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Truthful Low-Cost Unicast in Selfish Wireless
Networks
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Abstract—Much of the existing work in wireless ad hoc networking as-
sumes that each individual wireless node (possibly owned by selfish users)
will follow prescribed protocols without deviation. In this paper, we ad-
dress the issue of user cooperation in selfish and rational wireless ad hoc
networks using an incentive approach. Each node has a cost (known only to
itself) of relaying unit data for other nodes. In our protocols, each wireless
node declares a cost for forwarding a unit data for any other node. When a
node wants to send data to the access point, it first computes the least cost
path to the access point and computes a payment to each node on the path.
We present a strategyproof pricing mechanism such that the profit of each
wireless node is maximized only when it declares its true cost. We also give
a time optimal method to compute the payment in a centralized manner.
We then discuss in detail how to implement the algorithm in the distributed
manner. We conduct extensive simulations to study the relation of the total
payment of a node to the total cost incurred by all relay nodes and found
that the ratio of the total payment over the total cost is small. Our protocol
works when the wireless nodes willnot collude and we show that no truth-
ful mechanism can avoid the collusion of arbitrary two nodes. We also give
truthful mechanism when a node only colludes with its neighbors.

Keywords— Non-cooperative computing, unicast, game theory, wireless
ad hoc networks.

I. I NTRODUCTION

In a wireless network, each wireless node can only send signal
to nodes within some transmission range. A source node com-
municates with far off destinations by using intermediate nodes
as relays. Traditionally, it is assumed that nodes in wireless ad
hoc networks will always relay packets for each other thus en-
suring the network connectivity and throughput. However, the
limitation of energy supply raises concerns about this traditional
belief.

Consider a user in a campus environment equipped with a
laptop. The user might expect that his battery-powered laptop
will last without recharging until the end of the day. When he
participates in various ad hoc networks, he will be expected to
relay traffic for other users. If he accepts all relay requests, he
might run out of energy prematurely. Therefore, to extend his
lifetime, he might decide to reject all relay requests. If every
user argues in this fashion, then the throughput that each user
receives will drop dramatically. Srinivasanet al. [1] studied
the trade-off between an individual user’s lifetime and through-
put. Here, we argue that the node may refuse to relay the data
packets for other nodes at all. For example, when a student sel-
dom uses the network, it is not in his/her interest to relay the
packets for other nodes since it only consumes its battery faster.
Clearly, selfish wireless nodes may hinder the functioning of the
network completely. Thus, a stimulation mechanism is required
to encourage users to provide service to other nodes. Cooper-
ation among nodes in an ad hoc network has been previously
addressed in [2], [3], [4], [5], [6], [7], [1].

In this paper, we consider a setV = {v0, v1, · · · , vn−1} of n
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wireless nodes (e.g., students on a campus). Each nodevi, de-
pending on its type (e.g., laptop, PDA, cell phone), is associated
with an average costci to forward a data packet, and this cost
is only known to nodevi. We assume that, to stimulate coop-
eration among all wireless nodes, every wireless node is willing
to pay other nodes for relaying its data to and from the access
point. Herev0 is used to represent the access point of the wire-
less network to the wired network. In addition, we assume that
the routing from each node to the access point is connection-
oriented. Each nodevj on the network declares a costdj for
relaying a data packet, which could be different from its true
costcj . Then nodevi computes the shortest pathP(vi, v0, d) to
connect the access pointv0 according to the declared cost vector
d = (d0, d1, · · · , dn−1). For each nodevj , nodevi computes a
paymentpj

i (d) according to the declared cost vectord. Theutil-
ity, in standard economic model, of nodevj is uj = pj

i (d)− cj

if nodevj relays data forvi; otherwise it ispj
i (d). Naturally, it

is preferred that each nodevj declares a costdj = cj . Since
users are self-interested and rational, there is no guarantee that
they will reveal its cost truthfully unless they are convinced that
they cannot do better by declaring a different cost. The objective
of this paper is then to design a payment scheme such that each
nodevj has to declare its true cost, i.e.,dj = cj , to maximize its
utility. Then we study in detail how to implement the protocol
efficiently and truthfully.

By assuming the nodes will not collude, we present a strate-
gyproof pricing mechanism such that the profit of each wireless
node is maximized only when it declares its true costs. In our
protocol, when a node wants to send data to the access point, it
first asks all nodes to declare its cost of forwarding, and com-
putes the least cost path (LCP) to the access point. It then com-
putes a payment to each nodevk on the LCP, which isdk plus
the difference between the cost of the least cost path without
usingvk and the cost of the least cost path. We show that our
payment scheme is strategyproof, i.e., the profit of each wire-
less node is maximized only when it declares its true costs. We
present a time optimal method to compute the payment in a cen-
tralized manner. We then discuss in detail how to implement the
algorithm in the distributed manner. We conduct extensive sim-
ulations to study the relation of the total payment of a node to
the total cost incurred by all relay nodes.

The rest of the paper is organized as follows. In Section II,
we briefly discuss what is algorithmic mechanism design and
what is the network model used in this paper, formally define
the problem we want to solve, and then review the related work.
We present our pricing mechanism in Section III. We discuss in
detail how to compute the payment fast and how to compute it
in a distributed manner even the individual nodes may deviate
from the protocol and show that it is correct as long as the nodes



are rational and no collusion between nodes. We also conduct
simulations to show that the overpayment to the relay nodes ac-
cording to the pricing scheme is small compared to the actual
cost of the least cost path. We conclude our paper in Section IV
with a discussion of possible future works.

II. T ECHNICAL PRELIMINARIES

A. Algorithmic Mechanism Design

The purpose of this subsection is to review the basics of al-
gorithmic mechanism design. Readers familiar with this should
skip to the next subsection. Refer the early papers of Nisan and
Ronen [8], Feigenbaum, and Shenker [9] and Feigenbaum, Pa-
padimitriou, and Shenker [10] for more detailed description.

A standard economic model for analyzing scenarios in which
the agents act according to their own self-interest is as follows.
There aren agents. Each agenti, for i ∈ {1, · · · , n}, has some
private informationti, called itstype. The typeti could be its
cost to forward a packet in a network environment, could be its
willing payment for a good in an auction environment. Then
the set ofn agents define a type vectort = (t1, t2, · · · , tn),
which is called theprofile. There is an output specification
o = (o1, o2, · · · , on) that maps each type vectort to a set of
allowed outputs. Agenti’s preferences are given by a valuation
functionwi that assigns a real numberwi(ti, o) to each possi-
ble outputo. Here, we assume that the valuation of an agent
does not depend on other agents’ types. Everything in the sce-
nario is public knowledge except the typeti, which is a private
information to agenti.

A mechanism defines, for each agenti, a set of strategies
Ai. For each strategy vectora = (a1, · · · , an), i.e., agenti
plays strategyai ∈ Ai, the mechanism computes anoutput
o = o(a1, · · · , an) and apaymentvector p = (p1, · · · , pn),
wherepi = pi(a). Here the paymentpi is the money given to
each participating agenti. If pi < 0, it means that the agent has
to pay−pi to participate in the action. Agenti’s utility is ui =
wi(ti, o)+ pi. By assumption of rationality, agenti always tries
to maximize its utilityui. A mechanism isstrategy-proofif the
types are part of the strategy spaceAi and each agent maximizes
its utility by giving its typeti as inputregardlessof what other
agents do. Leta−i denote the vector of strategies of all other
agents excepti, i.e., a−i = (a1, a2, · · · , ai−1, ai+1, · · · , an).
Let a|ib = (a1, a2, · · · , ai−1, b, ai+1, · · · , an), i.e., each agent
j 6= i uses strategyaj except that the agenti uses strategyb. The
following are some natural constraints which any for strategy-
proof mechanism must satisfy:
1. Incentive Compatibility (IC) : The payment should satisfy
the incentive compatibility, i.e., for each agenti,

wi(ti, o(a|iti)) + pi(a|iti) ≥ wi(ti, o(a|iai)) + pi(a|iai).

