Average Case Analysis for Tree Labelling Schemes

Ming-Yang Kad!, Xiang-Yang Li*2, and WeiZhao Warfg

1 Northwestern University, Evanston, IL, USA,
kao@cs.northwestern.edu
2 lllinois Institute of Technology, Chicago, IL, USA,
xli@cs.iit.edu, wangwei4@iit.edu

Abstract. We study how to label the vertices of a tree in such a way that we can
decide the distance of two vertices in the tree given only their labels. For trees,
Gavoilleet al. [7] proved that for any such distance labelling scheme, the maxi-
mum label length is at leagtlog® n — O(log n) bits. They also gave a separator-
based labelling scheme that has the optimal label le@gthg . - log(H.(T))),
where H,,(T') is the height of the tree. In this paper, we present two new dis-
tance labelling schemes that not only achieve the optimal label lengtig n -
log(H.(T))), but also have a much smaller expected label length under certain
tree distributions. With these new schemes, we also can efficiently find the least
common ancestor of any two vertices based on their labels only.

1 Introduction

For commonly used graph representations such as adjacency matrices and lists [15],
one cannot determine whether or not two vertices are adjacent in the graph only based
on the names of the two vertices. In contrast, Breuer and Folkman [5, 6] proposed to
label the vertices in such a way that there exists a polynomial-time algorithm that can
determine the adjacency of two vertices given only their labels. Such a labelling scheme
is generally known as aadjacency labelling schemk the length of a label is allowed

to be arbitrarily large, then one can encode any desired information. However, for a
labelling scheme to be useful, the label length should be relatively short (say, polylog-
arithmic in the size of the graph) and yet allows one to decode the adjacency efficiently
(say, time polynomial in the input label lengths). Breuer and Folkman [5, 6] proposed to
use Hamming distances to label general graph(+#Ant)-labelling scheméabels each
vertex with anm-bit label such that two vertices are adjacent if and only if their labels
are at Hamming distanaeor less of each other. Breuer and Folkman [6] showed that
everyn-vertex graph has @nA, 4A — 4)-labelling scheme, wherd is the maximum

vertex degree in the graph. Kannanal. [14] gave adjacency labelling schemes with
O(log n)-bit labels for several families of graphs, including graphs of bounded degrees,
graphs of bounded genuses, trees, and various intersection-based graphs such as inter-
nal graphs and-decomposable graphs. Alstrup and Rauhe [4] improved the bound to
klogn + O(log" n) for the family A, of graphs with arboricitys andn vertices.

* Supported in part by NSF Grant 11S-0121491.
** Supported in part by NSF Grant CCR-0311174.

It is useful and possible to design a more general labelling scheme that also con-
tains the distance information.distance labelling schenpermits one to determine the
distance between two vertices efficiently based only on their labels [7, 12]. Peleg [12]
gave anO(log” n)-bit distance labelling scheme for general trees adécomposable
graphs. He showed [12] that for a family @fvertices graphs wittf2 (exp(n' <)) non-
isomorphic graphs, any distance labelling scheme must use labels with a total length
2(n**¢). Gavoilleet al. [7] studied the bounds for the label length of the distance la-
belling schemes for several graph families. For general graphs, they gave a tight bound
of ©(n) bits; for planar graphs, an upper bound®f,/n logn) and a lower bound of
2(n'/3); for bounded-degree graphs, a lower bound2gt/n); and for trees, a tight
bound of©(logn - log(H,(T))), whereH,, (T) is the height of the tree. Alstrup and
Rauhe [3] built the lower-bounds of length of the label for supporting ancestor, sibling
and connectivity. Recently, several distance labelling schemes considering bounded dis-
tance and weighted distance have been devised and surveyed by Gavoille and Peleg
[10]. Alstrup et al. [2] designed a labelling scheme for a rooted tree to compute in
constant time the least common ancestor from the labels of any two vertices. The la-
bels assigned are of siz&log n) bits for a tree ofx vertices. Alstrupet al.[1] studied
labelling schemes for trees, supporting various relationships (ancestor, sibling, and con-
nectivity) between vertices at small distance.

