
1

Optimal Cluster Association in Two-Tiered
Wireless Sensor Networks
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Abstract—In this paper, we study the two-tiered wireless
sensor network (WSN) architecture and propose the optimal
cluster association algorithm for it to maximize the overall
network lifetime. A two-tiered WSN is formed by number of
small sensor nodes (SNs), powerful application nodes (ANs),
and base-stations (BSs, or gateways). SNs capture, encode,
and transmit relevant information to ANs, which then send
the combined information to BSs. Assuming the locations
of the SNs, ANs, and BSs are fixed, we consider how to
associate the SNs to ANs such that the network lifetime is
maximized while every node meets its bandwidth require-
ment. When the SNs are homogeneous (e.g., same band-
width requirement), we give optimal algorithms to maximize
the lifetime of the WSNs; when the SNs are heterogeneous,
we give a2-approximation algorithm that produces a net-
work whose lifetime is within 1/2 of the optimum. We also
present algorithms to dynamically update the cluster associ-
ation when the network topology changes. Numerical results
are given to demonstrate the efficiency and optimality of the
proposed approaches. In simulation study, comparing net-
work lifetime, our algorithm outperforms other heuristics
almost twice.

Keywords— Network lifetime, wireless sensor networks,
two-tiered, clustering.

I. I NTRODUCTION

The advances in Micro Electro-Mechanical Sys-
tems (MEMS) technology, digital circuit design and
wireless communication have enabled the built of
small, cheap and low power sensors,e.g., the Mica2
and Mica2Dot motes [1]. With the introduction of
these components, the new systems which are com-
posed of thousands even millions of tiny computing
devices interacting with the environment and com-
municating with each other becomes possible. In
the meanwhile, several possible applications based on
wireless sensor networks composed of thousands of
such tiny device are expected to come into practice in
the near future. These applications may include but
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are not restricted to: (1)military applicationsin the
battle field, i.e., enemy surveillance, target tracking
[2], [3] and countersniper systems [4]; (2)environ-
mental monitoringin the countryside, i.e., microcli-
mate monitoring on Great Duck Island, Maine [5],
[6]; (3) structural monitoring and emergency rescue,
i.e., structural health monitoring of the Golden Gate
Bridge in San Francisco.

The low power of these tiny sensors raises a unique
challenge for the large scale wireless sensor net-
works. Even these small sensors are able to act as a
router to store and relay the data for other small sen-
sors, it may take tens or even hundreds of hops for the
information to reach the base station which is clearly
not affordable in most circumstances. Another con-
cern is that these small sensors that are one-hop away
from the base station would have to route nearly every
piece of information generated by the sensors in the
network, which makes them run-out of power (called
die) very quickly. Thus, the architecture of WSNs
should be revisited. Due to its possible massive size,
it is natural to build the large scale WSNs in a hierar-
chical model. In fact, several works have already ad-
dressed different issues regarding this hierarchical ar-
chitecture, including minimizing the number of clus-
ters [7], [8], minimizing the total energy consumption
[9] and maximizing the lifetime [10], [11]. Following
the work in [10], we consider how to maximize the
lifetime of a wireless sensor network with thousands
of tiny and simple sensor nodes (SNs) deployed in
a region. In addition, there are several application
nodes (ANs) who collect the information from small
sensors, process the collected information to produce
a local-view and send the information back to the
base-station(BS) if necessary. Every application node
can communicate with the base station either by some
direct radio communication or routing through the re-
lay of other application nodes. The base station often
can connect to the Internet and is in charge of build-
ing the global view of the WSN, controls the applica-
tion nodes, sends the data to remote site and reports
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emergency events if necessary.

Usually the small sensors sleep for most of the
time, only periodically sample the data and send to
application nodes. Thus, once deployed, they usu-
ally could last several months even years before their
battery needed to be replaced, if it is feasible. Al-
though the application node has much more power
compared with the small sensor nodes, they also con-
sume much more energy due to the following reasons:
(1) the ANs need to wake up or stay idle for much
longer time, which is usually proportional to the num-
ber of small sensors in the cluster; (2) the ANs usually
have transmission of bitstreams over much greater
distances; (3) the ANs need to do more extensive lo-
cal computations. If not carefully designed, the appli-
cation nodes usually can only survive a shorter period
of time than the small sensors can. On the other hand,
if one or two small sensors die, the entire WSN will
generally function properly while one or two appli-
cation nodes running out of power could result in the
complete lost of the coverage of certain area. Thus,
here we focus on how to maximize the lifetime of ap-
plication nodes instead of small sensors. In a WSN,
usually a global view should be maintained with cer-
tain quality in order to work properly. Remember
that the global view is built from the local-views sent
by those application nodes, thus, the lifetime of the
WSN heavily depends on the lifetime of certain ANs.
Therefore, we define the lifetime of a wireless sensor
network as a certain function of the lifetime of appli-
cation nodes. In [11], the authors study the effect of
the position of the base station on the lifetime of the
WSN. In their model, they assumed that there are al-
ready some clusters and each cluster is composed of
one application node and several small sensors. Each
application node in a cluster can receive the informa-
tion from all small sensors in the same cluster and
send it to the base station either by direct connection
or intermediate routing. However, how to form the
cluster and what effect the cluster formation has on
the lifetime of the WSNs has not been answered. In
this paper, we mainly focus on how to form the clus-
ters efficiently and study the effect of cluster forma-
tion on the lifetime of the WSN.

We categorize the WSN into four different cases:
whether the SNs are homogeneous or heterogeneous,
whether the ANs are homogeneous or heterogeneous.
Here SNs are said to be homogeneous if the average
produced data rates of SNs are same; otherwise, they

are said to be heterogeneous. The ANs are said to
be homogeneous if (1) the energy consumption func-
tion of every AN (based on total amount of data pro-
duced by the SNs in its cluster) is the same, and (2)
the initial power of ANs are same; otherwise, these
ANs are said to be heterogeneous. The main contri-
butions of this paper are as follows. First, we present
a series of max-flow-based methods to form the clus-
ters that optimally maximize the lifetime of the WSN
when the small sensors are homogenous. We sepa-
rately study the cases when the ANs are homogenous
or heterogeneous. Since these methods are central-
ized, we then present a new approach (called smooth-
ing) with a low time complexity that is suitable for
dynamic updating. When the small sensors are het-
erogeneous we present an algorithm to form clusters
whose lifetime is no less than1

2
of the optimum. We

then conduct extensive simulations to study the prac-
tical performances of our method compared with the
performances of some simple heuristics. Our theoret-
ical results are corroborated by our simulation stud-
ies.

The remainder of the paper is organized as follows.
In Section II, we present some preliminaries and pre-
vious works. In Section III, we study the scenario in
which the small sensors are the same. We then study
the generalized case when the small sensors could be
different in Section IV. We also discuss some other
issues in Section V. Extensive simulations have been
conducted to study the practical performances of our
proposed solutions. We conclude our paper in Sec-
tion VII with some possible future directions.