Thus, revealing the typeti is thedominating strategy.
2. Individual Rationality (IR) : It is also called Voluntary Par-
ticipation. Every participating agent must have non-negative
utility, i.e., ui(t, p) ≥ 0.
3. Polynomial Time Computability (PC): All computation is
done in polynomial time.

VCG MECHANISM: Arguably the most important positive
result in mechanism design is what is usually called the gen-
eralized Vickrey-Clarke-Groves (VCG) mechanism by Vickrey

[11], Clarke [12], and Groves [13]. A direct revelation mech-
anismm = (o(t), p(t)) belongs to the VCG family if (1) the
output o(t) computed based on the type vectort maximizes
the objective functiong(o, t) =

∑
i wi(ti, o), and (2) the pay-

ment to agenti is pi(t) =
∑

j 6=i wj(tj , o(t)) + hi(t−i). Here
hi() is an arbitrary function oft−i. It is proved by Groves
[13] that a VCG mechanism is truthful. Green and Laffont
[14] proved that, under mild assumptions, VCG mechanisms are
the only truthful implementations for utilitarian problems, i.e.,
g(o, t) =

∑
i wi(ti, o).

An output function of a VCG mechanism is required to
maximize the objective function (minimization problem can be
treated as maximization easily). This makes the mechanism
computationally intractable in many cases. Notice that replacing
the optimal algorithm with non-optimal approximation usually
leads to untruthful mechanisms.

B. Network Model

We consider a setV = {v0, v1, · · · , vn−1} of n wireless
nodes. Herev0 is used to represent the access point (AP) of
the wireless network to the wired network if it presents. Let
G = (V, E) be the communication graph defined byV , where
E is the set of links(vi, vj) such that the nodevi can commu-
nicate directly with the nodevj . We assume that the graphG
is node biconnected. In other words, the remaining graph, by
removing any nodevi and its incident links from the graphG, is
still connected. The bi-connectivity of the communication graph
G will prevent the monopoly on the network as will see later in
addition to provide fault tolerance.

We also assume that each wireless node has an omni-
directional antenna and a single transmission of a node can be
received byany node within its vicinity, i.e., all its neighbors
in G. A nodevj can receive the signal from another nodevi if
nodevj is within the transmission range of the sendervi. Oth-
erwise, they communicate through multi-hop wireless links by
using some intermediate nodes to relay the message. Conse-
quently, each node in the wireless network also acts as a router,
forwarding data packets for other nodes. We assume that each
wireless nodevi has a fixed costci of relaying/sending a data
packet to any (or all) of its outgoing neighbors. This costci is a
private information, only known to nodevi. In the terminology
of economic theory,ci is the type of nodevi. All n nodes to-
gether define a cost vectorc = (c0, c1, · · · , cn−1), which is the
profile of the networkG.

In this paper we restrict our attentions to a unicast between
any nodevi and access pointv0 only, it is not very different to
generalize to arbitrary node between any pair of nodesvi and
vj .

C. Statement of Problem

If a nodevi wants to send data to the access pointv0, typi-
cally, the least cost path (with minimum total relaying cost) from
nodevi to nodev0, denoted byP(vi, v0, c), is used to route the
packets. Consider a pathΠ(i, 0) = vrs , vrs−1 , · · · vr1 , vr0 con-
necting nodevi and nodev0, i.e., vrs = vi andvr0 = v0, and
nodevrj can send signal directly to nodevrj−1 . The cost of the

pathΠ(i, 0) is
∑s−1

j=1 crj , which excludes the cost of the source



and the target nodes.
To stimulate cooperation among all wireless nodes, nodevi

pays some nodes of the network to forward the data for node
vi to the access point. Thus, each nodevj on the network de-
clares a costdj , which is its claimed cost to relay the pack-
ets. Note that heredj could be different from its true cost
cj . Then nodevi computes the least cost pathP(vi, v0, d)
to connect the access pointv0 according to the declared cost
vector d = (d0, d1, · · · , dn−1). For each nodevj , nodevi

computes a paymentpj
i (d) according to the declared cost vec-

tor d. The utility, in standard economic model, of nodevj is
uj = pj

i (d) − xj(i) · cj , wherexj(i) indicates whethervj re-
lays the packet. We always assume that the wireless nodes are
rational: it always tries to maximize its utilityuj .

We assume that the costci is based on per packet or per ses-
sion, whichever is appropriate. If the cost is per packet and a
nodevi wants to sends packets to the access pointv0 in one
session, then the actual payment ofvi to a nodevk will be s ·pk

i .
If the payment scheme is not well-designed, a nodevj may

improve its utility by lying its cost, i.e., declares a costdj such
that dj 6= cj . The objective of this paper is then to design a
payment scheme such that each nodevj has to declare its true
cost, i.e.,dj = cj , to maximize its utility. Using the standard
assumption from economic model, we assume that the wireless
nodes donot collude to improve their utility.

D. Related Work

Routing has been part of the algorithmic mechanism-design
from the beginning. Nisan and Ronen [8] provided a
polynomial-time strategyproof mechanism for optimal route se-
lection in a centralized computational model. In their formula-
tion, the network is modelled as an abstract graphG = (V,E).
Each edgee of the graph is an agent and has a private typete,
which represents the cost of sending a message along this edge.
The mechanism-design goal is to find an Least Cost Path (LCP)
P(x, y) between two designated nodesx andy. The valuation
of an agente is−te if the edgee is part of the pathP(x, y) and0
otherwise. Nisan and Ronen used the VCG mechanism for pay-
ment. The payment to agente is 0 if e is not on the LCPP(x, y),
and the payment isDG−{e}(x, y)−DG(x, y) if e is onP(x, y).
HereDG−{e}(x, y) is the cost of the LCP through G when edge
e is not presented andDG(x, y) is the cost of the LCPP(x, y)
through G. Clearly, there must have two node disjoint paths con-
nectingx andy to prevent the monopoly. The result in [8] can
be easily extended to deal with all-to-all traffics instead of the
fixed source and destination node.

Feigenbaumet. al [15] then addressed the truthful low cost
routing in a different network model. They assume that each
nodek incurs a transit costck for each transit packet it carries.
For any two nodesi andj of the network,Ti,j is the intensity of
the traffic (number of packets) originating fromi and destined
for nodej. They present a strategyproof payment scheme such
that each nodek is given a paymentpk to compensate it for car-
rying transit traffic. Their scheme again is essentially the VCG
mechanism. They gave a distributed method such that each node
i can compute a numberpk

ij > 0, which is the payment to node
k for carrying the transit traffic from nodei to nodej if nodek
is on the LCPP(i, j). The algorithm converges to a stable state

afterd′ rounds, whered′ is the maximum of diameters of graph
G removing a nodek, over all k. However, they [15] agreed
that,“one important issue that is not yet completely resolved is
the need to reconcile the strategic model with the computational
model”. On one hand, the nodes“may have incentives to lie
about costs in order to gain financial advantage”, and the strat-
egyproof mechanism (essentially, a VCG mechanism) removes
these incentives. On the other hand, it is these nodes that“imple-
ment the distributed algorithm we have designated to compute
this mechanism; even if the nodes input their true costs, what is
to stop them from running a different algorithm that computes
prices more favorable to them?”.