In this paper, we study distance labelling schemes for unweighted trees. For trees,
Gavoille et al. [7] proved that for any distance labelling scheme, the label length is
at Ieast% log®n — O(logn); they also gave a separator-based labelling scheme that
has a label lengthD (log®). Gavoille [9] improved the label scheme @(logn -
log(H,(T'))). Here, we present two new distance labelling schemes- backbone-based
scheme and rake-based scheme, that not only achieve the asymptotically optimal label
lengthO(log n -log(H,,(T))) but also have a much smaller expected label length under
certain tree distributions. With these new schemes, we can also find the least common
ancestor of any two vertices based on their labels only. Table 1 summarizes our main
results, wheré is the maximum vertex degreB(H,,) is the expected height of a tree.

2 Preliminaries

Unless explicitly stated otherwise, a tree is always rooted at verfElxe relative posi-
tions of the children are significant. Te&eof a treeT’, denoted a$T'|, is the number
of the vertices ifil". Given two vertices, andv in a treeT’, the unique simple path be-
tweenu andv in T' is denoted a®(u, v, T'), and the number of edges &tu, v, T) is
thedistancebetweern: andv, denoted agr (u, v). Thelevelof a vertexu is dr (u, 7).
Theheightof a treel” with n vertices, denoted &3,,(T'), ismax,cr dr(u, r). A vertex
w is anancestorof a vertexu if it is on the pathP(u, r, T'); the vertexu is then called a
descendandf w. A vertexw is theleast common ancestof two verticesu, v if w has
the largest level among all common ancestors ahdv. For a treel” and a vertex,
let T denote the subtree @f formed byu and all its descendants .

A vertex labellingfor a treeT is a functionL that assigns an integér(u,T") to
each vertex in the tre€. A distance calculatois a functionf that computes the dis-
tance of two vertices:,v in treeT given only their labels. (v, T) and L(v,T) but

tree labelling schemes separator-based backbone-based rake-based
worst case O(logn - log(Hn(T)))|@(logn - log(Hn(T)))|©(logn - log(Hn(T)))
deterministic analysis Theorem 5 Theorem 2 Theorem 4
upper O(logn - loglogn) O(logn-loglogn) |O(logn-logloglogn)
binary search PP Theorem 7 Theorem 7 Theorem 10
tree Distribution lower 2(logn - loglogn) Q(%) 2(logn)
Theorem 9 Theorem 8 Lemma 1
upDer O(log” n) O(log”n) O(log” n)
uniform tree PP Theorem 5 Theorem 2 Theorem 4
H : : 2 logZn log“ n
distribution lower 2(log”n) Sy S rrsrred)
Theorem 13 Theorem 12 Theorem 11
upDer O(logn - loglogn) O(logn-loglogn) O(logn-loglogn)
distributions with | PP Theorem 14 Theorem 14 Theorem 14
- e Tog n-log log i
E(H,) = O(log n) lower 2(e) 2(logn) 2(logn)
Theorem 6 Lemma 1 Lemma 1
Unpel O(log®n) O(log®n) O(log”n)
distributions with PP Theorem 5 Theorem 2 Theorem 4
E(Hy,) = 2(n®) N(log” n) 2(logn) 2(logn)
lower
Lemma 1 Lemma 1 Lemma 1

Table 1. Summary of the main results of this paper.

not 7. A distance labelling schemis a two-component tupl€ = (L, f) such that
f(L(w,T),L(v,T)) = dr(u,v) for any pair of verticesi,v € T. Thelengthof a

labelling schemeC for a treeT" with n vertices, denoted a&,(L£,T'), is defined as
£,(L,T) = maxyer |L(u, T)|, where|z| is the number of bits in the integer The

length?,, (L) of a labelling schemé is defined a¢,,(£) = maxr £,,(£,T). All loga-

rithmic functionsin in this paper are in bask It is easy to show that

Lemma 1. For any tree labelling schemé and tree distributionE(¢,,(£)) > logn.

3 Three Tree Labelling Schemes

In this section, we first present two new tree labelling schemes, nathelipackbone-
based labelling schenandthe rake-based labelling schenWge then review the separator-
based labelling scheme and discuss the worst case performances of these three schemes.