II. PRELIMINARIES

A. Two-Tiered Wireless Sensor Networks

A two-tiered wireless sensor network (WSN) con-
sists of a set of small sensor nodes (SN), denoted as
SM = {s1, s2, · · · , sm}, a set of application nodes
(AN), denoted asVN = {v1, v2, · · · , vn}, and at least
one base station (BS). The ANs and SNs formclus-
ters, and in each cluster there are many SNs and one
AN. For simplicity, we assume that the application
nodevi is in clusterCi and the set of small sensors in
clusterCi is Si ⊆ SM . A small sensor, once triggered
by the internal timer or some external signals, starts
to capture and encode the environmental phenomena
(such as temperature, moisture, motion measure, etc)
and broadcast the data directly to all ANs within its
transmission range and to certain ANs via the relay
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of some other neighboring sensors. Here, if ANvi

can receive the data from the small sensorsj, then we
call vi is a neighbor ofsj. Here sensorsj may have to
reach ANvi via relay of other sensors. For notational
simplicity, we useN(vi) to denote the neighboring
small sensors of ANvi. Remember that although sev-
eral ANs can receive the data packets from the small
sensorsj, only the AN in the same cluster assj pro-
cesses the information. Here, we assume that once
formed, the cluster formation does not change over
the time. We also letri be the data-rate of the small
sensorsi generates andr(S) =

∑
si∈S ri be the total

data-rates produced by a set of small sensorsS. Usu-
ally, the data-rateri(t) is a function over the timet
instead of a constant. However, if we average the rate
over a period of timeT , e.g., one day or one week,
most often it is a constant. Thus, we can define the
rateri as the the average rate over a period of time,

i.e., ri =
∫ T+T0

T0
ri(t)

T
. When receiving the raw data

from SNs from its cluster, an AN might create an ap-
plication specific local-view for the whole cluster by
exploring some correlations among the data sent by
different SNs. In the meanwhile, some data fusion
can be conducted by ANs to alleviate the redundance
in the raw data sent by SNs. After an AN creates a
local-view of the data, it then forwards the informa-
tion to a BS that generates a comprehensive global-
view for the entire WSN. Notice that here an AN can
communicate directly with a BS, or optionally, ANs
can be involved in inter-AN relaying if such activities
are needed and applicable.

B. Energy Model and Notations

In this paper, we assume that SNs wake up period-
ically to collect, process and transmit the data to the
ANs. This assumption is natural and used often in
practice. For instance, the small sensors are config-
ured to transmit once every5 mins in the Great Duck
Island project [6]. After the formation of the clusters,
the ANs are able to decide the time slot in which they
need to wake up to receive the data sent by SNs from
its own cluster. It is critical to reduce the wake up
time due to the high power consumption for idle lis-
tening, i.e., sometimes it is as large as the receiving
power and about1/2 of the transmit power. Recently
minimizing the wake up time has been addressed at
different layers [12], [13], [14]. In this paper, our fo-
cus is on how to form clusters properly so that the
network lifetime is maximized. How to schedule the

wake-up time for SNs has been addressed extensively
[15], [16], [17] and our formation could be coupled
with any of these schemes. It is reasonable to expect
that the live time of an ANdecreaseswhen the num-
ber of small sensors in its clusterincreases. Thus, for
an AN, its energy consumption mainly are composed
of three parts: (1) the energy consumed to receive the
information from the small sensors of its own clus-
ter, (2) the overhearing cost incurred by those sensors
not belonging its cluster and can reach this AN; (3)
the energy consumed to process the information and
the energy consumed to send the information to the
base station; and (4) the energy consumed when the
ANs are idle listening. We implicitly assume that the
power consumption of (2) - (4) is a fixed value. En-
ergy consumption for ANs in different applications
and scenario may be different. Thus, we do not rely
on any special assumptions about energy consump-
tion. Given an ANvi, let Si ∈ SM be the set of small
sensors in its logical cluster. The power consumption
of the AN vi is a general functionpi(r(Si), N(vi)),
wherer(Si) is the total data-rate of the small sensors
in Si. SinceN(vi) does not depend on the cluster
formation and can be taken as a constant for a given
application nodevi, we can simplify the power con-
sumption function aspi(r(Si)). This model takes into
account all other power consumption that is a fixed
value. The only assumption in this paper is that func-
tion pi(x) should satisfy thatpi(x) > pi(x

′) when
x > x′, i.e., the more information the small sensors in
the cluster generate, the more energy the application
node consumes. Notice that, the above monotone in-
creasing property is only assumed to be true for each
AN. For two different ANsvi andvj, it is possible
thatpi(x) < pj(x

′) whenx > x′.

C. Lifetime of a Two-Tiered WSN

In this paper, we assume thatPi is the initial
battery power level of the application nodevi and
pi(r(Si)) is its average energy consumption rate
when the set of small sensorsSi is in the cluster
Ci. The lifetime of an individual ANvi is define as
li = Pi

pi(r(Si))
. According to thecriticality of a mis-

sion, several different definitions of sensor network
lifetime has been defined in the literature.
• CRITICAL APPLICATION NODE L IFETIME (CANLT):
The mission fails when any AN runs out of energy,
i.e., the lifetimeLN is LN = minN

i=1{li}. The first
AN that run out of energy are denoted as the critical
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AN. If mission fails whenα percentage ANs are run
out of energy, then it is calledα-Critical Application
Node Lifetime (α-CANLT).
• FULL COVERAGE L IFETIME (FCLT): A small sen-
sor is called acoveredsensor if it has at least one alive
AN neighbor. The total sensing area of allcovered
sensors is called the covered area of the WSN here.
The mission fails when the covered area of the WSN
is smaller than the originally covered area. If mission
fails when the ratio of the covered area over the orig-
inally covered area is smaller than percentageβ, then
it is calledβ-Full Coverage Lifetime (FCLT).

In the literature, the definition of network lifetime
implicitly assumes that small sensors have longer
lifetime than application nodes. The reasons include,
but are not limited to, several practical considera-
tions: (1) In many applications, small sensors are
densely deployed to provide better tolerance. Hence,
the small sensors could schedule themselves to sev-
eral independent groups, and when one group is on
duty, other groups can sleep. Thus, the lifetime of
small sensors in a group can be prolonged as a func-
tional unit. (2) Application nodes need collect data
from small sensors and send to base station which
might be far away, which often costs more energy.

In this paper, we adopt the above definitions when
conducting theoretical analysis and simulations. No-
tice that, there are also several other different defini-
tions of lifetime of a wireless sensor network, e.g.,
see [11]. Our analysis can be extended to those sce-
narios similarly.

D. Previous Works

Numerous literatures have discussed efficient clus-
ter formation for wireless ad hoc and sensor net-
works. Although almost all works assumed that there
are some nodes acting asclusterheadswho are in
charge of gathering the information from other nodes
and sending back to some base stations, the criteria
of forming the clusters vary from case to case. One
fundemental difference between the cluster formation
problem studied in this paper and the traditional clus-
ter formation problems is thateverynode could be a
clusterhead in the traditional methods, while only the
AN can be the clusterhead for the problems studied
here.

In the Linked Cluster Algorithm (LCA) [7], a node
becomes the clusterhead if it has the highest identity
among all nodes within one hop of itself or among all

nodes within one hop of one of its neighbors. This al-
gorithm was improved by the LCA2 algorithm [18],
which generates a smaller number of clusters. The
LCA2 algorithm elects the node, with the lowest ID
among all nodes which are not within1-hop of any
chosen clusterheads, as a new clusterhead. The algo-
rithm proposed in [19], chooses the node with high-
est degree among its1−hop neighbors as a cluster-
head. In [20], the authors propose a distributed algo-
rithm that is similar to the LCA2 algorithm. The Dis-
tributed Clustering Algorithm (DCA) uses weights
associated with nodes to elect clusterheads [21]. It
elects the node that has the highest weight among its
1-hop neighbors as the clusterhead. The DCA al-
gorithm is suitable for networks in which nodes are
static or moving at a very low speed. The Max-
Min d−cluster Algorithm proposed in [22] generates
d−hop clusters with a run-time ofO(d) rounds. All
above approaches are aiming to minimize the number
of clusters such that any node in any cluster is at most
d hops away from the clusterhead.