Anderegg and Eidenbenz [16] recently proposed a routing
protocol for wireless ad hoc networks based on VCG mecha-
nism. They assumed that each link has a cost and each node is a
selfish agent. They showed that the total payment over the cost
of the shortest path is bounded by a constant factor ofmax ci

min ci
by

assuming that every node can adjust its transmission range.
There is a vast literature on the mechanism design or imple-

mentation paradigm in which some mechanisms are designed
to achieve the socially desirable outcomes in spite of user self-
ishness. Some of these approaches use Nash equilibrium rather
than strategyproofness. That is, they assume that simultaneous
selfish play leads to a self-consistent equilibrium, called aNash
Equilibrium, in which no agent can improve its utility by de-
viating from its current strategy when other agents keep their
strategies. The Nash implementation approach involves design-
ing resources allocation mechanisms with Nash equilibriums
that yield the socially desirable outcomes. In contrast, strate-
gyproofness ensures that no matter how other agents behave,
truthful revelation is the optimal (or called dominant) strategy
for each agent. In other words, they do not have to exhaust their
computational power to find a better strategy. Notice that since
Nash equilibrium has a weak requirement on the strategies used
by the agents, it often can achieve a much wider variety of out-
comes.

Some researchers use totally different methods to deal with
the selfish wireless networks. We briefly review some of them
as follows.

In [4], nodes, which agree to relay traffic but do not, are
termed as misbehaving. They usedWatchdogand Pathrater
to identify misbehaving users and avoid routing through these
nodes. The former runs on every node keeping track of how the
other nodes behave; the latter uses this information to calculate
the route with the highest reliability. Notice that this method ig-
nores the reason why a node refused to relay the transit traffic for
other nodes. A node will be wrongfully labelled as misbehaving
when its battery power cannot support many relay requests and
thus refused to relay.

In [2], [3], [6], [5], a secure mechanism to stimulate nodes
to cooperate and to prevent them from overloading the net-
work is presented. The key idea is that nodes providing a ser-
vice should be remunerated, while nodes receiving a service
should be charged. Each node maintains a counter, callednu-
glet counter, in a tamper resistant hardware module. The nuglet
counter decreases when the node wants to send a packet as orig-
inator and increased when the node relays a packet. The value
of nuglet remains positive, which means that if a node wants



to send packets as originator, it must have forwarded enough
packets for other node. To jump-start the system, each node is
initially assigned a positive nuglet value. When a node wants
to send packets to other node, it pays each relay node1 nuglet,
and its nuglet counter is decreased by the hops of the path used.
Based on this concept, they proposed an acceptance algorithm
to decide whether to accept or reject a packet relay request. The
acceptance algorithm at each node attempts to balance the num-
ber of packets it has relayed with the number of its packets that
have been relayed by others.

The approaches presented in [2], [3], [6], [5] can be viewed as
a fixed price payment.For a selected path connecting the source
and the target node, each node on such path is paidonenuglet
and the source (or target) is chargedh nuglets, whereh is the
number of relay nodes on the path. If a node does not initiate a
traffic, then it does not have any incentives to relay the traffic for
other nodes since nuglet does not have actual monetary value. If
the nuglet reflects actual monetary value, then a node may still
refuse to relay the packet if its actual cost is higher than the
monetary value of the nuglet.

In [7], two acceptance algorithms are proposed, which are
used by the network nodes to decide whether to relay traffic on
a per session basis. The goal of these algorithms is to balance1

the energy consumed by a node in relaying traffic for others with
energy consumed by other nodes in relaying traffic and to find
an optimal trade-off between energy consumption and session
blocking probability. By taking decisions on a per session basis,
the per packet processing overhead of previous schemes is elim-
inated. In [1], a distributed and scalable acceptance algorithm
called GTFT is proposed. They proved that GTFT results in
Nash equilibrium and proved that the system converges to the ra-
tional and optimal operating point. We emphasize, however, that
all the above algorithms are based on heuristics and lack a for-
mal framework to analyze the optimal trade-off between lifetime
and throughput. More importantly, in their network model, they
assumed that each path isl hops long and thel relay nodes are
chosen with equal probability from the remainingn − 1 nodes,
which is unrealistic.

In [17], Salemet al. presented a novel charging and rewarding
scheme for packet forwarding in multi-hop cellular networks. In
their network model, there is a base-station to forward the pack-
ets. They use symmetric cryptography to cope with the lying.
To count several possible attacks, it pre-charges some nodes and
then refunds them only if a proper acknowledgment is received.
The basic payment scheme is still based on nuglets.

III. T HE PRICING MECHANISM

A. Payment Scheme

Assume that the nodevi has to send packet tovj through the
relay of some other nodes. It pays these relay nodes to com-
pensate their costs for carrying the transit traffic incurred byvi.
The outputo(d) of the algorithm is the path connectingvi and

1It is impossible to strictly balance the number of packets a node has relayed
for other nodes and the number of packets of this node relayed by other nodes
since, in a wireless ad hoc network, majority of the packet transmissions are
relayed packets. For example, consider a path ofh hops.h − 1 nodes on path
relay the packets for others. If the average path length of all routes ish, then
1− 1/h fraction of the transmissions are transit traffics.

vj with the minimum cost, which is known asP(vi, vj , d). Our
payment scheme is also based on the VCG. The payment for
nodevk is 0 if vk 6∈ P(vi, vj , d). Otherwise, its payment is

pk
i (d) = ‖P−vk

(vi, vj , d)‖ − ‖P(vi, vj , d)‖+ dk

HereP−vk
(vi, vj , d) denotes the least cost path between node

vi andvj if we remove nodevk from the original graph, and
‖Π‖ denotes the total cost of a pathΠ. This payment falls into
the VCG mechanism, so it is strategy-proof. In other words, if
dk = ck, nodevk maximizes its utilitypk

i (d) − xk · ck. Here
xk = 1 if vk ∈ P(vi, vj , d), otherwisexk = 0.

B. Fast Payment Computing

The very naive way to calculate the payment for all nodes on
theP(vi, vj , d) is to calculate every node’s payment using Dijk-
stra’s algorithm. In the worst case there will beO(n) nodes on
theP(vi, vj , d), so this naive algorithm will result in a time com-
plexity O(n2 log n + nm). In [18], Hershberger and Suri pro-
vided a fast payment calculation algorithm foredge weighted
graph (by assuming the edges are rational agents). Nardelli,
Proietti and Widmayer [19] studied a similar question of finding
the most vital node of a shortest path in an edge weighted graph,
and gave a method to do so in timeO(m + n log n). Borrow-
ing some ideas from [18], we present anO(n log n + m) time
complexity algorithm for fast payment calculation in anode
weightedgraph. Consider a nodevk ∈ P(vi, vj , G) and we want
to compute‖P(vi, vj , G\vk)‖. The basic idea of our algorithm
is for a pair of nodesva, vb such thatvavb ∈ G, we calculate the
pathP(vi, va, G\vk) andP(vb, vj , G\vk) separately. Then we
get the path with the minimum cost fromvi to vj without node
vk and havingvavb on it. Choosing the minimal value among all
edgesvavb ∈ G, we get‖P(vi, vj , G\vk)‖. Our method works
as follows.

