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Almost Optimal Dynamically-Ordered Channel
Sensing and Accessing for Cognitive Networks

Bowen Li, Panlong Yang, Jinlong Wang, Qihui Wu, Shaojie Tang, Xiang-Yang Li, Yunhao Liu

Abstract—For cognitive wireless networks, one challenge is that the status and statistics of the channels’ availability are difficult to
predict. Numerous learning based online channel sensing and accessing strategies have been proposed to address such challenge.
In this work, we propose a novel channel sensing and accessing strategy that carefully balances the channel statistics exploration
and multichannel diversity exploitation. Unlike traditional MAB-based approaches, in our scheme, a secondary cognitive radio user will
sequentially sense the status of multiple channels in a carefully designed order. We formulate the online sequential channel sensing
and accessing problem as a sequencing multi-armed bandit problem, and propose a novel policy whose regret is in optimal logarithmic
rate in time and polynomial in the number of channels. We conduct extensive simulations to compare the performance of our method
with traditional MAB-based approach. Simulation results show that the proposed scheme improves the throughput by more than 30%

and speeds up the learning process by more than 100%.

Index Terms—cognitive radio networks, online sequential sensing and accessing, sequencing multi-armed bandit problem, multichan-
nel diversity.
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1 INTRODUCTION

Driven by regulatory initiatives and radio technology
advances, dynamic spectrum access (DSA), especially
enabled by cognitive radios (CR), has been well rec-
ognized as an effective method to improve spectrum
utilization. In DSA system, the cognitive user is regu-
lated to perform spectrum sensing before transmitting
over a candidate channel, so as to protect primary user’s
communication. Due to hardware limitations, cognitive
user can only sense a small portion of the spectrum band
at a time1, and thus properly arranging sensing and
accessing is critical for improving system throughput
as well as reducing access delay. In achieving optimal
channel sensing and accessing scheme, a major challenge
is predicting the channel status and quality. Online
learning scheme, due to the adaptivity and efficiency
inherently for dynamic wireless network, has received
much attention.

Assuming cognitive user would only sense/access one
channel in each time slot, existing online channel sensing
and accessing solutions often model the learning process
as a multi-armed bandit (MAB) problem [1]. Although
the one channel per slot scheme is widely used in periodi-
cal and synchronized spectrum sensing system, it fails to
exploit instantaneous opportunities among channels, i.e.
multichannel diversity. Such diversity is widespread in

• B. Li, Y. Liu and X. Li are with the School of Software and TNLIST,
Tsinghua University, and X. Li is also with CS Department, Illinois
Institute of Technology.

• Panlong Yang, Jinlong Wang, and Qihui Wu are with Institute of
Communication Engineering, PLAUST, Nanjing, China.

• S. Tang is with the Department of Computer and Information Science,
Temple University.

1. Without loss of generosity, in this work, we consider that user can
only sense (or transmit over) one channel at a time

distributed dynamic spectrum access system, since the
available channels are usually much more than users
could use, e.g., with half of the US population having
more than 20 TV channels available for white-space
communication at a time [2]. Meanwhile, the channel
sensing time is much shorter than the duration of an
access time slot, e.g., the sensing time is typically about
10ms, while the access duration is 2s in TV band [3]. In
such system, user could gain more by sensing multiple
channels sequentially and opportunistically access the
idle channel in each time slot.

Motivated by these facts, we investigate the online Se-
quential channel Sensing and Accessing (SSA) schemes,
where the channels’ statistics is unknown initially. Our
objective is to optimize the total throughput achieved
during system lifetime by carefully selecting the se-
quence of channels to be sensed in each time slot. We
formulate the problem on learning the optimal channel
sensing order in a stochastic setting as a new bandit
problem, which we referred as a sequencing multi-armed
bandit problem (SMAB). In this formulation, we map each
sensing order (i.e. a sequence of channels) to an arm.
Same as all MAB-based approaches, we will study the
regret of our scheme, where the regret is defined as
the difference between the expected reward gained by a
genie-based optimal choice (i.e. optimal sensing order),
and the reward obtained by our learning policy.

Clearly, both long-term statistics and short-term diver-
sity among different licensed channels would be jointly
explored and exploited in our model, which makes
our problem distinctive and challenging. Observe that
the number of arms in SMAB is exponential, i.e., it
is O(NK) where N is the total number of channels
and K is the maximum number of channels user could
sense in one time slot. This complexity brings the first
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challenge in devising an efficient online learning policy,
as traditional MAB solutions [4]–[6] would result in
exponential throughput loss with the increasing number
of channels. Moreover, the rewards from different arms
are no longer independent to each other, because the
elements of different arms are derived from the same
channel set. Consequently, previous results under the
assumption of independent arms [4]–[6] are no longer
applicable to our model. We notice that recent studies
[7]–[9] paid attention to the case where the rewards of
different arms are correlated, however, all their work
focused on linear rewards model, where the expected
reward of an arm is defined as a linear function of
random variables. While in our model, the correlation
between arms is nonlinear, which is the second challenge
in designing and analyzing our scheme. Finally, unlike
previous work applying MAB in dynamic spectrum
access [10]–[16] that channels being sensed during a time
slot is fixed, the channels being sensed in a time slot is
unpredictable in our model, even the sensing order is
given. This distinctive feature makes the learning process
in SMAB much more difficult to quantify and analyze.

The main contributions of our paper are as follows.
Firstly, we analyze the performance of classic UCB1

algorithm [6] in handling the online SSA problem, and
show that both regret and storage are exponential with
the increasing number of channels. We then develop an
improved policy referred to as UCB1 with virtual sampling
(UCB1-VS), exploring dependencies among arms. We
show by analytical analysis and extensive simulations
that the UCB1-VS scheme significantly improves the
convergence speed of the learning process.

Secondly, we propose a novel sequencing confidence
bound (SCB) algorithm for the SMAB problem. Our anal-
ysis shows that, the expected regret of SCB is bounded
by a function grows in order O(NK logL), where L is
the number of time slots. That is, the regret is increasing
in the optimal logarithmic rate in time and polynomial
in the number of unknown parameters. Meanwhile, the
storage overhead is significantly reduced from O(NK)
to O(N).