In [23], the authors proposed a clustering algorithm
that aims at maximizing the lifetime of the network
by determining optimal cluster size and optimal as-
signment of nodes to clusterheads. They assumed
that the clusterhead consumes power to send the data
to the nodes in its cluster via broadcast. Thus, the
power consumption of the cluterhead depends on its
transmission range, not on the number of nodes in
this cluster. This is fundamentally different from our
model in which the ANs consume power to process
and relay the collected information that is closely re-
lated to the number of small sensors in the cluster.

Results reported in [10], [11] are closest to this pa-
per in spirit. In [10], Panet al. studied the problem of
maximizing lifetime of a two-tiered WSN with focus
on the top-tier. By assuming theprior knownfixed
cluster formation, the authors mainly studied how to
place the base-station in the network such that the
lifetime of the WSN is maximized. The ANs are as-
sumed to be homogenous in [10] and generalized to
be heterogenous in [11]. The authors also discussed
how to relay the packets via ANs to some fixed based
stations. In this paper, we will focus on the lower-
tier of the two-tiered WSN: how to form the cluster
(associate small sensors to application nodes) so the
network lifetime is maximized.
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III. H OMOGENEOUSSMALL SENSORS

In this section, we study the case when the small
sensors are homogeneous,i.e., all small sensors have
the same data rate, sayr. Thusr(S) = r · |S|, where
|S| is the number of small sensors in the setS. We
specifically discuss how to maximize the lifetime un-
der the critical application node lifetime (CANLT)
definition when the application nodes are homoge-
nous in subsection III-A and heterogenous in subsec-
tion III-B.

A. Homogeneous Application Nodes

In this subsection, we discuss how to maximize
the lifetime of the WSN when all application nodes
are homogeneous, i.e., their initial on-board energy
are the same, sayP and the energy consumption
functions are the same, sayp(x). Remember that
LN = minn

i=1{li} = minn
i=1

P
p(r·|Si|)) andp(x) is in-

creasing. Thus maximizing the lifetimeLN of the
WSN is equivalent to minimizing the maximum clus-
ter size. For simplicity, we denotexi,j = 1 if the
sensorsj belongs to clusterCi, andxi,j = 0 other-
wise. LetN(vi) be the set of sensors who arevi’s
neighbors. We formalize the problem of maximizing
LN as the following Integer Programming (IP).

min max
vi∈VN

∑
sj∈SM

xi,j (1)

Subject to constraints

xi,j = 0,∀vi,∀sj 6∈ N(vi); (2)

xi,j ∈ {0, 1},∀sj,∀vi; (3)∑
vi

xi,j = 1,∀sj (4)

Obviously, a feasible solution of the above IP prob-
lem is afeasiblecluster formation. For simplicity, the
set of small sensors in the clusterCi is denoted asSi

in this paper, when no confusion is caused. Next we
present two different approaches to solve the above
IP exactly.

A.1 Efficient Centralized Approach

First, we use a Max-Flow approach to solve the IP
(1). By adopting the traditional techniques and re-
laxing the constraintsxi,j ∈ {0, 1} to 0 ≤ xi,j, we
transform the IP (1) to a linear programming as fol-
lows:

min T (5)

subject to constraints

xi,j = 0,∀vi,∀sj 6∈ N(vi); (6)

xi,j ≥ 0, ∀vi, ∀sj; (7)∑
sj∈SM

xi,j ≤ T, ∀vi; (8)

∑
vi

xi,j = 1,∀sj (9)

Given the linear programming, we first construct
a flow network as shown in Figure 1 withs as the
source andt as the sink. There is a directional link−→svi, 1 ≤ i ≤ n with capacityk, a directional link
between−−→visj with capacity1 if sj ∈ N(vi) and a di-
rectional link

−→
sjt with capacity1. If T ≤ k, then a

solutionx of the above linear programming implies a
feasible flow for the corresponding flow network de-
fined in Figure 1:xi,j is the flow fromvi to sj. On the
other hand, whenk ≤ T , a feasible flowf with total
flow m for flow network defined in Figure 1 implies a
feasible solution for the linear programming also:xi,j

is the flowf(vi, sj). In the following Lemma 1 we
show the relation between a feasible solution to the
feasible system (6) and the maximum network flow
in the network shown in Figure (1).

Lemma 1:If we fix T = k, then there is a feasible
solution to the FS (6) if and only if the maximum flow
of the network illustrated by Figure 1 ism, wherem
is the cardinality ofSM .

Proof: The proof that if there is a feasible solu-
tion to the FS (6) then the maximum flow of the net-
work illustrated by Figure 1 ism is trivial and omit-
ted here. We only prove that if the maximum flow
of the network illustrated by Figure 1 ism then there
is a feasible solution to the FS (6). Without loss of
generality, letfi,j denote the flow on linkvisj and
obviously, fi,j = 0 for all vi and sj 6∈ N(vi) be-
cause the link−−→visj does not exist. Notice that for ev-
ery nodevi, all the inflow comes from link−→svi, thus∑

sj∈SM
fi,j ≤ k for each nodevi. If the cardinality

of the flow ism, then the flow on each link
−→
sjt is 1

which implies that
∑

vi
xi,j = 1. This proves thatfi,j

is a feasible solution to FS (6).
Usually, for a maximum flow problem, the flow on

each directional link could be any real number. For-
tunately, the solution generated by the flow-network,
illustrated by Figure 1, has a well-known property.

Lemma 2:If the capacity function takes on only
integral values, then the maximum flowf has the
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Fig. 1. A flow network for two-tiered WSN.

property that|f | is integer-valued. Moreover, for all
verticesu andv, the flow on edgeuv is an integer.

Lemma 2 immediately shows that the flow on each
link −−→visj is either0 or 1. Remember that the flow
on link −−→visj corresponds toxi,j, which implies that
xi,j ∈ {0, 1} for every vi and sj ∈ N(vi). Thus,
a feasible solution to FS (6) also satisfies the con-
straints (2). Letxmin be the solution to IP (1) and
Tmin = min maxvi∈VN

∑
sj∈SM

xmin
i,j .

If we know the exact value ofTmin, then we can
find xmin by solving the maximum flow problem in
network (1). Remember thatTmin is a non-negative
integer and is at mostm, thus by performing a binary
search onTmin we can find the exact value.

We can find the solution to IP (1) by solving
log m max-flow problems for different values ofT .
Thus, the time complexity for Max-Flow approach is
m · log m · (n+m)3, which is very expensive and im-
practical. Notice that the cluster formation problem
with minimum cluster size becomes the Maximum
Cardinality Matching problem in a bipartite graph
[24]. In [24], Hopcroft and Karp presents the best
known algorithm that achieves the time complexity√

m · nm. This reduces the time complexity from
O((n + m)3) to O(nm · (n + m)1/2 log(n + m)) for
a fix valueT . Therefore, we can solve the IP (1) in
timeO(n ·m3/2 log2(m)).