Algorithm 1: Fast VCG Payment Computing
1. First we calculate the Shortest Path Tree (SPT) rooted atvi

andvj respectively and denote them asSPT (vi) andSPT (vj).
We also assume that

P(vi, vj , G) = vr0vr1 · · · vrs−1vrs ,

wherevr0 = vi andvrs = vj . For a nodevk ∈ P(vi, vj , G), let
L(vk) be the cost of LCP fromvi to vk andR(vk) be the cost of
LCP fromvk to vj .
2. This step calculates a level (denoted asvk.level) for every
nodevk on the graphG. If removing a nodevrl

∈ P(vi, vj , G)
would cause nodevk neither connects tovi nor connects tovj

in the treeSPT (vi), we setvk.level = l.
3. For every nodevk 6∈ P(vi, vj , G), we findP(vk, vj , G\vrl

),
wherel = vk.level. Let R−l(vk) denote‖P(vk, vj , G\vrl

)‖.
All such paths can be found in total timeO(n log n + m) using
the following approach.
We find pathsP(vk, vj , G\vrl

), wherel starts froms to 1. As-
sume that we have found such LCPs for all nodes with level
l ≥ h, and we start to find the LCPs for nodes with levelh− 1.
From Lemma 2, we know thatP(vk, vj , G\vrl

) does not con-
tain any node with level less thanl. We find the nodevk with
level h − 1 such thatca + ‖P(va, vj , G)‖ is minimum, where



vkva ∈ G andva is processed. Then‖P(vk, vj , G\vrh−1)‖ =
ca +‖P(va, vj , G)‖ and we mark nodevk processed. Repeat the
above step until all such least cost paths for all nodes have been
found.
4. For nodevk and each of its neighborsvs such thatvs.level <
vk.level, we calculateL(vs) + R−l(vk) + cs + ck. Choose the
neighborvs with the minimum value ofL(vs)+R−l(vk)+cs +
ck and denote it asc−l(vk), wherel is the level of nodevk.
Among all nodes with labell, choose the one with the minimum
c−l(vk) and setc−l to this value, i.e.,

c−l = min
vk.level=l

c−l(vk).

5. For each nodevrl
∈ P(vi, vj , d), wherel starts froms − 1

to 1, we use a heapH to find the path containing an edgevavb

with minimum cost such thatva.level < l < vb.value. The
heapH has nodesvavb corresponding to all such edgesvavb ∈
G. The value of a nodevavb is L(va) + R(vb) + ca + cb. An
edgevavb is added toH at most once and deleted fromH once.
Find the node with the minimal value inH and compare this
value with c−l, and the minimal of these two values is set as
‖P−vrl

(vi, vj , d)‖.
6. Calculate the payment to nodevrl

as follows

prl
ij = ‖P−vrl

(vi, vj , d)‖ − ‖P(vi, vj , d)‖+ drl

The correctness of this algorithm comes from the following
observations of the shortestvk-avoiding path.

Lemma 1:Assume that, for a nodevrl
∈ P(vi, vj , d),

P−vrl
(vi, vj , d) = vl0vl1 · · · vlt−1vlt ,

wherevl0 = vi andvls = vj . If vla .level ≥ l thenvlb .level ≥ l
for all b > a.

Proof: We prove it by contradiction. Assume that there
exists a pair ofa andb such thatvlb .level < l, vla .level ≥ l
andb > a. Notice thatP(vi, vlb , G) doesn’t contain nodevrl

sincevlb .level < l. Thus, replacing pathvl0vl1 · · · vlt−1vlt by
path P(vi, vlb , G) concatenated withvlb+1 · · · vlt−1vlt will re-
sult in avrl

-avoiding path with smaller weight since the path
P(vi, vlb , G) ⊂ SPT (vi) will only use nodes with level at most
vlb .level < l, while the subpathvl0vl1 · · · vlb−1vlb uses nodevla

with level at leastl. This finished our proof.
Lemma 2:For a nodevk such thatvk.level = l, then

P(vk, vj , G) cannot contain any nodevra with a < l.
Proof: Again, we prove it by contradiction. As-

sume there exists a nodevk such thatvk.level = l, and
P(vk, vj , G) contains a nodevra with a < l. Obviously,
P(vi, vk, G) contains pathvr0vr1 · · · vrl−1vrl

. For simplicity,
we assume that pathP(vi, vk, G) is composed of two sub-
paths vr0vr1 · · · vrl−1vrl

and P1 as shown in Figure III-B.
Similarly, we assume thatP(vk, vj , G) is composed of two
subpathsP2 andvravra+1 · · · vrs−1vrs . Let P3 be the subpath
vravra+1 · · · vrl−1vrl

. It is easy to show that‖P2‖ + ‖P3‖ ≤
‖P1‖ from the property of least cost pathP(vi, vk, G), and
‖P1‖ + ‖P3‖ ≤ ‖P2‖ from the property of least cost path
P(vk, vj , G). Consequently, we have‖P3‖ ≤ 0, which is a
contradiction. This finishes our proof.

Similarly, we have

r0 Vra
Vr l Vr s

Vk

P2
P1

V

Fig. 1. Observation ofvrl -avoiding shortest path.

Lemma 3:Consider the pathP−vrl
(vk, vj , G\vrl

). If there
exists a nodevk′ on this path withvk′ .level < vk.level, then
nodevk cannot appear on theP−vrl

(vi, vj , G\vrl
).

The proof of this lemma is omitted due to space limit. Lemma
3 allows us to only focus on the path connectingvk andvj that
avoids nodesvk′ with vk′ .level < vk.level.

Now we analyze the time complexity of this algorithm. First,
the shortest path tree can be calculated inO(n log n + m), and
with the SPT it only takes us linear time to findL(vk) and
R(vk). As discussed, we can calculate the valueR−l(vk) for
all nodesvk in time O(n log n + m). Assume the number of
nodes with labell is nl and nodevk ’s degree isdeg(vk), then
it will take at most

∑
vl.level=l deg(vk) + nl log nl to find the

c−l. Summingl from 1 to s− 1, we get the time complexity as∑
deg(vk)+

∑s−1
l=1 nl log nl < m+n log n. Thus, the third and

fourth steps will take time complexity ofO(n log n + m) also.
The fifth step will have at mostm insertions, andm deletions,n
extract-min operations, which takes timeO(m+n log n). Over-
all, the time complexity is stillO(m + n log n).

C. Distributed Algorithm for Payment Calculation

Unlike in the wired or cellular network, wireless ad hoc net-
works are lack of a centralized authority. Thus, it is more de-
sirable to compute this paymentpk

i to a relay nodevk in a dis-
tributed manner. In the following sections, we discuss how to
compute the payment of a node to all the relay nodes truthfully
in a distributed manner. Assume that there is a fixed destination
nodev0. Our distributed algorithm will compute the payment
of each nodevi to all its relay nodes. The distributed algorithm
has two stages. First, all nodes together find the Shortest Path
Tree (SPT) rooted at nodev0. We assume that the SPT tree does
not have a loop. Letc(i, 0) be the cost of the shortest path from
nodev0 to nodevi. Second, every nodevi computes its pay-
mentpk

i in a distributed manner which is based on the algorithm
in Feigenbaumet al. [15].