3.1 Backbone-Based Labelling

Given a tre€T” with root r, abackbone3(T) is a path from the root to leaf formed
recursively as follows. If- has no child, then the backboneridtself. If » has one
child, sayh,, then the backbone is the pathotoncatenated b§(7"1), i.e., B(T) =
r@&B(T"). If r has more than one child, then the backbone is the pateaficatenated
by B(T"+) whereh, is the child ofr such that7": | is maximum among al’s children,
i.e.,B(T) =r @ B(T"). HereP; & P, stands for the concatenatation of two paths.

Algorithm 1: Backbone-Based Vertex Labelling
1: for each internal vertex; do
2: Assign a unique positive labed(v;, v;) betweenl andW;, whereW; is the number qgf
v;'s child, for every vertex; that isv;’s child.
3:fori=0toCp(T) —1do
4: for each tred in forestD)(T') do
5: Letv; beT;’s root andB(T;) be its backbone, and, bewv;’s parent if it exists.
6 for every vertexu, € B(T;) do
7 Set Lg(ve,T) = Lp(ve,T) o {dr(vk,v;),pu(ve,v;)) if v, exists and set
Lp(vg, T) = (dr(vk,v;),0) otherwise. Here, the separates the label inatunks

Algorithm 2: Backbone-Based Distance Decoder
1: Without loss of generality, we assunigs (u,T) = Lo(u) o -+ 0 Lo(u) andLg(v,T) =
Lo(v) o0 Lp(v) with a > b. Here,L;(u) is thei + 1 part of the labeL g (u, T').
: AssumeL.(u) = (z,y). For notational simplicity, we lef.(u)[1] = z andL.(u)[2] = .
: Setdis = 0 and find the smallest indexsuch thatC.(u) # L.(v) if suchc exists.
. if ¢ does not existhen
dis = dis + L;(v)[1] fori = b+ 1toa.
else
dis = dis + L;(v)[1] for i = ¢ + 1 to a anddis = dis + L;(u)[1] fori = c+ 1 tob.
Setdis = dis + Lc(uw)[1] + Le()[1] if Lo(uw)[2] # Leo(v)[2] and setdis = dis +
|Lc(u)[1] — Le(v)[1]] otherwise.
9: Outputfs(Le(u,T), Le(v,T)) = dis.

NS TdRARWN

Fig. 1. The Backbone-Based Distance Labelling Scheme.

Given a forestF, let B(F') = J,» B(T). Define ad-backboneperation as first
removing the edges i8(F') from F and then removing the resulting isolated ver-
tices in F from F to produce a foresD(F). For simplicity, we denoted*)(F) =
D(DF-D(F)),i.e.,D¥) (F)is the forest aftek d-backbone operations on the original
forestF. Let Cp(T) denote the number of d-backbone operations needed to separate a
treeT into isolated vertices. We have the following theorem (proof omitted):

Theorem 1. For atreeT of n vertices,Cs(T) < logn.

Figure 1 presents our backbone-based labelling sch&me- (Lg, f5). Given a
vertexu, its label L (u,T) is a series of two element tuples separated by‘the’
symbol. We call each two element tuplefaunkof the label. LetLp(u,T) = Lo(u) o
...oLi(u)o...Ly(u), whereL;(u) is theith chunk of the label. Let be the smallest
index such thatC.(u) # L.(v) if it exists. Without loss of generality, assume that
L.(u) < L.(v). A key observation is that the vertex with lab&f(u) o - - - o L.(u) is
the least common ancestor of vertices with labglw, T") and Lz (v, T).