A.2 Efficient Distributed Algorithm by Smoothing

Although the previous approach computes a clus-
tering quickly in centralized manner, it may be too
expensive to collect the necessary information. In this
subsection, we propose a different approach that can
be implemented efficiently in a distributed manner.
The basic idea of this approach is to construct a vir-
tual directed graph on ANs and iteratively move the
sensors from those clusters who have the largest num-
ber of small sensors to smaller clusters. In the virtual
directed graph, there is an edge−−→vivk from AN vi to

vk if there is a sensorsj that can be moved from the
cluster ofvi to the cluster ofvk. The weight of the
edge is the number of such small sensors that can be
moved from the cluster ofvi to the cluster ofvk. Fol-
lowing algorithm presents the method constructing a
virtual graph based on a feasible solutionx to FS (2).

Algorithm 1 Constructing the virtual graph
Input: A set of ANsVN , a set of small sensorsSM

and a feasible solutionx, e.g., assigningsj randomly
to avi wheresj ∈ N(vi).
Output: A directed virtual graphV G(x).
1: SetVN as the vertices for virtual graphV G.
2: for every pair ofvi andsj such thatxi,j = 1 do
3: for everyvk such thatsj ∈ N(vk) do
4: if there is no directed edge−−→vivk from vi to

vk then
5: Add a directed edge−−→vivk from vi to vk.

Set the weight of the edge toc(vivk) = 1.
6: else
7: Update the weight asc(vivk) = c(vivk)+

1.

In the directed virtual graphV G(x), if there is a
path fromvi to vj, then we sayvi reachesvj. All
vertices thatvi can reach forms a setRi(x), called
thecliquecentered at the ANvi. Given a solutionx of
FS (2) and its corresponding virtual graphV G(x), we
have the following property about cliques (its proof is
omitted due to space limit).

Lemma 3:Given a feasible assignmentx of small
sensors to ANs and its corresponding virtual graph
V G(x), for any ANvi and its cliqueRi(x) in V G(x),
if x′ is also a feasible assignment of SNs to ANs, we
have

∑
vj∈Ri(x) |Si(x)| ≤ ∑

vj∈Ri(x′) |Si(x
′)|

The Algorithm relies on the relation between
ωi(x), ωj(x) andTmin wherevi is the AN with the
largest weight andvj is the AN with the smallest
weight inRi(x).

Lemma 4:Let vi be the AN with the largest weight
andvj be the AN with the smallest weight inRi(x)
under any feasible assignmentx, then |Sj(x)| ≤
Tmin ≤ |Si(x)|.

Proof: Remember thatvi has the maximum
weight among all ANs, thusTmin ≤ |Si(x)| trivially
holds. Therefore, we only need to prove|Sj(x)| ≤
Tmin. We prove this by contradiction. For the sake
of contradiction, we assume all ANs reachable byvi

has a weight greater thanT . From the assumption
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that |Sk(x)| > Tmin for everyvk ∈ Ri(x), we have
S(Ri(x)) =

∑
vk∈Ri(x) |Sk(x)| > Tmin · |Ri(x)|,

where|Ri(x)| denotes the number of ANs reachable
by vi.

Let xmin be the solution to IP (1). From
Lemma 3, we obtain that

∑
vk∈Ri(x) |Sk(x

min)| ≥∑
vk∈Ri(x) |Sk(x)| > Tmin · |Ri(x)|. Remember

that Tmin · |Ri(x)| ≥ ∑
vk∈Ri(x) |Sk(x

min)|. Thus
Tmin · |Ri(x)| > Tmin · |Ri(x)|, which is a contradic-
tion. This finishes our proof.

Given a virtual graph constructed by Algorithm 1
based on a feasible assignment of SNs to ANs, our
approach to find a better solution is to iteratively ap-
ply a process calledSMOOTH to reduce the maximum
weight of the application nodes if possible. Here, the
weight of an application nodevi under a feasible as-
signmentx is the number of small sensors assigned
to the clusterCi, denoted asωi(x).

Algorithm 2 Smooth Algorithm
Input: A feasible assignmentx.
Output: A solution to IP (1).
1: Construct virtual graphV G(x) based on the fea-

sible assignmentx using Algorithm 1.
2: repeat
3: Find the AN with the largest weight, sayvi. If

there are more than one such ANs, choose one
randomly.

4: Find the AN with the smallest weight in
Ri(x), sayvj. If there are more than one such
ANs, choose one randomly.

5: Apply procedureSMOOTH(vi, vj, V G(x),x).
6: until ωi(x) ≤ ωj(x) + 1

Theorem 5:Algorithm 2 terminates after at most
m iterations, with an solution to IP (1).

Proof: From Lemma 4, we haveωj(x) ≤
Tmin ≤ ωi(x). If Algorithm 2 does not stop at this
iteration, we haveωi(x) > ωj(x) + 1, which implies
thatTmin > ωj(x) + 1. For a feasible solutionx, we
defineδi(x) = |Si(x)| − |Si(x

min)| if ωi(x) > Tmin

and0 otherwise. Let∆(x) =
∑

vi∈VN
δi(x), it is not

difficult to observe that∆(x) will be decreased by1
for each iteration. Thus, Algorithm 2 terminates after
at mostm iterations.

Remember when Algorithm 2 terminates, we have
ωi(x) ≤ ωj(x) + 1. Combining with the rela-
tion ωj(x) ≤ Tmin ≤ ωi(x), we haveωj(x) ≤
Tmin ≤ ωi(x) ≤ ωj(x) + 1. This implies that

Algorithm 3 SMOOTH(vi, vj, V G(x),x)

Input: A feasible assignmentx and its corresponding
directed virtual graphV G(x), a pair of nodesvi and
vj.
1: Let vi0vi1 · · · vik be the path connectingvi andvj

with the minimum number of hop. Here,vi0 = vi

andvik = vj.
2: for t = 0 to k − 1 do
3: Assume thatxt,l = 1 for some SNs` with

s` ∈ N(vt) ands` ∈ N(vt+1). Setxt,l = 0
andxt+1,l = 1, i.e., moves` from clusterCt to
clusterCt+1.

4: for everyva such thats` ∈ N(va) do
5: Updatec(−−→vitva) = c(−−→vitva) − 1. Remove

directed link−−→vitva if c(−−→vitva) = 0.

6: Update
−−−−−→
c(vit+1va) = c(−−−−→vit+1va) + 1. Add a

directed link−−−−→vit+1va if c(−−−−→vit+1va) = 1.
7: Setωj(x) = ωj(x) + 1 andωi(x) = ωi(x)− 1.

Tmin = ωi(x) − 1 or Tmin = ωi(x). First, we
consider the case whenTmin = ωi(x) − 1. In
this case, we haveωj(x) ≥ Tmin for every vj ∈
Ri(x) which implies

∑
vj∈Ri(x) |Si(x)| ≥ Tmin ·

|Ri(x) − 1| + Tmin + 1. For the solutionxmin

of IP (1), every AN’s weight is not greater than
Tmin. Thus,

∑
vj∈Ri(x) |Si(x

min)| ≤ Tmin · |Ri(x)|.
From Lemma 3, we have

∑
vj∈Ri(x) |Si(x

min)| ≥∑
vj∈Ri(x) |Si(x)|. This implies thatTmin · |Ri(x)| ≥

Tmin · |Ri(x) − 1| + Tmin + 1, which is a contra-
diction. Thus,Tmin = ωi(x). Remember thatx is a
solution to the FS (2). Therefore,x is a solution to IP
(1). This finishes our proof.