The first stage can be easily implemented using Dijkstra’s al-
gorithm, so we omit this one. In the second stage, we first form
a shortest path treeT root at nodev0, and every node knows its
parent and children in treeT . Initially at nodevi, each entrypk

i

is set to∞, if vk is on the LCPP(c, i, 0); otherwise,pk
i is set

to 0. Every node now broadcasts its entriespk
i to its neighbors.

When nodevi receives an updated price from a neighborvj , it
updates the price entries as follows:

1. If vj is the parent ofvi, nodevi then updates

pk
i = min(pk

i , pk
j ) if vk ∈ P(vi, v0, c).



2. If vi is the parent ofvj , nodevi then updates

pk
i = min(pk

i , pk
j + ci + cj) if vk ∈ P(vi, v0, c).

3. If nodesvi andvj are not adjacent in treeT , for everyvk ∈
P(c, i, 0), nodevi then updatepk

i as follows. Ifvk ∈ P(vj , v0, c)
then

pk
i = min(pk

i , pk
j + cj + c(j, 0)− c(i, 0));

If vk 6∈ P(vj , v0, c) then

pk
i = min(pk

i , ck + cj + c(j, 0)− c(i, 0)).

Whenever any entrypk
i of vi changes, the entrypk

i is sent
to all neighbors ofvi by nodevi. When the network is static,
the price entries decrease monotonically and converge to stable
values after finite number of rounds (at mostn rounds).

D. Compute the Payment Truthfully

In the previous subsection, we presented a distributed method
to compute the payment ofpk

i based on a strategyproof pricing
mechanism for unicast routing. Notice that this algorithm relies
on the selfish nodevi to calculate the paymentpk

i to nodevk,
which cannot prevent nodevi from manipulating the calculation
in its favor. In [15], the authors pointed out that if agentsare
required to sign all of the messages that they send and to verify
all of the messages that they receive from their neighbors, then
the protocol can be modified so that all forms of cheating are
detectable. Notice that even using this approach, all nodes must
keep a record of messages sent to and received from its neigh-
bors so that an audit can be performed later if a disagreement
happens.

While it is quite obvious to conceive that the nodevi has the
incentive not to correctly calculate his paymentpk

i in the second
stage, it is not so straightforward to notice that the nodevi also
has the incentive to lie about his shortest path even in the first
stage. We give an example to show that even we can guaran-
tee that nodevi calculates his payment truthfully in the second
stage, it is not unnecessary for us to worry about nodes’ lying in
the first stage. In Figure 2, the shortest path betweenv0 andv1

should bev1v4v3v2v0, it is easy to calculatev1’s payment tov2,
v3 andv4 is 2, so the overall payment is6. If v0 lies that it is not
a neighbor ofv4, then its shortest path becomesv1v5v0, now it
only need to payv5 5 to send a packet. Thus, nodev1 benefits
by lying about its neighborhood connection information, which
consequently changes the SPT. This problem rises from the fact
that the least cost path is not necessarily the path that you pay
the least.

To solve this, we present a new distributed method as follows.
Algorithm 2: Modified Distributed Algorithm
First Stage:

1. For every nodevi, it has two entries:D(vi) stores the short-
est distance tov0 andFH(vi) stores its corresponding first hop
neighbor. Initially, ifv0 is vi’s neighbor then setD(vi) to 0 and
FH(vi) to v0; else setD(vi) to∞ andFH(vi) to NULL. Every
node broadcasts its information to its neighbors.
2. For every nodevi, when it receives information from its
neighborvj , it comparesD(vi) with D(vj) + cj : if D(vi) >
D(vj) + cj then setD(vi) to D(vj) + cj andFH(vi) to vj .
There are two cases here:
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Fig. 2. The node has the incentive to lie about his shortest path

The first case is thatvi 6= FH(vj): If D(vi) + ci < D(vj) then
nodevi contactsvj directly using reliable and secure connec-
tion, askingvj to update hisD(vj) to D(vi) + ci andFH(vj)
to vi. After the necessary updating,vj broadcasts this informa-
tion.
The second case is thatvi = FH(vj): If D(vi) + ci 6= D(vj)
then nodevi contactsvj directly using reliable and secure con-
nection asking nodevj to update hisD(vj) to D(vi) + ci and
FH(vj) to vi. After the necessary updating, nodevj broadcasts
this information.

Second Stage:
1. For every nodevi, when its entry forpk

i changes, it not only
broadcasts the value ofpk

i , it should also broadcast that which
nodepj that triggers this change.
2. Whenvi receives informationpk

j from its neighborvj , it up-
dates thepk

i using the updating algorithm presented in previ-
ous subsection. Additionally, ifvi triggers the change forpk

j ,
it should recalculatepk

j for vj using the updating algorithm in
previous section to verify it. If his answer and the payment sent
from its neighbor does not match, nodevi then notifiesvj and
other nodes. Nodevj will then be punished accordingly.

It is easy to verify that this algorithm is truthful and no node
can lie about its neighbor information and do not follow the pay-
ment calculation procedure. The problem remaining is how to
make it more efficient.

E. Collusion of Nodes

Using the standard assumption from economic model, we as-
sumed that the wireless nodes donot collude to improve their
utilities. There are several possible ways such that some nodes
can collude. For example, if two nodesvk1 andvk2 know that
the removal of them will disconnect some nodes from the access
point, then these two nodes can collude to declare arbitrarily
large costs and charge a monopoly price together. Notice that,
by declaring much higher costs together, one node’s utility may
decrease, but the sum of their utilities is guaranteed to increase
(thus, they share the increased utilities).

We point out here that the collusion of nodes discussed here is
different from the traditionalgroup strategyproofconcept stud-
ied in [20], [21]. A pricing mechanism is said to be group strat-
egyproof in [20], [21] if any subset of agents colludes, then each
agent of this subset cannot improve its utility without decreas-
ing the utility of some other agent. Clearly, this formulation of
group strategyproofness cannot capture the scenario when the
profit can be transferred among all colluding nodes, which hap-
pens very often in real world. We then formally define what is



k-agents strategyproofmechanism as follows.

Definition 1: A mechanism is said to bek-agents strate-
gyproof if, when any subset of agents of sizek colludes, the
overall utility of this subset is made worse off by misreporting
their types. A mechanism istrue group strategyproofif it is
k-agents strategyprooffor anyk.

Clearly, we cannot design atrue group strategyproofmecha-
nism for the unicast routing problem studied here: if all nodes
but nodevi collude and declare arbitrarily high cost, then node
vi has to pay a payment arbitrarily higher than the actual pay-
ment it needs to pay if these nodes do not collude.

Directly from the incentive compatibility property, for any
truthful mechanism, we have:

Lemma 4:Assume nodevi’s valuation is of the form
wi(o, ci). For any strategyproof mechanism, if the outputo
keeps unchanged, then thepaymentand utility of nodevi do
not depend ondi.