The rest of the paper is organized as follows. We
present our system model with problem formulation
in Section 2. The proposed online sequential channel
sensing and accessing policies are presented in Section 3.
We present the extensive simulations and results in
Section 4 and review the related work in Section 5.
Section 6 concludes our work.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

Consider a cognitive radio network with potential chan-
nel set S = {1, 2, . . . , N}. Each cognitive user is operated
in constant access time (CAT) mode [17], i.e., user would
have a constant duration T for either channel obser-
vation or data transmission once it obtains a commu-
nication chance. The communication chance may come

from wining competition in control channel as in ad hoc
system [17] or assigned by a center node in one hop
system [18].

Denote ai(j) ∈ {0, 1} as the availability of channel i
in the jth slot, where ai(j) = 0 indicates the primary
user is transmitting over channel i in the jth slot, and
ai(j) = 1, vice versa. In order to protect the primary
users’ communication process, the duration T is com-
monly set to be much shorter than the sojourn time of
primary user activities. It is reasonable to consider that
the channel state is relatively stable during T . On the
other hand, as the interval time between consecutive
communication chances is relatively long in multi-user
networks (as discussed in [17]), the channel status is
considered to be independent among slots. This basic
assumption is consistent with previous studies such as
[11], [15], [19], [20]. We consider that the channel idle
probability θi ∈ [0, 1] (i ∈ S) is not known to user at the
beginning, but can be available through learning. For
denotation convenience, we sort the channel according
to idle probability, where θ1′ ≥ θ2′ ≥ . . . ≥ θN ′ .

It is worth noting that, in our cognitive radio network
scenario, our scheme can work in both cases where
primary users presented or not. Note that, the channel
idle probability is dominated by the access frequency
of the primary users. What left to secondary user is to
learn and select the dynamic available channels wisely.
In case there is no primary users, e.g. the dynamic
spectrum utilization scenario, the channel availability is
dominatedby the channel contention process as well as
the channel quality. In summary, we consider the typical
cognitive radio network scenario as well as dynamic
spectrum utilization problem, and solve them in one
theoretical framework.

The sequential channel sensing and transmission pro-
cedure can be described as follows. At each slot, user
senses the channels sequentially according to a given
sensing order, until it arrives at an idle channel, and
transmits over this channel during the remainder of
the time slot with data rate R. Each channel sensing
is denoted as a step in a slot, which costs a constant
time τs. We denote Ψ as the set of all possible sensing
orders. Each element in Ψ, Φm = (φm

1 , φm
2 , . . . , φm

K),
is a permutation of the K channels, where K is the
maximum number of steps in each decision slot, and φm

k

denotes the ID of kth channel in Φm. Correspondingly,
K = min

(
N, � T

τs
�
)

(�·� is round-down function), and

|Ψ| = M =

(
N

K

)
K!. When a user stops at step k (i.e,

ask = 1 in current slot), it obtains an immediate data
transmission reward R (T − kτs).

We define the deterministic policy π(j) at each time
j, mapping from the observation history Fj−1 to a
sequence of channels Φ(j). The problem is how to make
sequential decision on sensing order selection, offering
stochastic rewards with unknown distribution. Our main
goal is to devise a learning policy maximizing the accu-
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TABLE 1
Summary of Notations

Notation Description
S channel set, S = {1, 2, . . . , N}
Ψ sensing order set, Ψ = {Φ1,Φ2, . . . ,ΦM}
M number of sensing orders
N number of channels
K number of maximum sensing steps in one slot
i channel index, 1 ≤ i ≤ N

j slot index, 1 ≤ j ≤ L

k sensing/probing step index in a slot, 1 ≤ k ≤ K

m sensing order index, 1 ≤ m ≤ M

α normalized time cost for sensing one channel
φm
k ID of the kth channel in Φm

rΦm (j) immediate reward obtained by user using order Φm

in the jth slot
μm expected reward per slot of user selecting Φm

μ̂m estimated average reward of selecting Φm

nm number of times that sensing order Φm has been
selected up to the current slot

ai(j): availability of channel i in the jth slot
Θ: channel idle probability, Θ = (θ1, θ2, . . . , θN )

Θ̂: estimated idle probability, Θ̂ =
(
θ̂1, θ̂2, . . . , θ̂N

)
Θu: upper confidence of idle probability, Θu =(

θu1 , θ
u
2 , . . . , θ

u
N

)
ns
i number of times that channel i has been sensed up

to the current slot
Lk number of slots user arrives the kth sensing step up

to L slots
Ti (j) number of times i has been sensed up to the jth

slot
Tk
i (j) number of times i has been sensed in the kth step

up to the jth slot

mulated throughput, i.e.,

max lim
L→∞

L∑
j=1

μπ(j)

where μ is the expected reward in one slot time accord-
ing to order Φ. Let α = τs

T . When order Φm is chosen,
the expected per-slot reward is given by

μm = E [rΦm
] =

K∑
k=1

{
(1− kα)θφm

k

k−1∏
κ=1

(
1− θφm

κ

)}
(1)

Here, rΦm
is the normalized immediate reward obtained

using order Φm. Without special notification, the rewards
we talked about are normalized. To obtain the actual
throughput, the reward should be scaled by constant
factor RT .

Since maximizing accumulated throughput is equiva-
lent to minimizing the regret, we can rewrite the objective
function as

min lim
L→∞

ρπ (L) = Lμ∗ −
L∑

j=1

μπ(j) (2)

A scheme is zero-regret if the average regret per time
slot tends to 0 when the duration L goes to infinity, i.e.
lim

L→∞
ρπ(L)

L = 0.
We summarize the main notations in Table 1.

3 ALMOST OPTIMAL ONLINE SEQUENTIAL
SENSING AND ACCESSING

In this section, we first propose two intuitive methods
to construct sensing order selection strategy. The first
one directly applies UCB1 [6], and the second one is
referred to as UCB1 with virtual sampling (UCB1-VS),
which is an improved version of UCB1 by exploring the
dependency among arms. We then develop sequencing
confidence bound (SCB) for such SMAB problem and
analyze the regret of this novel algorithm.