In Algorithm 1, for every vertexv;, when we assign child-label t®; who isv;’s
child, we assume the label lengthligz W;, whereW; is the number of children of
v;. However, givenlW; children, when you assign a labglthe label length idog ¢
instead oflog W;. With this observation [9], we can reduce the total tree label length

by applying the followingreshuffle procesdirst, we apply Algorithml to obtain a
label L (u,T) for every vertexu. Initially, we mark all the internal vertices as “un-
processed” and all leaf vertices as “processed”. While there is an “unprocessed” ver-
tex , we pick one vertex such that all of its children are processed. Without loss of
generality, we assume thaf,,v;,,...,v;, arev’s children who are not on the same
backbone ofv. For any vertexw in tree 7", the label of L (w,T') should contain
Lp(v,T) as a common prefix and the second elemer{tzof 1)th chunk is also the
same. Assume thdtg (w,T) = Lp(v,T) o Lor1(w) o Loia(w)o. ..o L.(w). Define

r(w) = 30,40 log(Li(w)[2]), andy(v;;) = max, i, #(w). We sort the vertices

Viy, Vig, - - - Ui, @ccording to the size of their subtregs's in an ascending order, and

let o be the index of the sorted list, i.67*> | is the jth largest. Then we reassign
L..1(v)[2] = j to each vertew if v is in the treeT"*»(. Observe that this reassign
process does not affect the label of the first element of any chunks and the correctness
is straightforward. Following Lemma reveals a property of the reshuffle process (proof
omitted due to space limit).

Lemma 2. After the reshuffle process(r) < 2logn for Lz, wherer is the root.

Notice that the reshuffle process does not depend the any specific properties of
the Backbone-Based Distance Labelling Scheme. Thus, even we change the labelling
scheme for the first element, as long as the label contains aisgosthunks, Lemma
2 still holds. Recall that the label of vertexs Lp(u,T) = Lo(u)o. ..o Ly (u), where

L;(u) is tuple composed of two integers. Sing;1 log(L;(u)[2]) < ~(r), we have

Theorem 2. ¢,,(Lp,T) and the time complexity of decoding@glog n - log H,,(T))
for any treeT” with n vertices.

PrRoOFR From the definition of tree label lengtli, (£L5) = maxr ¢, (Lp,T) <
log(max{H,(T)} - Cp(T) + ~(r) < logn - [log(max{H,(T)} +2].

18]

3.2 Rake-Based Scheme

In this section, we present a new tree labelling scheme based on the tree decomposition
scheme by Kao [11]. Ahainof T is a path inl” such that every vertex of the given path
has at most one child ifi. A tubeof T"is a maximal chain of". A root pathof a tree
is a tree path whose head is the root of that tree; similatiaBpathis one ending at a
leaf. Aleaf tubeof T is a tube that is also a leaf path. LET'(T') denote the set of leaf
tubesinT. LetR(T) =T — LT(T), i.e., the subtree df obtained by deleting fror’
all its leaf tubes. The operatidR is called theake operation

A tube systerof a treel’is a set of tree pathB,, - - - , P, inT'suchthaf™, ... Thm
are pairwise disjoint, wherf; is the head of’;. We can iteratively rak&' to obtain tube
systems. Every rake operation produces a tube systéfuaitil T is raked to empty.
Given a treeT’, let R())(T') be the remaining tree aftéth rake operation and'z(T') be
the number of rake operations needed to make the tree empty. Similarly, we have

Theorem 3. For any treeT of n vertices,Cr(T) < logn.

Algorithm 3: Rake-Based Vertex Labelling

1: for each internal vertex; do

2: Assign a unique positive I2(v;, v;) for every vertex; thatisv;’s child, i.e.,u(vi, ve) #
wu(vi, vp) if v4 anduy, arew;’s children.

3: Let Cr(T) be the number of rake operations needed to nfakenpty.

4: for i = Cr(T) — 1 down to0 do

5. for each tubes in LT(R*(T)) do

6: Let h be the head of the tub$, i.e., the vertex with the smallest level in the tube, jand
let ' be the parent ok in the treeT if suchh’ exists.

7 for each vertex; in tube S do

8: Set the label ob; asLr(vj,T) = Lr(vk,T) o {dr(vs,h'), u(h', h)) if b’ existg

and setLg(v;, T) = {dr(v;,r),0) otherwise.
9: Apply the reshuffle process to modify the second element of the chunks of the label.

Algorithm 4: Rake-Based Distance Decoder

1: For any pair of vertices # v, we assumé& r(u,T) = Lo(u)o---0Ly(u)andLg (v, T) =
Lo(v) o0 Ly(v) witha > b. AssumeL.(u) = (z,y). For notational simplicity, we le
Le(uw)[1] = zandL.(u)[2] = y.