Furthermore, for any2-agents strategyproof mechanism, we
have a stronger conclusion:

Lemma 5:Suppose every nodevi’s valuation is of the form
wi(o, ci). For any2-agents strategyproof mechanism, as long
as the outputo doesn’t change, nodevi’s paymentandutility do
not depend on the profiled.

Proof: From lemma 4, we knowwi(o, ci) does not depend
on di since we assume the outputo is not changed when node
vi declaresdi instead ofci. Thus, we just need prove that its
utility doesn’t depend on any other nodes’ declared cost. We
prove it by contradiction. Assume its utilityui(d) depends on
a nodevk ’s declared costdk, then there existsdk1 6= dk2 and
ui(d|kdk1) 6= ui(d|kdk2). Without loss of generality we as-
sume thatui(d|kdk1) > ui(d|kdk2). From lemma 4, we have
uk(d|kdk1) = uk(d|kdk2) since outputo is not changed. Con-
sider the case with original profilec = d|kdk2 . Nodevi can ask
vk to lie its cost todk1 , thus increasevi’s utility while keeping
vk ’s utility unchanged, which violates the incentive compatibil-
ity of 2-agents strategyproof mechanism.

In the following discussions, we restrict our attention to the
unicast scenario. Remember thatxk denotes whether a nodevk

is on the least cost path or not. LetDk
1 be the set of profiles

such thatxk = 1, i.e., nodevk is on the LCP;Dk
0 be the set

of profiles such thatxk = 0, i.e., nodevk is not on the LCP.
Clearly,Dk

1

⋃
Dk

0 comprises all possible profiles. From lemma
5, we have the following:

Lemma 6:Assume thatA is a2-agents strategyproof mech-
anism for unicast and its outputo is the LCP connecting the
source and target. For any nodevk, if xk doesn’t change, then
pk calculated byA is independent ofd.

Proof: We prove it by contradiction. Suppose nodevk ’s
payment depends ond, then there exists two profile(d|idi1)
and(d|idi2) such thatdi1 > di2 , pk(d|idi1) 6= pk(d|idi2), and
xk(d|idi1) = xk(d|idi2). There are two cases here.

Case 1:xi(d|idi1) = xi(d|idi2). Clearly, the LCP path re-
mains the same when nodevi declares costdi1 or di2 . From
Lemma 5, we havepk(d|idi1) = pk(d|idi2), which is a contra-
diction. Thus, this case is impossible.

Case 2:xi(d|idi1) 6= xi(d|idi2). Sincedi1 > di2 , this case
means that whendi = di1 , vi is not on the LCP, and when

di = di2 , vi is on the LCP. Now fixingd−i and increasing node
vi’s declared cost fromdi2 to di1 , there must existai ∈ [di2 , di1 ]
such thatvi is on LCP ifdi < ai, vi is not on LCP ifdi > ai, and
it is unknown whendi = ai. For nodevi, its utility and payment
do not depend on its own declared costdi. From Lemma 5,
its payment is a constantPi when di < ai (since the output
remains the same for everydi < ai) and another constantPi

whendi > ai. From the incentive compatibility of nodevi, we
havePi − di ≥ Pi, for anydi ≤ ai, since we have to prevent
nodevi from lying its cost fromdi to a number larger thanai.
Similarly, to preventvi lying down its cost from a number larger
thanai to adi ≤ ai, we needPi − di ≤ Pi, for anydi ≤ ai.
Thus, we havePi − Pi = ai.

Supposepk(d|idi1) = pk(d|idi2) + δ. We first consider the
caseδ < 0. Considering the graph with profilec = (d|idi1),
clearly nodevi is not on the LCP and its utility isPi. Thus, the
sum of nodevk andvi’s utility, when nodevi declares costdi1 ,
is

uk(d|idi1) + ui(d|idi1) = pk(d|idi1) + Pi − xk · ck,

wherexk = xk(d|idi1) = xk(d|idi2). Now consider scenario
whenvi declares its cost asdi2 ≤ ai. The sum of nodevk and
vi’s utility becomes (sincexk remains the same)

uk(d|idi2) + ui(d|idi2) = pk(d|idi2) + Pi − xk · ck − di2

≥ pk(d|idi2) + Pi − xk · ck

= pk(d|idi1) + Pi − xk · ck − δ

> uk(d|kci) + ui(d|kci)

This implies thatvi andvk can benefit together by askingvi to
lie its cost fromdi1 to di2 .

We then consider the caseδ > 0. Consider the graph with
profilec = (d|ici), whereci = ai−ε, and0 ≤ ε ≤ min{ δ

2 , ai−
di2}. Clearly nodevi is on the LCP and its utility isPi − ci.
Thus, the sum of nodevk andvi’s utility, whendi = ci, is

uk(d|ici) + ui(d|ici) = pk(d|ici) + Pi − x′k · ck − ci

= pk(d|idi2) + Pi − x′k · ck − ai + ε

= pk(d|idi2) + Pi − x′k · ck + ε,

wherex′k = xk(d|ici). Now consider scenario whenvi declares
its cost asdi1 . Notice thatdi1 ≥ ai. The sum of nodevk and
vi’s utility becomes

uk(d|idi1) + ui(d|idi1) = pk(d|idi1) + Pi − xk · ck

= pk(d|idi2) + Pi − xk · ck + δ

> pk(d|idi2) + Pi − x′k · ck + ε

= uk(d|kci) + ui(d|kci)

The last inequality comesxk(d|idi1) = xk ≤ x′k = xk(d|ici)
(proof follows) andδ > ε. This implies thatvi and vk can
benefit together by askingvi to lie its cost fromai − δ

2 to di1 .
At last, we prove that when nodevi declares a costbi ∈

[di2 , ai] while d−i is fixed,

xk(d|ibi) ≥ xk(d|idi1).



We only have to prove for the casexk(d|idi1) = 1 and we prove
it by contradiction. Assume that there is abi ∈ [di2 , ai] such that
xk(d|ibi) = 0. Let Π(d) be the total cost of a pathΠ under cost
profiled. LetΠ1 be the least cost path connecting the source and
target using profiled|ibi. Observe thatvi ∈ Π1. By assumption,
vk 6∈ Π1. Let Π2 be the least cost path connecting the source
and target using profiled|idi2 . Remember thatvi ∈ Π2 andvk ∈
Π2. Thus,Π1 andΠ2 are different paths. From the optimality
of Π1 under cost profiled|ibi, we haveΠ1(d|ibi) < Π2(d|ibi).
From the optimality ofΠ2 under cost profiled|idi2 , we have
Π1(d|idi2) > Π2(d|idi2). On the other hand,

Π1(d|ibi) = Π1(d|idi2) + bi − di2

> Π2(d|idi2) + bi − di2

= Π2(d|ibi)
> Π1(d|ibi),

which is a contradiction.
This finished our proof.
The above lemma implies that, for any2-agents strategyproof

mechanism for unicast, the payment to any nodevk, regardless
of the cost profile, is a constant as long asvk is on the LCP; the
payment to any nodevk, regardless of the cost profile, is another
constant as long asvk is not on the LCP.

Theorem 7:There is no2-agents strategyproof mechanism
for unicast problem if the output is the LCP.