3.1 Intuitive Solutions Based on UCB1
3.1.1 UCB1 Algorithm
An intuitive approach to solve the sequencing multi-
armed bandit problem is to use the UCB1 policy given
by Auer et al. [6]. In supporting sensing order selection,
two variables are used for each candidate order Φm

(1 ≤ m ≤ M ): μ̂m(j) is the averaged value of all the
obtained rewards in order Φm up to slot j, and nm(j) is
the number of times that Φm has been chosen up to slot j.
They are both initialized to zero and updated according
to the following rules:

μ̂m(j) =

{
μ̂m(j−1)nm(j−1)+rm(j)

nm(j−1)+1 , Φm is selected
μ̂m(j − 1), else

(3)

nm(j) =

{
nm(j − 1) + 1, Φm is selected
nm(j − 1), else (4)

Then, the intuitive policy can be described as: at the
very beginning, the user should choose each sensing
order only once. After that, the user should select the
order Φm that maximizes μ̂m +

√
2 log j
nm

in the jth slot.
The description of such policy is presented in Fig.1.

The regret bound of the UCB1 policy is given by the
following theorem.

Theorem 1: The expected regret of sequential sens-
ing/accessing under policy UCB1 is at most[

8
∑

m:μm<μ∗

(
logL

ξm

)]
+

(
1 +

π2

3

)( ∑
m:μm<μ∗

ξm

)
(5)

where ξm = μ∗ − μm.
Proof: See ( [6], Theorem 1).

As the number of candidate orders M =

(
N

K

)
K!,

according to Equ. (5), we conclude that the regret under
UCB1 policy is O(NK logL), which is in optimal log-
arithmic increasing rate in time. Intuitively, the UCB1
policy is zero regret. However, it is worth to note that the
regret of UCB1 is exponential increasing in the number
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UCB1
1: Initialize: j = 0; for all 1 ≤ m ≤ M : μ̂m = 0, nm = 0
2: for j = 1 to M do
3: Sequentially sensing/accessing with Φ(j) = Φj in

the jth slot
4: Update μ̂j(j), nj(j) using Equ. (3)-(4) respectively
5: end for
6: for j = M + 1 to L do
7: Sequentially sensing/accessing with Φ(j) = Φm

that maximizes μ̂m +
√

2 log j
nm

in the jth slot
8: Update μ̂m(j), nm(j) using Equ. (3)-(4) respec-

tively
9: end for

Fig. 1. UCB1 algorithm description

of channels, which results in high throughput loss in
actual sequential sensing/accessing scenario2.

Note that since all the orders are composed of the
channels from the same set, the rewards of different
orders can not be independent to each other. Hence,
it is possible to improve learning efficiency by further
exploring dependency among arms. Motivated by this
fact, we develop an improved UCB1-based policy as
follows.

3.1.2 Improved UCB1-VS Algorithm

Analyze the reward function in SSA process (as in
Equ.1). The reward in our sequencing multi-armed ban-
dit problem depends on the specific channels as well
as their positions in the order, which indicates that the
orders with identical sub-sequence would result in simi-
lar rewards. This basic finding provides us an important
hint that we could obtain reward information about
multiple arms by playing a single arm. As a result, it is
possible to update statistics of multiple sensing orders
without really playing with it in each slot, which we
referred as virtual sampling.

We illustrate the principle of our proposed UCB1-VS
policy as follows. Suppose that user selects an order
Φm = (ψm

1 , ψm
2 , . . . , ψm

K ) in a slot and access ψm
k (ψm

k

is idle in current slot), then user obtains reward 1− kα,
and we can conclude that, in current slot:
• If user selects an arbitrary sensing order starting

with a subsequence consisting of ψm
1 , ψm

2 , . . . , ψm
k−1

and the kth channel is ψm
k , the reward must be

1− kα;
• If user selects an arbitrary sensing order starting

with ψm
k , the reward must be 1− α.

Moreover, if user observes that all channels are busy
in current slot, then we can conclude that all sensing
orders consisting of {ψm

1 , ψm
2 , . . . , ψm

K} would result in

2. As the number of channels is commonly large, e.g., the number
of whitespace channels for DSA in TV band is over 50 [3].

UCB1 with Virtual Sampling
1: Initialize: j = 0; for all 1 ≤ m ≤ M : μ̂m = 0, nm = 0
2: for j = 1 to M do
3: Sequentially sense and access with Φ(j) = Φj in

the jth slot
4: Update μ̂j(j), nj(j) according to sub-algorithm (as

in Fig.3) with Equ. (3)-(4) respectively
5: end for
6: for j = M + 1 to L do
7: Sequentially sense and access with Φ(j) = Φm that

maximizes μ̂m +
√

2 log j
nm

in the jth slot
8: Update μ̂j(j), nj(j) according to sub-algorithm (as

in Fig.3) with Equ. (3)-(4) respectively
9: end for

Fig. 2. UCB1-VS algorithm description

Virtual Sampling sub-algorithm
1: if r(j) == 0 then
2: Update statistics of all sensing orders consisting of

{ψ1(j), ψ2(j), . . . , ψK(j)} with r(j) = 0
3: else if r(j) == 1− α then
4: Update statistics of all sensing orders starting with

ψ1(j) using r(j) = 1− α
5: else if r (j) == 1− kα, (k > 1) then
6: Update statistics of all sensing orders starting with

ψk(j) using r(j) = 1− α
7: Update statistics of all sensing orders starting with

a permutation of {ψ1(j), ψ2(j), . . . , ψk−1(j)} and
the kth channel is ψk(j), using r (j) = 1− kα

8: end if

Fig. 3. Virtual Sampling sub-algorithm description

zero reward in current slot. Motivated by these facts, we
develop the UCB1-VS algorithm as presented in Fig.2.