: Setdis = 0 and find the smallest indexsuch thatC.(u) # L.(v) if suchc exists.

. if ¢ does not existhen

dis = dis + 3 7_, | di(v).
else
Setdis = dis + 377_ ., di(v)“‘Z? e di(u).
Setdis = dis+ L (u)[1]4+ Le(v)[1]if Lo(w)[2] # Le(v)[2] anddis = dis+|Lc(u)[1]—
Lec(v)[1]] otherwise.
8: Outputfr(Lr(u,T),Lr(v,T)) = dis.

—

Noagahrwn

Fig. 2. The Rake-Based Distance Labelling Scheme.

Based on the rake operation, we define a labelling schéme- (L, fr) as fol-
lows. For the rake-based labelling scheme defined in Algorithm 3 and Algorithm 4, sim-
ilar to the backbone scheme, by assuming théat) < d.(v), a key observation about
vertexu, v's least common ancestor is that the vertex with lafgh) o - - - o L.(u) is
the least common ancestor of vertices with labglu,T) andLg(v, T).

From Lemma 2 and Theorem 8,(Lr) = maxy (,(Lr,T) < log(H,(T)) -
Cr(T) +~(r) <logn - (log(H,(T)) + 2). We thus have

Theorem 4. The length of,, (L, T) is O(logn - log H,,(T)) and the time complexity
of decoding igD(logn - log H,,(T)) for any treeT with n vertices.

3.3 Separator-Based Labelling

In this section, we review a tree labelling scheme first proposed by Peleg [12] and then
improved by Gavoille [9]. The key idea is to findseparator i.e., a vertex here, of a

tree such that the removal of the separator breaks the tree into several subtrees each
with at most half of the vertices in the original tree. Iteratively remove separators of the
remaining trees until all vertices are disconnected. For more details of the separator-
based labelling scheme please refer to [12] and [9].

Again, a key observation here is that the vertex with labglu) o --- o L.(u) is
the least common ancestor of vertices with labglu,T') and Lg(v, T'). Regarding
the length of the separator-based labelling scheme, we have the following two theorems
(their proofs are omitted here due to space limit).

Theorem 5. ¢,,(Ls,T) is O(logn - log(H,(T))) for any treeT with n vertices.

Theorem 6. £,(Ls,T) is £2(max{ 5428181 1og?(H,,(T)}) for any treeT with n
vertices and bounded degrée

4 Expected Label Length under Binary Search Tree Distribution

In Section 3, we presented two tree labelling schemes which have the worst case length
O(log” n) for any binary tree. We focus on the expected label length under binary search
tree distribution in this section and under uniform tree distribution in the next section.

4.1 General Upper Bound

In this subsection, we build a general but not too bad upper bound for the expected
length of¢,,(Lr,T) and?,(Lp,T) when the trees areinary search treesvith usual
randomization; that is, the binary search tree is constructed in a standard fasb@m (
secutive insertions) from a random permutatio{bf2, - - - ,n}, where each permuta-

tion is equally likely. It has been proved in [13] that the expected height of a random bi-
nary search tree B(H,,) = alogn—Bloglogn+O(1), wherealog (2¢) = 1, > 2

andg = @. Numerically,o = 4.311-- -, andg = 1.953 - - - . With the above fact,

we can give an upper bound for the expected length of both backbone-based labelling
scheme and rake-based labelling scheme, and this technique can be applied to other tree
randomization also. The proof is omitted due space limit.

Theorem 7. The expected label lengths for both backbone-based scheme, rake-based
scheme, and separator based scheme are at lngst- log logn + log o log n, where
o is a constant satisfying the equatieriog (%) = 1,a > 2.

4.2 Lower Bound of the Expected Length for Backbone-Based Scheme and
Separator-Based Scheme

Given the upper bound of expected length for backbone-based scheme, we would like to
compute the lower bound f@&(¢,,(Lg),T") and find the gap between them. Following
theorem gives a lower bound for the expected length of a random binary search tree
based on backbone-based scheme.