Proof: We prove it by contradiction. AssumeA is a 2-
agents strategyproof mechanism. From Lemma 6, we know that
if node vk is on LCP then its payment isP , else its payment
is P . Now considering a profiled of their declared cost, and
vk in on LCP. Fixingd−k, there existsak > 0 such thatvk is
on LCP if and only ifdk ≤ ak. It is easy to see thatak =
P(vi, vj , G\vk) − P(vi, vj , G|k0) andP − P = ak (otherwise
nodevk can lie about its cost to improve its utility). In other
words,∆P = P − P = |P(vi, vj , G\vk) − P(vi, vj , G|k0)|
depends ond, which is a contradiction to bothP and P are
constants. This finishes our proof.

Theorem 7 relieves us from designing any strategy-proof
mechanism for arbitraryk−agents strategyproof when the ob-
jective is to use the least cost path for routing. In the follow-
ing discussions, we study how to design a truthful mechanism
such that it can prevent nodes from colluding with its one-hop
neighbors. Notice that the VCG payment scheme discussed in
subsection III-A does not prevent a node from colluding with its
neighbors at all. It is not difficult to construct an example such
that, for a nodevk ∈ P(vi, vj , G), the pathPvk

(vi, vj , G) uses
a nodevt that is a neighbor ofvk andvt 6∈ P(vi, vj , G). Then
vt can lie its cost up to increase the utility of nodevk.

Assume that nodevi pays other nodes to relay the data to
another nodevj . Let N(vk) be the set of neighbors of node
vk, including nodevk itself. Thus, to have a payment scheme
that prevents collusion between any two neighboring nodes, it
is necessary that the graph resulted by removingN(vk) still has
a path connectingvi andvj . Therefore, we assume that graph
G\N(vk) is connected for any nodevk. Similar to the pay-
ment scheme presented in subsection III-A when nodes do not
collude, we design the following payment schemep̃ that avoids
the collusion between any two neighboring nodes. The payment

p̃k
i (d) to a nodevk is

p̃k
i (d) = ‖P−N(vk)(vi, vj , d)‖ − ‖P(vi, vj , d)‖+ dk,

whereP−N(vk)(vi, vj , d) is the least cost path connectingvi and
vj in graphG\N(vk). Notice that the payment to a nodevk 6∈
P(vi, vj , d) could be positive when nodevk has a neighbor on
P(vi, vj , d).

We then prove that the payment schemep̃ is indeed truthful.
Theorem 8:The payment schemẽp is a strategyproof mech-

anism that preventanytwo neighboring nodes from colluding.
Proof:

Notice for any two neighboring nodevk andvl

uk(c) =
∑

vk(o(c), ck) + h−k(c−N(vk))

ul(c) =
∑

vl(o(c), cl) + h−l(c−N(vl))

Sum them we got

ul(c)+uk(c) = 2
∑

vi(o(c), ci)++h−k(c−N(vk))+h−l(c−N(vl))

Notice thath−k(c−N(vk))+h−l(c−N(vl)) doesn’t depends on
dl and

∑
vi(o(c), ci) is maximized, sovk andvl will maximize

their utility by revealing their true cost.

It is easy to show that the above payment scheme is optimum
in terms of the payment to each individual node. Generally, let
{Q(v1), Q(v2), · · · , Q(vn)} be a set of subsets of nodes, i.e.,
Q(vi) ⊂ V . We then show how to design a truthful mecha-
nism such that any nodevk cannotcollude with another node in
Q(vk) to increase their total utilities. For simplicity of notation,
assume thatvi ∈ Q(vi), for 1 ≤ i ≤ n. It is easy to show that
the following mechanism is truthful: 1) the output is the least
cost connecting the sourcevi and destinationvj ; 2) the payment
p̃k

i (d) to a nodevk is

p̃k
i (d) = ‖P−Q(vk)(vi, vj , d)‖ − ‖P(vi, vj , d)‖+ dk.

Here, obviously, we need graphG\Q(vk) to be connected for
any nodevk.

F. Link Cost Instead of Node Cost

Energy conservation is a critical issue inad hocwireless net-
work for the node and network life, as the nodes are powered
by batteries only. So far, we assumed that the cost of a node
forwarding data to any neighbor is same. However, each node
could have different cost of forwarding data to different neigh-
bor by using power adjustment technique. In the most common
power-attenuation model, the power, denoted byp(e), needed
to support a linke = vivj is α + β‖vivj‖κ, where‖vivj‖ is
the Euclidean distance betweenvi andvj , α, β, κ are positive
real constants dependent on the wireless transmission environ-
ment andκ is often between2 and5. This power consumption
β‖vivj‖κ is typically calledpath loss, andα is the overhead cost
for each device to receive and then process the signal. We as-
sume that the parameterκ is the same for all wireless nodes, but
different node may have different values ofα andβ. Obviously,
given the position of a neighborvj , the power cost of nodevi



sending signal to nodevj is uniquely determined by parameters
α, β and the position of nodevi. Thus, we assume that each
wireless nodevi has a private typeci = (ci,0, ci,2, · · · , ci,n−1).
Hereci,j is its power cost to support the link to a nodevj . If
nodevi cannot reach nodevj , then the power cost is assumed to
be∞. Obviously,ci,i = 0.

Notice that this model of network is different from the net-
work models used by previous strategyproof pricing mecha-
nisms [8], [15] for unicast. In their models, either a link is an
agent, which has computational power and private cost type, or a
node is an agent, which has computational power and the private
scalar cost to carry the transit traffic. In our new model here, we
treat each node as an agent and it has some private type which is
a vector. The valuation of a node issolelydetermined by which
incident link is used in the optimal solution. Specifically, given
an output (a pathvis

, vis−1 , · · · vi1 , vi0 connecting nodevi to v0,
wherevi = vis

andv0 = vi0), the valuationwik(tik , o) of the
nodevik

is −cik,ik−1 . Given the declared types by all wireless
nodes, the pricing mechanism will compute a path that maxi-
mizes the valuation of all nodes, and a pricing schemep that is
strategyproof.

The strategyproof pricing mechanism works as follows. First,
each nodevi declares its costdi, which is an-ary vector itself.
We then define adirectedandweightedgraphG = (Q,E,W ),
where the weight of a directed linkvivj is di,j . A least cost di-
rected pathP(vi, v0, d) is computed to connectvi to v0, which
is the output. Letxk,j(d, i, 0) be the indicator of whether a di-
rected linkvkvj is on the directed path fromvi to v0. The pay-
mentpk

i (d) of nodevi to nodevk is

∑

j

xk,j(d, i, 0)dk,j + ∆i,k

Here∆i,k is the improvement of the least cost path fromvi to
the access point due to the existence of nodevk. In other words,

∆i,k =
∑

r,j

xr,j(d|k∞, i, 0)dr,j −
∑

r,j

xr,j(d, i, 0)dr,j .

Notice, to calculate the least costvk-avoiding-path, we set
dk,j = ∞ for each nodevj . It is easy to write the above payment
in VCG format

∑
j 6=k wj(dj , o(t)) + hk(d−k), which implies

that the scheme is truthful. We can show that the fast payment
scheme based on Algorithm 1 can be modified to compute the
payment in timeO(n log n + m) when each node is an agent in
a link-weighted directed network.