Clearly, with virtual sampling, the learning process
can be greatly accelerated, while the zero-regret property
still holds. We show the benefit of virtual sampling by
analyzing the number of arms being updated in one slot.
Suppose that user chooses order Φm = (ψm

1 , ψm
2 , . . . , ψm

K )
to run SSA in a slot, the expected number of sensing
orders that would be updated in this slot is then given
by

Mvs=
K∑

k=1

{
[(K − 1)! + (k − 1)!] θψm

k

k−1∏
κ=1

(
1− θψm

κ

)}

+K!
K∏

κ=1

(
1− θψm

κ

)

> (K − 1)!

{
K∑

k=1

[
θψm

k

k−1∏
κ=1

(
1− θψm

κ

)]
+

K∏
κ=1

(
1− θψm

κ

)}

= (K − 1)!
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It is clearly shown that at least (K − 1)! arms are
updated in each slot, rather than only one as in UCB1.
Moreover, as the number (K − 1)! is obtained when user
accesses after only one step channel sensing, it would be
further increased when the number of channels sensed in
a slot increases. This indicates that the virtual sampling
would benefit more in a spectrum scarcity environment,
where the learning gain is most needed.

Although the expected regret of UCB1 and UCB1-VS
are in optimal logarithmic rate over time, they are expo-
nentially increasing with the number of channels. More-
over, as the choices are made on arm-specific statistics,
two variables are recorded for each sensing order. Thus,
the storage overhead of running these two algorithms
is O(NK). On the other hand, in each decision-making,
e.g., in the jth slot, the user needs to choose the order

Φm with maximum μ̂m +
√

2 log j
nm

from M =

(
N

K

)
K!

candidate sensing orders. Hence, O(NK) compare oper-
ations are needed for each decision-making. In a word,
both storage overhead and computation complexity of
these two algorithms are exponentially growing with
the number of channels. This property makes them
infeasible in most practical scenarios, where the number
of channels is commonly up to ten or even more.

3.2 A Novel Algorithm for Sequencing Bandit Prob-
lem

In this subsection, we propose a novel learning policy
for sequential channel sensing and accessing, in which
decisions are made on channel-specific statistics. Later,
theoretical analysis on the regret bound is proposed,
which shows that the regret of our proposed algorithm
is in polynomial order of the number of channels.

3.2.1 Algorithm Description

We describe our proposed learning algorithm by in-
troducing the concept of optimistic throughput, which is
defined as the supposed achievable throughput under
the optimistic channel estimation. We use the confidence
interval estimation to characterize the optimism of un-
certainty in channel statistics, and sequencing confidence
bound (SCB) is proposed for quantifying the optimistic
throughput. Then, the core idea of our proposed SCB
learning policy can be briefly described as: choosing the
sensing order that maximizes the sequencing confidence
bound in each slot.

In decision-making process, the channel statistics is
learnt by recording and updating the following two
variables: θ̂i(j) and ns

i (j), where θ̂i(j) and ns
i (j) are the

statistic value of idle probability and the times having
been sensed for channel i till slot j respectively. They

Sequencing Confidence Bound
1: Initialize: for all 1 ≤ i ≤ N : θ̂i = 0, ns

i = 0; S0 = S;
l = 1, k = 1;

2: while S0 �= ∅ do
3: Sense a random channel i ∈ S0

4: k = k + 1, S0 = S0 \ {i}
5: Update θ̂i(l), ns

i (l) according to Equ.(6) (7) respec-
tively

6: if ali == 1 then
7: l = l + 1, k = 1
8: Access the idle channel
9: else if k == K + 1 then

10: l = l + 1, k = 1
11: Wait for the next slot
12: end if
13: end while
14: for j = l to L do
15: Sequentially sense and access according to Φ

where
Φ = arg max

Φm∈Ψ
SCBm(j)

16: Update θ̂i(j), ns
i (j) accordingly

17: end for

Fig. 4. SCB algorithm description

are initialized to zero and updated as follows:

θ̂i(j) =

⎧⎨
⎩

θ̂i(j−1)ni(j−1)+aj
i

ni(j−1)+1 , if channel i is sensed

θ̂i(j − 1), else
(6)

ns
i (j) =

{
ns
i (j − 1) + 1, if channel i is sensed

ns
i (j − 1), else (7)

Then, the SCB learning policy can be described as
follows. Firstly, user will sequentially sense channels
until all channels are visited at least once. After that,
in time slot j, the user will choose the sensing order Φm

with maximum SCBm(j), which is defined by

SCBm(j) =
K∑

k=1

{
(1− kα)θuψm

k
(j)

k−1∏
κ=1

(
1− θuψm

κ
(j)
)}

(8)

Here θui (j) = θ̂i(j) +
√

2 log j
ns
i
(j) is the upper confidence

bound of the idle probability on channel i up to slot
j. The detailed SCB algorithm is presented in Fig.4.

We now analyze the complexity of running SCB al-
gorithm. Compare with the arm-specific algorithms (i.e.
UCB1 and UCB1-VS) that need O

(
NK

)
storage space,

the storage overhead of SCB is greatly reduced to be
O (N), since the decision making in SCB needs only two
variables for each channel. Moreover, for the computa-
tional complexity, we have the following lemma.

Lemma 1: The channel sequence with first K elements
in the descending order of θu is optimal for maximizing
SCBm.
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Proof: Given the real channel statistics is Θu, SCBm

is the expected reward of sensing order Φm. Hence, the
lemma is equivalent to the statement that the order Φ =
(1′, 2′, . . . ,K ′), where θ1′ ≥ θ2′ ≥ . . . ≥ θK′ ≥ . . . ≥ θN ′ , is
optimal for maximizing expected reward.

Define Uk as the expected reward one could obtain in
the kth sensing step. U1is then the expected reward one
could obtain by using the sense UK+1 = 0 (i.e., all the
channels sensed in this slot are busy). We prove it by
contradiction in following two phases.

Phase 1: Suppose an optimal sensing order is Φ =
(1′, 2′, . . . ,K ′), and there exists k1 < K, k2 > K such
that θk1

′ < θk2
′ . Then, we have

Uk1
′ = θk1

′ (1− k1α) + Uk1+1′

We get a new sensing order by switching the order of
channels k1

′ and k2
′, and keeping all the other channels

the same. We have

Unew
k1

′ = θk2
′ (1− k1α) + Uk1+1′

Since θk1
′ < θk2

′ , it is easily to acquire that Uk′
1
< Unew

k1
′ .