Theorem 8. The expected label length of a random binary search tree based on the

backbone-based scheme(1$*SE108 081) e B (((Lp), T) = 2(SER %8R,

The proof of Theorem 8 is omitted here due to space limit. Theorem 8 gives a
lower bound that is very close to the upper bound. The gap isloglipglogn, and
we conjecture that the lower bound(iXlog n - log log n) which is tight. Similarly, we
have a lower bound of the expected length for separator-based Scheme, and it can be
obtained directly from Theorem 6 since for a a binary search tree, the degree of the
vertex is bounded b§ and/(Lg) = 2(logn - loglog n) from Theorem 6.

Theorem 9. The expected label length of a random binary search tree based on the
separator-based scheme(iglog n-loglogn),i.e. . E(¢(Lp),T) = 2(logn-loglogn).

Theorem 9 and Theorem 7 together shows that the expected length for separator-
based scheme for random binary search tree is ex&thye n - loglog n).

4.3 Upper Bound of Expected Length for Rake-Based Scheme

In this section, we give a tighter upper bound of the expected tree label length for rake-
based scheme. We first present the following theorem (proof omitted here).

Theorem 10. The expected label length of a random binary search tree for rake-based
scheme iog n-log log log n+log a-log n+o(1), wherea = 21341, i.e.,E((,,(Lp,T)) =
logn - logloglogn + log v - logn + o(1).

Remember that for a tree with vertices, we need at leaktg n bits to represent
the vertices even without the requirement to recover the distance. Thus, from Theorem
10, our rake-based Scheme is almost tight. Our conjecture is that the upper bound could
be improved taD(log n), which matches the lower bound. An interesting result drawn
from Theorem 8 and Theorem 10 is that under the binary search tree distribution, usu-
ally the rake-based Scheme is better than backbone-based scheme. Recall that for the
backbone based scheme, the length of the backB¢fgis at leastog(|T|). However,
for rake based scheme, every rake operation decreases the height of the tree at least
by 1 and most often more thah Thus, the last tube of the trée, as we proved, is
O(loglogn) with high probability, compared wit(logn) for the backbone. There-
fore, it is natural that the rake-based scheme outperforms the backbone-based scheme.

5 Expected Label Length Under Uniform Binary Tree Distribution

In this section, we consider the binary trees withiform distribution; that is every
distinct binary tree wit vertices has the same probability. It is well known that there
are C,, of enumeration of different binary trees withvertex, whereC,, is Catalan
Number Based on this fact, we have the following lower bounds for the backbone-
based scheme, rake-based scheme and separator-based scheme.

Theorem 11. The expected tree label length of backbone-based sche(r)(t#ﬂ%z)—").

oglog n

Theorem 12. The expected tree label length of rake-based scheﬁéﬂ(ﬁ%).

Theorem 13. The expected tree label length of separator-based sche@dg? n).

The lower bound of the expected label length of backbone-based, rake-based and

separator-based are(; cfzglzg"n), Q(légglzgn) and 2(log® n) respectively. These lower

bounds either are very close to or match the upper boiugds:, and we conjecture
that the lower bounds for both the backbone-based and rake-based schemes are also
2(log? n), which is asymptotically tight.

6 Expected Label Length under Several Other Tree Distributions

We then discuss the upper and lower bounds in a more general setting. Generally, we
have the following results on the expected label length for any tree distribution:

Theorem 14. Under any tree distribution, we have @}¢,,(Lr,T)) < log E(H,(T))-
logn; (2) E(€n(Lp,T)) <logE(Hn(T)) -logn; (3) E(£n(Ls,T)) < log E(Hn(T)) -
log n.

Theorem 14 reveals an important information about the expected label length: the
upper bound of expected label length relates to the expected height of the tree. For the
lower bound of the expected label length, we have the following theorem.

Theorem 15. For any degree bounded tree distribution, if the probabilty,, (T") >
E(H,(T)) = a wherea is some constant, then the expected length of separator-based

scheme ig2 (‘8108 EUL.(D)) wherel, is the degree bound.