Now we analyze the time complexity of Algorithm
2. In procedureSMOOTH(vi, vj, V G(x),x), there are
at mostn nodes on the path betweenvi, vj and up ton
iterations in the “FOR” loop between line4-7. Thus,
the time complexity ofSMOOTH(vi, vj, V G(x),x) is
O(n2). From Theorem 5, it takes at mostO(m · n2)
for Algorithm 2 to terminate. Constructing the virtual
graph based on a feasible solutionx could take time
O(m·n2). Thus, the total time complexity of smooth-
ing algorithm is alsoO(m · n2). If n = o(

√
m), then

Algorithm 2 outperforms the best known max-flow
algorithm bylog2 m; whenn is a constant the time
complexity becomesO(m) which is optimal.
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A.3 Efficient Distributed Implementation

So far we have illustrated the basic idea of the
Smoothing algorithm, which clearly can be imple-
ment in a distributed manner. In the remainder of the
section, we will describe how this method can be im-
plemented efficiently. Given an ANvi, we sayvi is
adjacent to ANvj if there is a small sensorsk in the
clusterCi

⋂
N(vj). If vi andvj are not adjacent, then

we define the distance betweenvi andvj as the small-
est number of hops between them if we consider the
adjacent graph of the ANs. For an ANvi that is adja-
centvj, let ` be the largest non-negative integer such

that
pj(r·

∑
sk∈SM

xj,k+`·r)
Pj

< ωi(x). We define thedif-

ferenceof vi andvj asdifi,j(x) = `. Based on the
notation of difference, we have following localized
algorithm.

Algorithm 4 Distributed Smoothing algorithm for
AN vi

Input: An initial assignmentx, γi,j for every adja-
cent AN vj that is the number of sensors that are in
N(vi)

⋂ Cj.
1: When vi receive an UPDATE-LEAVE or

UPDATE-JOIN message from an adjacent AN
vj, it updatesγi,j if necessary.

2: Let vj be one ofvi’s adjacent AN with the maxi-
mum difference. Here, we break the tie arbitrar-
ily.

3: if difi,j(x) ≥ 1 then
4: Send a REQUEST message to ANvj.
5: When vj receives all REQUEST messages the

ANs that adjacent to it, it sends out an ACK mes-
sage to the AN that has the maximum weight and
REJECT messages to all other ANs.

6: if vi receives an ACK message fromvj then
7: Choose one SN, saysk, in Ci

⋂
N(vj). Set

xi,k = 0 and send SUCC message with the ID
k to vj.

8: Upateγi,j = γi,j − 1 and send the UPDATE-
LEAVE message with IDk to all adjacent
ANs.

9: When vj receives the SUCC message fromvi

with ID k, it first setsxj,k = 0 and γ(j, i) =
γ(j, i) + 1. After that it also sends UPDATE-
JOIN message with IDk to all adjacent ANs.
Remark: Afterward, we also say that the small
sensorsk is migratingfrom clusterCi to Cj.

Regarding the distributed Algorithm 4, we have the
following theorem.

Theorem 6:Algorithm 4 converges in at mostm·n
rounds and total message complexity isO(n2 ·m) if
the ANs are homogeneous.

Proof: Given an assignmentx, we denoteκi(x)
as the number of small sensors inith largest cluster.
LetΓi(x) =

∑i
j=1 κj(x), andxk be the assignment of

sensors in roundk. ConsideringΓk =
∑n

i=1 Γi(x
k).

If there is a small sensor joiningCik and leavingCjk

in roundk, then|Sik | > |Sjk | + 1 andik < ik. No-
tice that after the small sensor migrating from clus-
ter Cik to Cjk , Γ`(x

k) decreases by1 if j < ` ≤ i
and does not change otherwise. Thus,Γk decreases
by 1 for every small sensor migrating. It is not diffi-
cult to observe that if there is no small sensor migrat-
ing in roundk, then Algorithm 4 terminates. Since
Γ1 < n ·m, Algorithm 4 terminates in at mostn ·m
rounds.

In every round, every AN sends only one RE-
QUEST message and receives at most one REJECT
message. Thus, there is at mostO(n) REQUEST
and REJECT messages. It is also not difficult to ob-
serve that every AN sends at most one ACK mes-
sages. Thus, there are at mostO(n2 · m) RE-
QUEST, ACK and REJECT messages in total. On
the other hand, there is exact one UPDATE-LEAVE
and UPDATE-JOIN message for every small sensor
migrating. Thus, there are at mostO(n·m) UPDATE-
LEAVE and UPDATE-JOIN messages. Therefore,
the overall message complexity isO(n2 ·m).

Notice that the message complexity analysis is
very pessimistic. In simulations, it is much smaller
than the worst case analysis. Observe that when Al-
gorithm 4 terminates, it not necessarily gives an op-
timal solution. However, Algorithm 4 gives the best
solution among all localized algorithms in which ev-
ery AN can only know the information of its adja-
cent ANs. Furthermore, if we define the diameter of
the network as the largest distance of the ANs, we
have the following theorem (its proof is omitted due
to space limit).

Theorem 7:When Algorithm 4 terminates, it gives
an assignment with maximum cluster size at most
T ≤ Tmin + D whereD is the diameter of the net-
work.
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A.4 Dynamic updating

In wireless sensor networks, some old sensors may
run out of battery and new sensors may be deployed
from time to time. Furthermore, in certain appli-
cations, some sensors are able to move. Thus, it
is necessary to consider how to dynamically update
the cluster when the WSN changes. Here, we focus
on the case when single small sensor leaves or joins
the WSN. If there are more multiple sensors joining
and/or leaving, it could be easily be reduced to the
single sensor case. When an AN node runs out of
power, the small sensors in its cluster has to be re-
assigned,i.e., it is treated as the case that a group of
small sensors joins the networks. We discuss how
to dynamically update the cluster formation after the
formation of the cluster according to the localized Al-
gorithm 4 by cases.

Small sensor leaving. In this case, we assume
the sensorsk originally belongs to clusterCj. The
weight of vj is decreased by1. Assumevi is the
AN with the largest weight that is adjacentvj. If
ωj(x) ≥ ωi(x) then vj sends an UPDATE-LEAVE
message with IDk to every adjacentva with ID k.
Otherwise, we first choose any arbitrary small sensor
s` ∈ Ci

⋂
N(vj). Removes` from Ci and assign it to

Cj. vj sends an UPDATE-LEAVE message with ID
k and an UPDATE-JOIN message with ID̀to every
adjacent AN;vj sends an UPDATE-LEAVE message
with ID ` to every adjacent AN.

Small sensor joining. In this case, we assume the
sensorsk joins the wireless sensor network. Find the
AN vi with the minimum weight such thatsk ∈ N(vi)
and assignsk to clusterCi. vi sends out an UPDATE-
JOIN with ID k to every adjacent AN.

For any individual small sensor leaving or joining,
the clustering terminates in at mostD rounds and the
overall message complexity is at mostO(n·D) where
D is the diameter of the network. However, in sim-
ulations, we found that the message complexity and
convergence rounds are bothO(1) most of the time.

B. Heterogeneous Application Nodes

In subsection III-A, we discuss how to form the
clusters when both the small sensors and application
nodes are homogeneous. However, in practice, such
node homogeneity cannot always be guaranteed. For
example, the initial onboard energy of ANs built by
different vendors may not be proportional to the bit-
rate at which they generate, or the application nodes

could be redeployed (e.g., new ANs join the system
long after old ANs have been activated). Further-
more, two different application nodes may consume
different energy to receive, process and send the in-
formation to the base station even given the same set
of small sensors. Thus, it is more practical to assume
the application nodes are heterogenous. In this paper,
we consider the heterogeneity in two ways: the initial
on board energyP and energy consumption function
p(x) wherex is the sum of the rate of the small sen-
sors in the cluster.