Further, we have

Uk1−1′= θk1−1′ (1− k1α+ α) + Uk1
′

< θk1−1′ (1− k1α+ α) + Unew
k1

′ = Unew
k1−1′

Similarly, we have U1 < Unew
1 . This contradicts the

assumption that the sensing order Φ = (1′, 2′, . . . ,K ′) is
optimal. In other words, if Φ = (1′, 2′, . . . ,K ′) is optimal,
then θk1

′ ≥ maxk2>K {θk2
′} , ∀k1 ≤ K.

Phase 2: Suppose an optimal sensing order is Φ =
(1′, 2′, . . . ,K ′), and there exists k < K such that
θk′ < θk+1′ . Then, we have Uk = θk′ (1− kα) +
(1− θk′) [θk+1′ (1− kα− α) + (1− θk+1′)Uk+2′ ]. We get
a new sensing order by switching the order of chan-
nels k′ and k + 1′, and keeping all the other chan-
nels the same. We have Unew

k = θk+1′ (1− kα) +
(1− θk+1′) [θk′ (1− kα− α) + (1− θk′)Uk+2′ ].

Then, Unew
k − Uk = α (θk+1′ − θk′) > 0, since θk′ <

θk+1′ . Further, we have

Uk−1= θk−1′ (1− kα+ α) + (1− θk−1′)Uk

< θk−1′ (1− kα+ α) + (1− θk−1′)U
new
k = Unew

k−1

Similarly, we have U1 < Unew
1 . This contradicts the

assumption that the sensing order Φ = (1′, 2′, . . . ,K ′) is
optimal. In other words, if Φ = (1′, 2′, . . . ,K ′) is optimal,
then θk1

′ ≥ θk2
′ , ∀k1 < k2 ≤ K.

This completes the proof.
.

Remark: As the decisions are made on channel-specific
statistics in SCB, the storage overhead for running SCB
algorithm is only O(N), i.e., linear to the number of
channels. In the computation complexity aspect, the
Lemma1 indicates that one could acquire the order with
maximum SCB by arranging K channels from all the N
channels with the descending order of θu. In this case,
the user needs only NK compare operations to derive

the exact sensing order. Moreover, the decision on de-
termining a sensing order in a slot can be accomplished
by a sequence of decisions on selecting channel step by
step during the slot. Specifically, in each slot, the user
could maximize SCB in practice by always choosing
the channel with highest θu from the candidate channel
set in each step (and then sweeping the chosen channel
from candidate channel set for the channel selection in
the next step). By such way, although the user needs to
make a series of decisions on selecting one channel from
the candidate channel set in each slot; the computation
complexity in each decision-making is at most O(N)
compare operations.

3.2.2 Analysis of Regret

In this subsection, we study the regret of the proposed
SCB policy. Traditionally, the regret of a policy for a
multi-armed bandit problem is upper-bounded by the
number of times each sub-optimal arm being played.
Summing over all sub-optimal arms can get the upper
bound. However, since our proposed approach focuses
on the basic elements of each arm (i.e. the sub-sequences
in each sensing order), it requires more finely analy-
sis. We analyze the number of times each sub-optimal
channel being sensed in each step, and sum up this
expectation over all channels with all steps. Our analysis
provides an upper bound which is polynomial to N and
logarithmic to time. We present our analytical result in
the following theorem.

Theorem 2: The expected regret of sequential sens-
ing/accessing under the SCB policy is at most

Π(L)K

[
N − K + 1

2
− α(K + 1)(3N − 2K − 1)

6

]

where Π(L) = 8 logL
Δmin

+
(
1 + π2

3

)
Δmax, and Δmin =

mini,j |θi − θj | (i �= j), Δmax = maxi,j |θi − θj |.
To prove Theorem 2, we introduce the Chernoff-

Hoeffding bound inequalities first.
Lemma 2: (Chernoff-Hoeffding bound) Let X1, . . . , Xn

be random variables with range [0, 1], such that
E [Xt|X1, . . . , Xt−1] = μ. Moreover, let Sn = X1 + . . . +
Xn. Then, for any a > 0,

Pr [Sn ≥ nμ+ a] ≤ e−
2a2

n

and
Pr [Sn ≤ nμ− a] ≤ e−

2a2

n

We now prove Theorem 2 as follows.
Proof: Denote Ti(L) as the number of times that

channel i having been sensed in the first L slots. T k
i (L)

is the number of times that i has been sensed in the kth

step in the first L slots, and Ti(L) =
∑N

k=1 T
k
i (L). Let L0

be the number of slots SCB consumes till all channels
are observed at least once, and 
 be an arbitrary positive
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integer, then we have

T 1
i (L)≤ 1 +

L∑
j=L0+1

I
{
ch1

j = i
}

≤ 
+
L∑

j=L0+1

I
{
ch1

j = i, T 1
i (j − 1) ≥ 


}

≤ 
+

L∑
j=L0+1

I
{
θ̂1′(j − 1) + cj−1,T1′ (j−1)

≤ θ̂i(j − 1) + cj−1,Ti(j−1), T
1
i (j − 1) ≥ 


}
where I{} is an indicator function, ch1

j = i represents
the event that user senses channel i in the 1st sensing
step of slot j, and cx,y

.
=
√

2 log x
y .

