solve, which is denoted as IP1.X
xi,j · (|Tj − L(Ti, Tj)|). (1)

Subject to

8<:
P

i6=j xi,j = 1 ∀ Tj

xi,j + xi,k ≤ 1 ∀ i, j, k such that Tj conflicts Tk regarding Ti

xi,j = {0, 1} ∀ i 6= j

(2)

Algorithm 4 Greedy Method To Compute A Cycled Forest.
Input: A tree set T and a condensed common AoN-supertree T .
Output: A cycled forest.
1: Compute L(Ti, Tj) for each pair of trees and sort them in a descending order. Initialize the

tree set S = {L(Ti, Tj) | ∀i 6= j} and TC = ∅.
2: while S is not empty do
3: Choose the tree in S with the maximum size, say L(Ti, Tj).
4: AddL(Ti, Tj) inTC and removeL(Tp, Tj) from S for any p 6= i in S. RemoveL(Ti, Tq)

from S if Tq conflicts with Tj regarding Ti.
5: Set xi,j = 1 if L(Ti, Tj) is in TC, and xi,j = 0 otherwise.

Algorithm 4 greedily selects the L(Ti, Tj) and it finds one solution to IP1.

Theorem 4. Algorithm 4 computes a solution to the Integer Programming (1).

PROOF. It is not difficult to verify that the solution does satisfy the constraints. Thus, we
focus on the proof that it minimizes

∑
xi,j · (|Tj −L(Ti, Tj)|). Since,

∑
i:i 6=j xi,j = 1

for each Tj ,
∑

xi,j · (|Tj −L(Ti, Tj)|) =
∑

Ti∈T |Ti| −
∑

i 6=j xi,j · |L(Ti, Tj)|. Thus,
we only need to show that

∑
i 6=j xi,j · |L(Ti, Tj)| is maximized.

Without loss of generality, we assume that Algorithm 4 choosesL(Ti1 , Tj1),L(Ti2 , Tj2),
· · · ,L(Tin , Tjn) in that order. We also assume that the solution to IP1 is xopt, and all
L(Ti, Tj) such that xopt

i,j = 1 are ranked in a descending orderL(Tp1 , Tq1),L(Tp2 , Tq2),
· · · ,L(Tpn , Tqn). Obviously, L(Ti1 , Tj1) ≥ L(Tp1 , Tq1). Let k be the smallest index
such that ik 6= pk or jk 6= qk. If such k does not exist, then Algorithm 4 does compute a
solution to IP1. Otherwise, such k must exist. Since greedy method always chooses the
maximum L(Ti, Tj) that does not violate the constraint (2) of the Integer Programming
IP1, L(Tik

, Tjk
) ≥ L(Tpk

, Tqk
). Without loss of generality, we assume that xopt

a,jk
= 1

and Tb1 , Tb2 , · · · , Tby are the trees such that xopt
ik,b`

= 1 and Tjk
conflicts with Tb`

re-
garding Tik

. Let rbi be the root of tree L(Tik
, Tbi), then rbi must be the descendant of

root of tree L(Tik
, Tjk

). Since Tbi does not conflict with Tbj for any pair of i, j, then
rbi is neither an ancestor nor a descendant of rbj . Now we modify the solution xopt as
follows. First, let xopt

ik,jk
= 1 and xopt

ik,b`
= 0 for 1 ≤ ` ≤ y. Then, set xopt

a,b`
= 1 if it

did not violate Constraint (2) and xopt
z,b`

= 0 for any z that does not violate Constraint
(2). The modified solution xopt must satisfy Constraint (2). After this modification,
the only difference between original solution and modified solution is the threes that
overlap Tik

and Ta. Let δ1 be the increase of the overlap by replacing Tjk
with trees

Tb1 , Tb2 , · · · , Tby
, and δ2 be the decrease of the overlap by replacing Tb1 , Tb2 , · · · , Tby

with Tjk
. Since, L(a, TTjk

) is an AoN-subtree of L(Tik
, TTjk

), then δ1 ≥ δ2. Thus,∑
i 6=j xi,j · |L(Ti, Tj)| does not increase. This is a contradiction, which proves that

Algorithm 4 computes a solution to the Integer Programming (1).

Since
∑

xopt
i,j · (|Tj − L(Ti, Tj)|) ≤ |LCST(T)|, we found a cycled forest that is

smaller than the size of LCST. Notice that cycled forest is not a valid tree because it
violates the tree property. Following we will show that simple modification based on the
cycled tree that was found by Algorithm 4 does output a valid common AoN-supertree.
In the meanwhile, we also will show that the increase of the size is at most a constant
time of the size of the original cycled forest.

Algorithm 5 Modify the cycled forest.
Input: Cycled Forest CF.
Output: A valid virtual overlap tree.
1: Rank all cycled tree in cycled forest CF in arbitrary order, say CF1,CF2, . . . ,CFk.
2: For a cycled tree CFi, find the unique cycle Ci in tree CFi. Let ri be any node in Ci and
P(ri) be its parent, then we remove the edge between ri and P(ri).

3: Concatenate the tree CFi to CFi without conflict for i = 2, · · · , k, i.e., let ri be a child of
some node in CFi−1.

4: Output the final tree as a valid virtual overlap tree.