In this subsection, we redefineweightof a AN vi

for assignmentx asωi(x) =
pi(r·

∑
sj∈SM

xi,j)

Pi
, where

Pi is the initial onboard energy andpi(x) is energy
consumption function. Here, the lifetime of the net-
work is defined as

L = max min
vi∈VN

Pi

pi(r ·
∑

sj∈SM
xi,j)

= min max
vi∈VN

ωi(x).

Thus maximizing the lifetime is equivalent to min-
imizing the maximum weight over all ANs. Simi-
lar to the approach for the homogenous application
node case, we formalize the problem as an Integer
Programming as follows.

min max
vi∈VN

pi(r ·
∑

sj∈SM
xi,j)

Pi

(10)

Subject to constraint

xi,j = 0,∀vi,∀sj 6∈ N(vi); (11)

xi,j ∈ {0, 1}, ∀sj,∀vi; (12)

and
∑
vi

xi,j = 1,∀sj (13)

B.1 Max-Flow Approach

Similar to the homogenous case, by adopting the
traditional techniques, we transform the IP (1) into a
new IP as follows:

min T (14)

Subject to constraint

xi,j = 0,∀vi,∀sj 6∈ N(vi); (15)

xi,j ∈ {0, 1}, ∀sj,∀vi; (16)∑
vi

xi,j = 1, ∀sj; (17)

∑
sj∈SM

xi,j ≤ ki,∀vi (18)
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Hereki =
p−1

i (T ·Pi)

r
. Then

∑
sj∈SM

xi,j ≤ ki is equiv-

alent to
pi(r·

∑
sj∈SM

xi,j)

Pi
≤ T sincepi() is assumed to

be monotone non-decreasing.
Let xmin be the solution to IP (14) andTmin be the

minimum weight of the ANs. Unlike in the homoge-
nous SN case, the valueTmin could be any positive
real number here. Thus, the simple binary search on
Tmin does not work. However, since there must exist
an indexi such that

∑
sj∈SM

xi,j = ki, we can guess
such index fromi = 1 to n then perform a binary
search on

∑
sj∈SM

xi,j. Therefore, we only need to
decide whether there is a solution for the following
Feasible System for a givenT .

xi,j = 0,∀vi,∀sj 6∈ N(vi); (19)

xi,j ∈ {0, 1},∀sj,∀vi; (20)∑
vi

xi,j = 1,∀sj; (21)

∑
sj∈SM

xi,j ≤ ki, ∀vi (22)

Here, we construct a network withs as the source
and t as the sink as shown in Figure 1. There is
a directional link−→svi (1 ≤ i ≤ n) with capacity
ki, a directional link between−−→visj with capacity1 if
sj ∈ N(vi) and a directional link

−→
sjt with capacity1.

Similar to Lemma 1 for homogenous case, we have
the following lemma. The proof is straightforward
and is omitted here.

Lemma 8:There is a solution to FS (19) for a given
T if and only if the maximum flow of the network (1)
is m, wherem is the cardinality ofSM .

By guessing theT for log m · n time, we can find
the solution to Integer Programming (10) by solv-
ing log m · n bipartite max-flow problems. Thus, the
time complexity for Max-Flow approach isO(n2 ·
m3/2 log2(m)) which is very expensive and imprac-
tical.

B.2 Smoothing Algorithm

In this subsection we continue to show that our
smoothing Algorithm 2 also applies to the heteroge-
nous case with only minor modification.

Lemma 9:Let vi be the AN with the largest weight
and vj be the AN with the lowest weight that is
reachable byvi in a feasible assignmentx. Then
ωj(x) ≤ Tmin ≤ ωi(x).

Algorithm 5 Smoothing algorithm for heterogenous
ANs
Input: An Integer Programming (10).
Output: The solution to Integer Programming (10).
1: Find a feasible solutionx, e.g., randomly assign

every SN to a neighboring AN.
2: Construct a virtual graphV G(x) based onx by

applying Algorithm 1.
3: repeat
4: Choose any one of AN with the largest weight

randomly, sayvi.

5: Defineω+
k (x) =

pk(r·∑sj∈SM
xk,j+r)

Pk
.

6: Find the AN vj with the smallestω+
j (x) in

Ri(x). If there are more than one such ANs,
choose one randomly.

7: Apply procedure
SMOOTH HETE(vi, vj, V G(x),x) if
ωi(x) > ω+

j (x)

8: until ωi(x) ≤ ω+
j (x)

Algorithm 6 Procedure
SMOOTH HETE(vi, vj, V G(x),x)

Input: A feasible solutionx of FS (11) and its cor-
responding directed virtual graphV G(x), a pair of
nodesvi andvj.
1: Letvi0(vi)vi1 · · · vik(vj) be the path connectingvi

andvj with the minimum number of hop. Here,
vi0 = vi andvik = vj.

2: for t = 0 to k − 1 do
3: Assumext,l = 1 ands` ∈ N(vt+1). Setxt,l =

0 andxt+1,l = 1.
4: for everyva such thats` ∈ N(va) do
5: Updatec(vitva) = c(vitva) − 1. Remove

directed linkvit(va) if c(vitva) = 0.
6: for everyvb such thats` ∈ N(vb) do
7: c(vit+1vb) = c(vit+1vb) + 1. Add a directed

link vit+1vb if c(vit+1vb) = 1.
8: Update ωj(x) = ω+

j (x) and ωi(x) =
pi(r·

∑
sj∈SM

xi,j−r)

Pi
.
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Theorem 10:Algorithm 5 outputs a solution of IP
(14) and terminates afterm iterations.

The proof of this theorem is omitted here due to
space limit. Surprisingly, the time complexity of Al-
gorithm 5 is alsoO(m ·n2), which is exactly the same
as in the homogenous case. This reduces the time
complexity by an order of

√
m log2 m and more im-

portantly, Algorithm 4 also works for the heteroge-
nous case with only modification of the definition of
difference. However, we only have the following con-
jecture for the convergence and message complexity
of localized smoothing algorithm. It is an open and
interesting problem to either prove or disprove the
following conjecture.

Conjecture 1:Algorithm 4 terminates after at most
n ·m rounds and the total message complexityO(n2 ·
m) when the ANs are heterogenous.

IV. H ETEROGENEOUSSMALL SENSORS

Usually in WSNs, several different kinds of sen-
sors cooperate together to fulfill some certain goals.
Some sensors may generate data at a higher rate than
others do,e.g., the visual sensors have a bit-rate that is
much higher than the bit-rate generated by a temper-
ature sensor. Even in scenarios when all small sen-
sors are of same type, sometimes sensors located at
different locations may need to sample the data at a
different time interval. Thus, it is more reasonable to
assume that in a WSN different type of sensors pro-
duce different bit-rates.

By assuming that every small sensor has its own
data rateri, we formalize the problem of maximizing
the lifetime as an Integer Programming as follows:

min max
vi∈VN

pi(
∑

sj∈SM
rj · xi,j)

Pi

(23)

Subject to constraint

xi,j = 0,∀vi,∀sj 6∈ N(vi); (24)

xi,j ∈ {0, 1},∀sj,∀vi; (25)∑
vi

xi,j = 1,∀sj (26)

Unlike the case for homogenous SNs in which we
can find the solution that maximizes the lifetime ex-
actly, Theorem 11 shows that it is NP-Hard to find the
solution to IP (23).