Since Pr
{
T 1
i (j − 1) ≥ 


} ≤ Pr {Ti (j − 1) ≥ 
}, we
then obtain

T 1
i (L)≤ 
+

L∑
j=L0+1

I

{
min
0<t<j

θ̂1′(t) + cj−1,t

≤ max
	≤ti<j

θ̂i(ti) + cj−1,ti

}

≤ 
+
∞∑
j=1

j−1∑
t=1

j−1∑
ti=	

I
{
θ̂1′(t) + cj,t ≤ θ̂i(ti) + cj,ti

}

Note that θ̂1′(t) + cj,t ≤ θ̂i(ti) + cj,ti , which implies at
least one of the following conditions must be held

θ̂1′(t) ≤ θ1′ − cj,t (9)

θ̂i(ti) ≥ θi + cj,ti (10)

θ1′ < θi + 2cj,ti (11)

We bound the probability of events happening in Equ.(9)
and (10) using Lemma 2

Pr
{
θ̂1′(t) ≤ θ1′ − cj,t

}
≤ e−4 log j = e−4

Pr
{
θ̂i(ti) ≥ θi + cj,ti

}
≤ e−4 log j = e−4

For 
 = 
 (8 logL)
(θ1−θi)2

�, we have θ1′ − θi − 2cj,ti = θ1′ −
θi − 2

√
2 log j

ti
≥ 0, which indicates that Equ.(11) is false.

Denote Δj
i
.
= θi − θj . Then, we get

E
[
T 1
i (L)

]≤ 
 (8 logL)
Δi

1′
2 �+

∞∑
j=1

j−1∑
t=1

j−1∑
ti=� (8 log L)

Δi
1′

2 	
2j−4

≤ 8 logL

Δi
1′

2 + 1 +
π2

3

Consequently, the regret of the 1st step up to L slots is

ρ1(L)= (1− α)
∑

i:θi<θ1′

Δi
1′E

[
T 1
i (L)

]

≤ (1− α)

⎡
⎣8 ∑

i:θi<θ1′

logL

Δi
1′

+

(
1 +

π2

3

) ∑
i:θi<θ1′

Δi
1′

⎤
⎦

Denote Lk as the expected number of times that
a system reaches the kth sensing step up to L slots.
Obviously, L1 = L. And L2 is given by

L2=
∑

i:θi<θ1′

E
[
T 1
i (L1)

]
(1− θi)

+ (1− θ1′)

⎧⎨
⎩L1 −

∑
i:θi<θ1′

E
[
T 1
i (L1)

]⎫⎬⎭
= L1 (1− θ1′) +

∑
i:θi<θ1′

E
[
T 1
i (L1)

]
Δi

1′

Since E
[
T 1
i (L)

] ≤ 8 logL
(θ1′−θi)2

+ 1 + π2

3 and ∀i �= 1′,
(1− θi) ≥ (1− θ1′), we have

L2≤ L1 (1− θ1′)

+

⎡
⎣8 ∑

i:θi<θ1′

logL1

Δi
1′

+

(
1 +

π2

3

) ∑
i:θi<θ1′

Δi
1′

⎤
⎦

We now consider the regret in the 2nd step up to
time slot L, ρ2(L2). In order to derive the bound of
the ρ2(L2), we analyze the bound of ρ21(L2) first. Here,
ρ21(L2) denotes the 1st step regret under the case that
there is totally L2 slots. Denote the candidate channel
set S2 = S1 \ {1′}. Under such case, the optimal choice
is channel 2′ with probability θ2′ . Similar to the analysis
process of ρ1(L), we have

ρ21(L2)≤ (1− α)

⎡
⎣8 ∑

i:θi<θ2′

logL2

Δi
2′

+

(
1 +

π2

3

) ∑
i:θi<θ2′

Δi
2′

⎤
⎦

Note that during the sequential channel sensing and
accessing process under SCB, user can not always choose
channel 1′ in the first step (the throughput loss due
to error selections are counted in regret ρ1(L)). When
channel 1′ is not sensed in the 1st step, user will choose
channel 1′ with high probability in the 2nd sensing step,
rather than channel i with lower θi. As a result, we have

ρ2(L2)≤ (1− 2α)

(1− α)
ρ21(L2)

Let

Xk =

⎡
⎣8 ∑

i:θi<θk′

logLk

Δi
k′

+

(
1 +

π2

3

) N∑
i>k

Δi
2′

⎤
⎦ (12)

Then, we have

ρ1(L1) ≤ (1− α)X1

ρ2(L2) ≤ (1− 2α)X2

and
L2 ≤ L1 (1− θ1′) +X1

L3 ≤ L2 (1− θ2′) +X2
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TRANSACTIONS ON MOBILE COMPUTING 8

It is easily to be generalized to arbitrary 1 ≤ k ≤ K, i.e.,

Lk ≤ Lk−1 (1− θk−1′) +Xk−1 (13)

ρk(Lk) ≤ (1− kα)Xk (14)

where the initial L1 = L.
Then, the the total regret

ρ(L) =

K∑
k=1

ρk(Lk) ≤
K∑

k=1

(1− kα)Xk (15)

Leveraging the intermediate results in Equ. (12)(13)
and (14), we have

ρ(L) ≤ (1− α)
∑

i:θi<θ1′

[
8 logL1

Δi
1′

+

(
1 +

π2

3

)
Δi

1′

]

+ (1− 2α)
∑

i:θi<θ2′

[
8 logL2

Δi
2′

+

(
1 +

π2

3

)
Δi

2′

]

+ · · ·
+ (1−Kα)

∑
i:θi<θK′

[
8 logLK

Δi
K′

+

(
1 +

π2

3

)
Δi

K′

]

As for arbitrary x′ < y′ ≤ N ′: Δx+1′
x′ ≤ Δy′

x′ ≤ ΔN ′
x′ , the

above inequality can be rewritten as

ρ(L) ≤ (1− α) (N − 1)

[
8 logL1

Δ2′
1′

+

(
1 +

π2

3

)
ΔN ′

1′

]

+(1− 2α) (N − 2)

[
8 logL2

Δ3′
2′

+

(
1 +

π2

3

)
ΔN ′

2′

]
+ · · ·
+(1−Kα) (N −K)

[
8 logLK

ΔK+1′
K′

+

(
1 +

π2

3

)
ΔN ′

K′

]

Define function Π(L) = 8 logL
Δmin

+
(
1 + π2

3

)
Δmax, where

Δmin = min(i,j) |Δi
j | and Δmax = max(i,j) |Δi

j | = ΔN ′
1′ .