Borrowing some ideas from the construction of shortest common super-string (see
[5] for more details), we have the following lemma

Lemma 8. For any two cycles Ci and Cj in two different cycle tree CFi and CFj , let
si and sj be any node in Ci and Cj respectively, then L(si, sj) ≤ |Ci|+ |Cj |.
Theorem 5. Algorithm 5 finds a common AoN-supertree of T with size≤ 6·|LCST(T)|.
PROOF. Let CF1,CF2, . . . ,CFk be all the cycled trees computed by Algorithm 4.
Then,

∑k
i=1 |CFi| ≤ |LCST(T)|. Let Ci be the cycle in cycled tree CFi, and si be

the node whose corresponding tree has the largest size in cycle Ci. Lemma 8 shows
that L(si, sj) ≤ |Ci| + |Cj | for any pair of cycles Ci and Cj . Unlike the string
case, it is possible that two or more trees overlap with the same tree. However, if
nodes sj1 , sj2 , . . . , sjk

overlap with the tree si in LCST(T), then
∑k

`=1 |L(si, sj`
)| ≤∑k

`=1 |Cj`
|+ |Ci|+ |CFi|. Thus,

∑k
`=1 |L(si, sj`

)| ≤ ∑k
`=1 |Cj`

|+ |Ci|+ |CFi|. For
each si, let P(si) be its nearest ancestor in the virtual overlap graph of LCST(T), then∑

si
|P(si)esi| ≤

∑
si
|L(P(si), si)| ≤ 2

∑
si
|Ci| + |CFi| ≤ 4

∑
si
|CFi|. Thus,

|LCST(T)| ≥ ∑
si
|si|−

∑
si
|P(si)esi| ≥

∑
si
|si|−4

∑
si
|CFi|. Recall the virtual

overlap tree computed by Algorithm 5 has the size at most
∑

si
|si|+

∑
si
|CFi|. Thus,∑

si
|si|+

∑
si
|CFi| ≤ |LCST(T)|+ 5

∑
si
|CFi| ≤ 6|LCST(T)|.

Theorem 6. The time complexity of our approach is O(n ·m2), where n is the number
of trees and m is the number of total nodes in these n trees.

PROOF. Note that m =
∑

Ti∈T |Ti|, and the time complexity to find the maximum
overlap of Tj over Ti is O(|Ti|2 + |Tj |2). Thus, finding the maximum overlap between
each pair of trees is of time O(n · m2). Algorithm 4 takes time O(n2 + n log n) and
Algorithm 5 only takes time O(n). Thus, the overall time complexity is O(n ·m2).

5 Conclusion

In this paper, we gave a 6-approximation algorithm for smallest common AoN-supertree
problem. It has applications in glycobiology. There are several interesting problems left
for future research. It is known that the simple greedy algorithm will have an approxi-
mation ratio 3.5 (conjectured to be 2). It remains to be proved whether a similar tech-
nique as of [4] can be used to reduce the approximation ratio of our method to 5.5. Fur-
ther, it remains an open problem what is the lower bound on the approximation ratio of
the greedy method when all trees of the tree set T are k-nary trees. Secondly, currently
the best approximation ratio for superstring problem is 2.5 [6] (not using the greedy
method). Since superstring is a special case of the AoN-supertree problem, it remains
an open question whether we can get similar approximation ratio for AoN-supertree
problem. The last but not least important problem is to improve the time-complexity of
finding the maximum overlapping subtree of two trees. Is there a linear time algorithm
that can find the maximum overlap AoN-subtree of two trees?

References

1. Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Infor-
mation and Computation (1989) 1–20

2. Teng, S., Yao, F.: Approximating shortest superstrings. In: Annual Symposium on Founda-
tions of Computer Science. (1993)

3. Weinard, M., Schnitger, G.: On the greedy superstring conjecture. In: FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science. (2003) 387–398

4. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett.
93 (2005) 13–17

5. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest
superstrings. Journal of the ACM 41 (1994) 630–647

6. Sweedyk, Z.: A 2 1
2

-approximation algorithm for shortest superstring. SIAM Journal of
Computing 29 (1999) 954–986

7. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring problem.
In: Combinatorial Pattern Matching. (1996) 87–101

8. Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K., Ueda, N., Hamajima, M.,
Kawasaki, T., Kanehisa, M.: Kegg as a glycome informatics resource. Glycobiology (2005).

9. Aoki, K., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., Kanehisa, M.:
Kcam (kegg carbohydrate matcher): A software tool for analyzing the structures of carbohy-
drate sugar chains. Nucleic Acids Research (2004) W267–W272

10. Aoki, K., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., Mamitsuka, H.:
Efficient tree-matching methods for accurate carbohydrate database queries. In: Proceedings
of the Fourteenth International Conference on Genome Informatics (Genome Informatics,
14). (2003) 134–143 Universal Academy Press.

11. Aoki, K.F., Mamitsuka, H., Akutsu, T., Kanehisa, M.: A score matrix to reveal the hidden
links in glycans. Bioinformatics 8 (2005) 1457–1463

12. Ueda, N., Aoki-Kinoshita, K.F., Yamaguchi, A., Akutsu, T., Mamitsuka, H.: A probabilistic
model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains.
IEEE Transactions on Knowledge and Data Engineering 17 (2005) 1051–1064