Theorem 11:We can not find the solution of IP
(23) in polynomial time ifP 6= NP .

Proof: We consider the special case when ap-
plication nodes are homogeneous. In this case, since
pi(x) = p(x) is increasing, it is equivalent to mini-
mizing the maximum

∑
sj∈SM

rj · xi,j subject to con-
straints (24). If every ANvi satisfies thatN(vi) =
SM − vi, then the problem becomes the traditional
job scheduling problem [25], [26], which is known to
be NP-Hard. This finishes our proof.

Since solving IP (23) is NP-hard, we will present
an algorithm approximating the optimal solution by
borrowing some ideas from job scheduling [27], [28].
Again we transform IP (23) into Integer Program-
ming (27) as follows.

min T (27)

Subject to constraints

xi,j = 0,∀vi,∀sj 6∈ N(vi); (28)

xi,j ∈ {0, 1}, ∀sj,∀vi; (29)∑
vi

xi,j = 1, ∀sj; (30)

∑
sj∈SM

rj · xi,j ≤ ki,∀vi (31)

Hereki = p−1
i (Pi · T ). Let xmin be the solution to

IP (27) andTmin be themin T under solutionxmin.
It is easy to observe thatxmin

ij satisfies the following
constraint.

xi,j = 0 ∀vi, ∀sj rj > ki (32)

If we relax the constraintxi,j ∈ {0, 1} we obtain a
Linear Programming as follows.

min T (33)

Subject to constraints

xi,j = 0,∀vi,∀sj 6∈ N(vi); (34)

xi,j ≥ 0, ∀vi, ∀sj; (35)∑
vi

xi,j = 1, ∀sj; (36)

∑
sj∈SM

rj · xi,j ≤ ki;∀vi (37)

Let x? be the solution to LP (33) plus constraint 32
andT ? be the value ofmin T under solutionx?. Then
T ? ≤ Tmin. By binary search onT ? we can find the
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solutionx? to LP (33) plus constraint 32 in polyno-
mial time. Furthermore, we can find a solutionx? that
has some special properties. For a small sensorsj, if
there exists an ANvi such that0 < xi,j < 1, we call
sj is fractionally assigned to clusterCi. We construct
a graph with vertexVN

⋃
SM and add an edgesjvi if

and only if0 < xi,j < 1. Obviously, it is a bipartite
graph and it is generally known [28], [29] that we can
transform the solutionx? to another solutionx∗ such
that its corresponding bipartite graph is composed of
forests with(or without) a line. Remember that ev-
ery node inSM connects to at least two nodes inAN ,
thus there is a matching such that every node inSM

can connect to a distinct node inAN . The final solu-
tion is to assignsj to cluster with headvi if one of the
following two conditions holds:
• x∗ij = 1
• sj is connected withvi in the matching.

In this section, to make sure that we can guar-
antee the performance of the above job-scheduling
based approach, we add one more requirement for
the power consumption functionpi. We assume that
the marginal cost ofpi(x) is not increasing,i.e., for
x1 ≥ x2, pi(x1 + δ)− pi(x1) ≤ pi(x2 + δ)− pi(x2).
This assumption is almost universally satisfied. If
this assumption is not satisfied, we can construct ex-
amples to show that the above approach (based on
job scheduling) cannot provide any theoretical perfor-
mance guarantees, although its practical performance
may still be good.

Theorem 12:Our job scheduling based method
produces a cluster formation such that the lifetime of
the WSN is at least1

2
of the maximum lifetime of the

WSN.
Proof: For any ANvi, there is at most ones`

connecting tovi in the matching andr` ≤ ki. Thus,∑
sj∈SM

rj · xi,j =
∑

sj∈SM\r`
rj · xi,j + r` · xil ≤

2ki. Therefore,pi(
∑

sj∈SM
rj · xi,j) ≤ pi(2ki) ≤

2pi(ki) = 2Pi · T ? ≤ 2Pi · Tmin. This finishes the
proof.

V. OTHER ISSUES

In previous sections, we proposed several methods
for clustering formation for two-tiered wireless sen-
sor networks. Although we have addressed the het-
erogeneous application nodes and heterogeneous sen-
sor nodes, there are still lots of interesting questions
left for further research.

Multihop Network of SNs: In previous sections,

we assumed that every SN can reach at least one AN
directly. However, this assumption may not be true
in practice because SN’s transmission range is usu-
ally smaller than the AN’s. Thus, the SNs formed
a routing tree that could be reached by some ANs,
which complicated the case. However, if we define
Ci as all the SNs that belong to the tree that is rooted
at vi andN(vi) as all the SNs that can communicate
or belong to some SNs inCi, our localized smooth-
ing algorithm still has a pretty good performance in
enhancing the life time although it does not achieve
the optimal. Our conjecture is that it is impossible to
find the optimal solution in this case unlessP = NP
and it could be an interesting open question to find
the some algorithms with good performance guaran-
tee that integrates both the routing tree formation of
SNs and the clustering of these SNs.

Multihop Network of ANs : Remember that in or-
der to simply our analysis, we assumed that the ap-
plication nodes send the packet directly to the base
station. In the real world, it is possible that the appli-
cation nodes form a multi-hop relay network to relay
the packets to the base station. Different application
nodes may be in different positions in this relay net-
work according to the base station. This makes the
problem even complicated,i.e., all these ANs that can
reach base station directly are expected to relayall
the packets generated in the network. This makes the
ANs closer to BS easier to be run out of power than
far-away ANs. Notice that we did not pose any spe-
cial restriction on the energy consumption function
of an application node. In other words, we assumed
a generic energy consumption function for ANs. If
we can defineCi as all the SNs whose traffic need to
be relayed viavi andN(vi) as all the SNs that can
communicate or belong to some SNs inCi, our local-
ized smoothing algorithm still works when the relay
network of the ANs are known in advance. However,
some algorithms other than smoothing algorithms are
needed to decide the ANs relay network formation
when it is not known in advance and we list it as one
of our possible future research directions.

Static vs. Dynamic Cluster: In previous sections,
we discussed how to maximize the lifetime of the
WSNs by forming some logical clusters. We required
that the cluster formation is permanent,i.e., the clus-
ters do not change during the whole lifetime of WSN.
Obviously, the lifetime of the WSN could be further
improved if we allow a dynamic cluster formation,
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i.e., the clusters will adapt to the remaining energy
level of the ANs. Notice that the improvement of
lifetime is not guaranteed since there is always over-
head to dynamically update the cluster. For example,
when the power consumption function satisfies a cer-
tain property,e.g., it is linear, the lifetime is improved
by at most a very small fraction. Thus, we only con-
sider the static case in our simulation afterwards.

VI. PERFORMANCESTUDIES

We conducted extensive simulations to study the
performance of different algorithms and approaches
introduced in this paper. As mentioned earlier in this
paper the network is composed of application nodes
and sensor nodes. Sensor nodes communicate with
application nodes only and application nodes com-
municate with sensor nodes and other applications
nodes. Here we mainly study the case with hetero-
geneous application nodes and homogeneous sensor
nodes. Each sensor node has a transmission range
and is able to communicate with application nodes
within its transmission range and also each sensor has
a sensing range and is able to monitor the area within
its sensing range. We assume that the ANs have the
same properties but are different in the initial power
and the power consumption rate for sending a unit
amount of data to the base-station. In addition, we
assume that the transmission range and the sensing
range of all sensor nodes are the same. Each appli-
cation node consumesone unitof battery power to
serve one sensor node for one day.