Note that LK < LK−1 < . . . < L1 = L. We then have

ρ(L)< Π(L)
K∑

k=1

[(1− kα) (N − k)]

= Π(L)
[α
6
K(K + 1)(2K + 1) +KN

−1

2
(1 +Nα)K(K + 1)

]

= Π(L)K

[
N − K + 1

2
− α(K + 1)(3N − 2K − 1)

6

]

which concludes the proof.
As N ≥ K and K ≥ 1, we conclude that 3N−2K−1 ≥

0. Thus, N−K+1
2 −α(K+1)(3N−2K−1)

6 < N . As a result, our
policy achieves an expected regret upper bounded in the
order of O(NK logL), which is in polynomial order to
the number of channels and strictly in logarithmic order
to time.

4 SIMULATIONS AND PERFORMANCE ANALY-
SIS

In this section, we evaluate and analyze the performance
of the proposed online sequential channel sensing and
accessing algorithms via simulations.

Eight policies are running under the same environ-
ment for performance comparison, where UCB1, UCB1-
VS and SCB are presented in Section3. The other five
policies are described as follows.
• Randomized Single Channel (Ran. Sin.): chooses a

random channel for sensing/accessing at each slot;
• Single Index (Sin. Index): an optimal online learning

policy for one channel per slot scheme, which is first
presented by Lai et al in [10];

• Optimal Single Channel (Opt. Sin.): a genie-based
policy that user always senses/accesses the channel
with highest idle probability at each slot;

• Randomized Sequence (Ran. Seq.): chooses a random
channel sequence for sequential sensing/accessing
at each slot;

• Optimal Sequence (Opt. Seq.): a genie-based policy
that user always chooses the optimal sensing order
for SSA at each slot;

4.1 Performance Comparison on Policies
Three performance metrics are considered in this subsec-
tion: throughput, regret and learning progress. Through-
put presents a direct impression on the variation of
system reward over time. Regret shows the accumulated
system performance, where a higher regret indicates
higher throughput loss over time and thus is worse in
terms of overall reward. Finally, learning progress de-
scribes the convergence speed of the learning algorithms,
which is critical for burst communication traffics.

We derive the throughput as a function of slot index
in Fig.5. The results are averaged from 1500 rounds of
independent experiments, where each lasts 6000 time
slots. Our experiment settings are as follows. The idle
probabilities of independent channels are randomly gen-
erated in range [0, 1] for each round. Then, the states of
channels (i.e. idle or busy) in each slot are generated
independently according to the idle probability vector.
Here, N = 3 and the normalized per channel sensing
cost α = 0.2. According to this figure, we conclude
that: 1) all the policies that exploit diversity (i.e., se-
quential sensing/accessing) outperform the policy in the
scheme of “one channel per slot”, e.g., even Randomized
Sequence outperforms Optimal Single Channel about 15%
in our simulation; 2) all the learning policies converge
to the optimal solution under either sequential sensing
scheme or one channel per slot scheme, which means
the learning policies are zero-regret; 3) our proposed
SCB policy outperforms all other three online policies in
both expected throughput and learning speed: our SCB
policy converges to optimal sensing order within almost
400 slots, while all other three policies are still climbing
slowly even in 5500 slot; and 4) UCB1-VS outperforms

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 7. Comparison on regret with different N

UCB1 greatly by virtual sampling, and we will further
discuss the benefit of virtual sampling via regret and
learning progress analysis.

In Fig.6, we further compare the performance of the
sequential learning policies (i.e., UCB1, UCB1-VS and
SCB) with different N , where the upper sub-figure char-
acterizes the the case N = 3 and the lower sub-figure
denotes the case N = 5. We obtain following observa-
tions by comparing these two sub-figures. Firstly, as the
number of channels increases, user could obtain more
throughput gain through learning. e.g., the achievable
throughput increases from about 2.48Mbps to 2.72Mbps
as number of channels increases from 3 to 5. This is
reasonable since the potential opportunity increases with
the number of channels. Moreover, the curves clearly
show that, the learning speed of order-specific algo-
rithms (UCB1 and UCB1-VS) would sharply decreased
as N increases, meanwhile, the UCB1-VS greatly acceler-
ates the learning progress over traditional UCB1. These
conform to the analysis we stated in Section.3.

Regret is an important metric in evaluating overall
system performance of online policies. It has been stated
by Lai and Robbins [4] that no policy can do better than
logarithmic increasing regret in time. In other words, an
online policy with logarithmic regret in time is order
optimal. We have proved that the proposed algorithms

are order-optimal theoretically in Section.3. In this part,
we validate this property by simulations. In Fig.7, we
depict the regret of all the three policies, where the upper
sub-figure describes the case N = 3 and the lower one
presents the case N = 5. It is intuitive that the regret of
all the online policies are increased when increasing the
number of channels. This is reasonable, since more chan-
nels need more cost for learning. Moreover, it is clearly
that SCB outperforms the other two policies significantly
in terms of regret. The results also clearly show the ben-
efit of applying virtual sampling: compared with UCB1
policy, the regret (i.e., accumulated throughput loss) of
UCB1-VS is apparently reduced. Note that in this figure,
the logarithmic increasing trend of UCB1 and UCB1-
VS’s regret is not evident perhaps due to simulation time
limitation, however, the logarithmic increasing property
of SCB is fully revealed in 6000 simulation slot (as we
would discussed in Fig.8).

To learn more about the increasing regret of SCB
policy, we further depict the regret of SCB policy with
different value of N particularly in Fig.8. The upper sub-
figure clearly shows the logarithmic increasing rate of
SCB’s regret in time for both N = 3 and N = 5. To
further verify this logarithmic increasing property, we
plot out the regret with logarithmic X-axis in the lower
sub-figure. It validates the accuracy of our analysis.

We now study the convergence speed of the learning
policies in detail. To quantify the convergence speed
of an online policy, we propose the concept of learn-
ing progress. Specifically, “σ-LP”, i.e., σ-learning-progress
(0 < σ < 1), is defined as the event that “system obtains
σ times the maximum achievable throughput 3 under the
online policies”. Mathematically, it can be described as
the event that{

E [rπ(j)− rπrand
(j)]

E [rπ∗(j)− rπrand
(j)]

= σ

}
where rπ , rrand and rπ∗ are the reward derived by using
the online policy π, randomized policy and the optimal
policy respectively. Denote tπσ as the number of slots user

3. The maximum achievable throughput is achieved by the optimal
genie-based solution.
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experienced before achieving σ-LP via policy π. Then, tπσ
can describe system learning process well.