G. Ratio of Total Payment Over Total Cost of the Path

Remember that the payment of a nodevi to a nodevk on the
LCPP(vi, v0, c) is

pk
i (d) = ‖P−vk

(vi, v0, d)‖ − ‖P(vi, v0, d)‖+ dk

Clearly, nodevi pays each node on the LCPP(vi, v0, c) more
than its actual cost to make sure that it will not lie about its cost.
The overpaid value is the improvement of the least cost path
due to the existence of nodevk. It is not difficult to construct a
network example such that the over-payment of a nodevi could
be arbitrarily large. But on the other hand, while we conducted

extensive simulations to study the amount of overpayment when
the cost of each node is chosen independently and uniformly
from a range and the network topology is a random graph, the
result shows that the large overpayment usually won’t happen in
the real world.

Let pi =
∑

vk∈P(vi,v0,c) pk
i (c), i.e., the total payment of node

vi to the relay nodes. The metrics of the overpayment used in
our simulations areTotal Overpayment Ratio(TOR), Individual
Overpayment Ratio(IOR), andWorst Overpayment Ratio. The
TOR of a graph is defined as

∑
i pi/

∑
i c(i, 0), i.e., the total

payment of all nodes over the total cost of all LCPs. The IOR of
a graph is defined as1n

∑
i

pi

c(i,0) , i.e., the average overpayment
ratio over alln nodes. The worst overpayment ratio is defined
asmaxi

pi

c(i,0) , i.e., the maximum overpayment ratio over alln

nodes. We found that the IOR and TOR are almost the same in
all our simulations and they take values around1.5. In all our
simulations, the average and the maximum are taken over100
random instances.

In the first simulation, we randomly generaten nodes uni-
formly in a 2000m × 2000m region. The transmission range
of each node is set as300m. The cost of each nodevi to for-
ward a packet to another nodevj is ‖vivj‖κ. The number of
nodes in our simulations varies among100, 150, 200, · · · , 500.
We choose two differentκ values2 and2.5. Figure 3 (a) illus-
trates the difference between IOR and TOR when graph model
is UDG andκ = 2. We found that these two metrics are almost
the same and both of them are stable when the number of nodes
increases. Figure 3 (d) illustrates the overpayment respecting to
the hop distance to the source node. The average overpayment
ratio of a node stays almost stable regardless of the hop distance
to the source. The maximum overpayment ratio decreases when
the hop distance increases, which is because large hop distance
to the source node will smooth off the oscillation of the relay
cost difference: for node closer to the source node, the second
shortest path could be much larger than the shortest path, which
in turn incurs large overpayment; for node far away from the
source, the second shortest path has total cost almost the same
as the shortest path, which in turn incurs small overpayment.
Keep in mind that the overpayment indeed increases when the
hop distance to the source increases. Figure 3 (b) and (c) illus-
trate the overpayment for UDG graph whenκ = 2 andκ = 2.5
respectively.

In our second simulations, we vary the transmission range of
each wireless node from100m to 500m, and the costci,j of a
nodevi to send a packet to another nodevj within its transmis-
sion range isc1 + c2‖vivj‖κ, wherec1 takes value from300 to
500 andc2 takes value from10 to 50. The ranges ofc1 andc2

we used here reflects the actual power cost in one second of a
node to send data at2Mbps rate. When nodevj is not within
the transmission range of nodevi, costci,j is set to∞. Figure
3 (e) and (f) illustrate the overpayment for random graph when
κ = 2 andκ = 2.5 respectively.

H. Other Issues about the Pricing Mechanism

Other possible attacks: There are some other attacks possi-
ble to the scheme. A node may refuse to pay by claiming that he
did not initiate some communication and thus should not pay for
it. To count this attack, we require that each node sign the mes-
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Fig. 3. Overpayment ratios IOR, TOR and the worst ratio for UDG and random graphs.

sage when it initiates the message, the relay nodes will verify
the signature.

Another possible attack isfree riding: a relay nodevk on the
routeP(vi, v0, c) may attempt to piggyback data on the packets
sent between the initiatorvi with the goal of not having to pay
for the communications to nodev0. To count this attack, the
initiator vi pays the relay nodevk only when it receives a signed
acknowledgment from nodev0.

Where to pay: We briefly discuss how the payment is
charged. All payment transactions are conducted at the access
point v0. Each nodevi has a secure account at nodev0. When
the access point receives a data fromvi, it verifies the truthful-
ness of the source and then pay each nodevk on the LCPpk

i and
charge that from nodevi. When a nodevi retrieves data from
the nodev0, nodevk on the LCP will send a signed acknowl-
edgment after receiving the data. Nodev0 then charges nodevi

accordingly after receiving this signed acknowledgment.
Resale the path: Another possible collusion happens after

the payment is calculated and during the process of actually
routing the packets. Letpi =

∑n−1
k=0 pk

i , i.e., the total payment
of nodevi to all relay nodes on the least cost pathP(vi, v0, c).
Assume thatpi > pj + max(pj

i , cj) for some neighborvj of
vi. Notice thatmax(pj

i , cj) = xj(c, i, 0)pj
i + (1− xj(c, i, 0))cj

since ifvj is on LCPP(vi, v0, c), thenpj
i ≥ cj andpj

i = 0 < cj

otherwise. Herexj(c, i, 0) is the indicator function whether
nodevj is on the LCPP(vi, v0, c). Then,vi andvj can col-
lude in favor of them as follows: (1)vj sends the data packets
for vi andvj pays all relay nodes on pathP(vi, v0, c); (2) vi

paysvj the costpj + max(pj
i , cj), which covers the payment

of vj and the actual paymentvj should get ifvi just sends the
packets directly along the LCPP(vi, v0, c). (3) vi andvj splits

the differencepi − (pj + max(pj
i , cj)), which is the saving of

nodevi from collusion with nodevj . Notice that it is possible
thatpi > pj +max(pj

i , cj) for some neighborvj of vi. Figure 4
illustrates such an example of such possible collusion. It is easy
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Fig. 4. An example of wireless network and the node cost. The directed links
form the shortest path tree fromv0 to everyvi.

to compute thatp8 = 20, p4 = 6 andp4
8 = 0. Noticec4 = 5.

Thus,v8 can askv4 to forward the data packets using its LCP
to v0. Nodev8 pays nodev4 a price6 + 5 = 11 to cover its
paymentp4 and its costc4, and half of the savings, which is4.5.
Thus, the total payment of nodev8 is only 15.5 now, which is
less thanp8 and nodev4 also increases its utility from0 to 4.5.

IV. CONCLUSION

In this paper we give a strategyproof pricing mechanism that
stimulates cooperation for unicast among wireless ad hoc net-
works. In our strategyproof scheme, each nodevk first declares
its cost of relaying data for other nodes; every nodevi then com-
putes the least cost path to the access pointv0; a payment is also
computed for each relay node on the least cost path. We pre-
sented the first optimal time algorithm to compute such payment



in a centralized manner. We also discussed in detail how to im-
plement this scheme on each selfish node in a distributed man-
ner. We showed that although each node is selfish, the proposed
scheme guarantees that each node will declare its true cost and
also follow the designed protocol. As all VCG mechanisms, the
proposed scheme pays each relay node more than its declared
cost to prevent it from lying. We conducted extensive simula-
tions and found that the overpayment is small when the cost of
each node is a random value between some range.

Our protocol assumes that nodes will not collude. We showed
that no truthful mechanism exists that can prevent all pairs of
nodes from colluding to improve their utilities. We designed
a truthful payment scheme such that it can prevent nodes from
colluding with its neighbors. Here we assume that the network is
still connected by removing any node and all its neighbors. Our
payment scheme is optimum in terms of the individual payment.
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