A. Simulation Environment

We randomly placed2000 sensor nodes in a
800feet × 800feet square region, the transmission
range of each sensor node is set to50feet and the
sensing range is set to10feet. Notice that, the small
sensors are typically randomly placed without any
strategic locations. To guarantee that the area of a
a × a square feet region is covered with high prob-
ability by n small sensors with sensing ranges, we
should have the following relationnπ( s

a
)2 ' ln n.

We found that the small sensors with these settings
in our simulations will cover the majority part of the
region. Then we put a different number of applica-
tion nodes, from150 to300 (with incremental25) and
measured the network lifetime based on several dif-
ferent definitions of lifetimes. In addition, the initial
battery power of each sensor node is a random value

between100 units and200 units. Hereafter we call a
small sensor node that has power remaining and has
at least one alive application node in their transmis-
sion region as analive sensor.

A.1 Other Heuristics

To study the performance of our smoothing Algo-
rithm 2, we compare it with other heuristics listed be-
low: (1) [-Nearest] Each sensor node is assigned to
the nearest AN. (2)[-Arbitrary] Each sensor node is
randomlyassigned to one of the application nodes in-
side its transmission range. (3)[-Smart-Arbitrary] In
this method, each sensor node israndomlyassigned
to one of the application nodes that is inside the sen-
sor node’s transmission range. The probability of a
SN sj assigned to a neighboring ANvi is the ratio
of the remaining power ofvi over the total remaining
power of all neighboring ANs of this SNsj. (4) [-All]
Here, each sensor node is assigned toall the applica-
tion nodes that are inside the sensor node’s transmis-
sion range. This is clearly the worst method. Thus
we will not compare with this method in most simu-
lations.

B. Simulation Results

B.1 Lifetime

In this subsection, we compare the lifetime of
four different methods under two different definitions
of lifetimes: CANLT, FCLT. Forα-CANLT and β-
FCLT lifetime, whenα andβ are smaller,i.e., α =
30%; our smoothing algorithm performances much
worst than most the other methods. The reason is that
our smoothing algorithm makes its best effort to max-
imize the lifetime whenα = 100% andβ = 100%.
Thus, forα or β that is different from100%, we can
apply the following simple technique: send1 − α or
1−β percentage of the ANs to sleep in a round-robin
manner. This technique can apply to all five methods
mentioned above for the sake of fairness. It is not dif-
ficult to observe that the lifetime of all four methods
increase by a fix percentage (1

1−α
or 1

1−β
). Thus, it

suffices to use the CANLT and FCLT only. See Sec-
tion II for definitions. Figure 2 (a), (b) show the life-
time of different assignment methods under lifetime
definition CANLT, FCLT respectively. We generate
100 random WSNs and all results are the average over
the performance of these100 WSNs.

As can be seen, the network lifetime increases al-
most linearly with the number of application nodes
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Fig. 2. Comparison of lifetime for different methods

available initially for all methods, except the simplest
ALL approach that does not perform any logic cluster
at all. A striking observation is that, as we expected,
our smoothing based method outperforms all other
tree methods under all four definitions of lifetimes re-
gardless of the density of the application nodes. In all
simulations, we found that our method generally out-
performs the other methods by almost100%. In other
words, the network lifetime is almostdoubledwhen
our method is used to form the cluster.

We also compare the performance of the Central-
ized Smoothing Algorithm 2 (CSA) and Localized
Smoothing Algorithm 4 (LSA). We fixed the num-
ber of the ANs to50 and varies the number of SNs
from 200 to 500. Figure 3 (c) shows difference of the
lifetime (CANLT) between CSA and LSA, and it is
not difficult to observe that the lifetime of LSA and
CSA only differs about5% to 8%. This corroborates
our theoretical analysis and we will only compare the
lifetime of CSA with other four methods afterwards.

B.2 Load Balancing

As mentioned in Section III-B, for heterogeneous
application nodes case, application nodes have dif-
ferent initial battery powers, and the objective of the
Algorithm 2 is to assign less sensor nodes to applica-
tion nodes that have lower remaining battery power
and more sensor nodes to application nodes that have
higher battery power. To see how good the load bal-
ancing of our algorithm is, we run simulation for the
networks with150 application nodes till all applica-
tion nodes die. As can be seen in Figure 3, our algo-
rithm achieves a very good load balancing meaning
that all application nodes consume energy at a rate
proportional to their initial battery power and then
they all die together. The result for number of alive

sensor nodes and also the percentage of coverage area
are basically the same as shown in Figure 3 (b) and
(c).

B.3 Area Coverage

To further study the area covered by sensor nodes
we build a two tiered sensor network with50 applica-
tion nodes,1000 sensor nodes randomly placed in a
250feet×250feet region. The transmission range of
all sensor nodes is set to50feet and the sensing range
is set to10feet. To serve1000 small sensor nodes
for one month,30, 000 units of energy is needed. We
set the initial battery power of each application node
to a random value between400 and800 units. Each
application node has on average600 units of battery
power. Figure 4 depicts the sensor node assignment
and coverage of the network at various date by vari-
ous methods.

In the method (calledALL ) that do not perform
logic cluster all application nodes die after9 days.
As can be seen in Figure 4, after20 days, the ”Near-
est AN” and ”Arbitrary AN” methods fail to keep all
the application nodes alive and hence the area is not
fully covered. Till the end of day29, our method
maintains to keep all the application nodes alive and
hence the full coverage. Our algorithm guarantees a
balanced power consumption of the application nodes
and maintain full coverage. For the lifetime defined
based on coverage area, our method improves the
lifetime of the network by almost20% for this net-
works (composed of1000 sensors and50 application
nodes in a250feet × 250feet area). Our previous
simulations (see Figure 2 (c) and (d)) reported a larger
improvement if we had more ANs.
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VII. C ONCLUSION

In this paper, we studied a generic two-tiered wire-
less sensor networks (WSN) composed of small sen-
sor nodes (SNs), more powerful application nodes
(ANs), and base-stations (BSs). We especially stud-
ied how to organize the WSN to form logic clusters
to maximize the lifetime of the networks. By us-
ing CANLT as the definition of the lifetime for the
WSN, we considered the scenarios when the appli-
cation nodes are homogeneous or heterogeneous, the
sensor nodes are homogeneous or heterogeneous re-
spectively. When the sensors are homogeneous, we
give optimal algorithms to maximize the lifetime of
the networks; when the sensors are heterogeneous,
we give a2-approximation algorithm that produces
a network whose lifetime is within1/2 of the op-
timum. We also showed that it is NP-hard to find
the optimum cluster formation. Our theoretical re-
sults are corroborated by extensive simulation stud-
ies. Our simulations show that our algorithms actu-
ally perform much better not only theoretically but
also for randomly generated WSNs.

There are some interesting important questions that
have not been addressed in this paper. For exam-
ple, maximizing the lifetime under other definitions
deserves further study. It is also important to study
how the schematically improve the lifetime by inte-
grating the routing tree formation of small sensors,
the routing tree formation of application nodes and
the attachment of sensor routing trees to application
nodes. Once again, we point out that our work is only
an opening but not concluding work of this direction
which deserve more research efforts in the future.
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