From the previous two sections, one may observe that for bounded degree tree dis-
tribution, the label length depends on the expected tree height and size of the largest
subtree. When the expected tree heighD{:) wheree is some constant, the label
length for the backbone-based, rake-based and separator-based are most likely to be
similar, which is close t@(log® n), under most distributions. When the expected tree
height isO(log® n), the backbone-based, rake-based and separator-based schemes can
achieve a better expected label length, whiof? {®g n - log log n). We also conjecture
that the label length of rake-based scheme can acliiie n - logloglogn) or even
O(log n) under certain tree distributions, which is tight.

7 Conclusion

In this paper, we studied how to label the vertices of a tree such that we can de-
cide, given only the labels of two vertices, their distance in the tree. Specifically, we
present two new distance labelling schemes that can achieve asymptotic optimal length
O(logn-log(H,(T)) and have a much smaller expected label length under certain tree
distributions. In the meanwhile, we also show how to find the least common ances-
tor of any two vertices based on their labels only. Rake-based labelling scheme usu-
ally achieves a smaller expected label length than backbone-based and separator-based
schemes for most tree distributions with average low height. A remaining future work
is to close the gaps between the upper bounds and the lower bounds for various tree dis-
tributions, and to prove the conjectures listed in our full version [17]. For more details
of the proof, please refer [17] also.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

S. ALSTRUR P. BILLE, AND T. RAUHE, Labeling schemes for small distances in trdes
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 2003,
pp. 689-698.

. S. ALSTRUR C. GAVOILLE, H. KAPLAN, AND T. RAUHE, Nearest common ancestors: A

survey and a new distributed algorithim SPAA02, 2002.

. S. ALSTRUP AND T. RAUHE, Lower bounds for labeling schemes supporting, ancestor,

sibling, and connectivity querie§ech. Report IT-C, nr. 10, IT University of Copenhagen,
2001.

. ——, Small induced universal graphs and compact implicit graph representaiiofSEE

FOCS, 2002.

. M. A. BREUER Caoding the vertexes of a grapim IEEE Transactions on Information The-

ory, vol. 12, April 1966, pp. 148—-153.

. M. A. BREUER ANDJ. FOLKMAN, An unexpected result on coding the vertices of a graph

in Journal of Mathematical Analysis and Applications, vol. 20, 1967, pp. 583-600.

. S. P. C. QvolILLE, D. PELEG AND R. RAz, Distance labeling in graphdn Proceedings

of the Twelfth Annual ACM-SIAM Symposium on Discrete algorithms, 2001, pp. 210-219.

. P. FLAJOLET AND A. ODLYZKO, The average height of binary trees and other simple trees

in Journal of Computer and System Sciences, vol. 25, 1982, pp. 171-213.

. C. GAVOILLE, M. KATZ, N. KATZ, C. PauL, AND D. PELEG, Approximate distance label-

ing schemedn 9th Annual European Symposium on Algorithms (ESA), vol. 2161 of LNCS,
2001, pp. 476-488.

C. GAVOILLE AND D. PELEG, Compact and localized distributed data structyrBsstrib.
Comput., 16 (2003), pp. 111-120.

M.-Y. Kao0, Tree contractions and evolutionary treeSIAM Journal on Computing, 27
(1998), pp. 1592-1616.

D. PELEG, Proximity-preserving labeling schemes and their applicatiansProceedings

of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science,
Springer-Verlag, 1999, pp. 30-41.

B. REED, The height of a random binary search trgournal of ACM, 50 (2003), pp. 306—
332.

M. N. S. KANNAN AND S. RUDICH, Implicit representation of graphsn Proceedings of

the Twentieth annual ACM symposium on Theory of computing, ACM Press, 1988, pp. 334—
343.

J. P. $INRAD, Efficient Graph Representationdmerican Mathematical Society, June
2003.

D. B. WESsT, Introduction to Graph TheoryPrentice Hall, 2nd edition ed., August 2000.
MING-YANG KAO, XIANG-YANG LI, AND WEIZHAO WANG, Average Case
Analysis for Tree Labelling Schemes&ull veresion of the paper is available at
http://www.cs.iit.edu/ ~xXli/publications-select.html