In Fig.9, we study tπσ as a function of σ in different
policies. We analyze all the four online policies. Two
points in regarding to the date processing remain to
be explained: 1) for fairness consideration, π∗ is set to
be Optimal Sequence and πrand is Randomized Sequence
for sequential online policies (i.e., UCB1, UCB1-VS and
SCB), while π∗ is set to be Optimal Single Channel and
πrand is Randomized Single Channel for Single Index; and
2) to eliminate the singular point caused by random-
ness, we consider the online policy achieves σ-LP only
when there are 10 continuous slots whose throughput
achieve σ times the corresponding maximum achievable
throughput. The results are shown in Fig.9, where the
red-real lines represent the case N = 3 and blue-dashed
lines represent the case N = 5. It tells that:
• All the policies show exponentially increasing tσ

with σ (note that the tσ is logarithmic value in the
figure), i.e., the learning progress increases fast at
the beginning, and slower down as learning goes
on. This conforms to the laws of learning.

• Virtual sampling greatly accelerates the learning
process. As shown in the figure, UCB1-VS outper-
forms UCB1 19dB in terms of time slots for achiev-
ing 0.6−LP . Note that the learning progress curves
on σ > 0.6 for the case N = 3 and σ > 0.1 for
the case N = 5 are not depicted here due to space
limitation.

• The learning speed of SCB is much faster than all the
other policies. As in the case N = 3, SCB algorithm
outperforms respectively UCB1 and UCB1-VS about
29dB and 10dB in terms of learning speed (quanti-
fied by the time slots for achieving 0.9-LP). It even
outperforms Single Index 12dB, whose total number
of learning objects is only N .

• Compare the two groups of curves with different
number of channels. It shows that, when the number
of channels N increases from 3 the 5, the increment
of tσ is about 12dB for the order-specific policies
(i.e., UCB1 and UCB1-VS), while that for SCB is
only 5dB. This indicates that the SCB policy is more

tolerant to the increase of channel number.

4.2 Impact of Environmental Factors

In this subsection, we evaluate the performance of SCB,
Randomized Sequence and Single Index, with the varying
environmental parameters, so as to study the impact of
environmental factors. Three metrics are considered for
performance comparison: maximum achievable through-
put, normalized sensing time and the number of slots to
achieve 0.9-LP. The maximum achievable throughput is
the expected throughput user could obtain when system
converges. Normalized sensing cost is the ratio between
the total sensing in a slot and the slot duration. It is
adopted to study the energy cost for spectrum sensing
in these three policies, as the energy cost for sensing
is approximately proportional to the sensing time. Note
that for the learning speed, we measure tπ0.9 here rather
than tπ1 , because the time for achieving 1-LP is usually
infinity for online learning policy, and meanwhile, 90%
of the maximum throughput is sufficient for most appli-
cations.

In Fig.10, we study the first two metrics as functions
of channel idle probability, by fixing the number of
channels N = 5 and normalized per channel sensing cost
α = 0.1. Two parameters, i.e., average idle probability
θ̄ and deviation of channel idle probability δ, are used
to control the generation of channel idle probability.
At the beginning of each experiment round, channel
idle probabilities are randomly generated in the range[
θ̄ − δ, θ̄ + δ,

]
. Obviously, a higher θ̄ indicates that there

are much more available spectrum resource, while a
bigger δ means more diversity among multiple channels.

The results relating to achievable throughput are
shown in the upper part of Fig.10. It is no doubt that: 1)
SCB outperforms Sin.Index by exploiting instantaneous
opportunities among channels and achieves through-
put gain over Rnd.Seq. with better sensing order; 2)
all the three polices would obtain more throughput as
the idle probability increases, since higher idle proba-
bility indicates better transmission environment. More
interesting observations is that, with the decrease of
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θ̄, the throughput gains of SCB over the other two
policies are increasing. This indicates that SCB would
benefit more in the spectrum scarcity scenario, where
throughput improvement is most needed. Specifically, it
shows nearly two times throughput over Sin.Index when
θ̄ = 0.3. Consider the variation of δ. The throughput gain
of SCB over Sin.Index deceases as δ increases, while that
of SCB over Rnd.Seq. is increasing with δ. As in practical
scenarios, δ is commonly bigger than 0.3. In such case,
the SCB achieves more than 10% throughput gain over
Rnd.Seq. when θ̄ = 0.3.

The results relating to normalized sensing cost are
shown in the lower part of Fig.10. It is no doubt that the
sensing time of Sin.Index is constant, as the user always
senses one channel per slot in Sin.Index. Comparing with
Sin.Index, SCB and Rnd.Seq. lead to more sensing time in
each slot. In other words, it tells that the throughput gain
of instantaneous opportunity exploitation is achieved
at the cost of more energy consumption for spectrum
sensing. However, compare the sensing cost of SCB with
Rnd.Seq.. It shows that SCB achieves more throughput
gain with less energy consumption. This clearly shows

the benefit of learning.
Further, we study the learning speed (quantified by

tπ0.9) of the two learning-based policies under the same
experimental settings in Fig.11. It is clearly shown that
SCB scheme greatly reduced the time cost in achieving
0.9 learning progress, e.g., less than half even when
θ̄ = 0.7. In other words, SCB accelerates the learning
speed by more than 100% in all cases. Compare with the
three sub-figures. We find that the learning speeds of the
two policies are strictly increasing with δ. We can explain
this phenomenon in such way: as δ characterizes the
deviation of channel statistics, higher δ indicates bigger
difference between channels, and thus is easier to classify
them through learning. Meanwhile, it is shown that the
learning speed of SCB is increasing with θ̄, due to the
fact that less channels would be observed in a slot when
θ̄ increases.

In Fig.12 and Fig.13, we explore the impact of N
and α on system performance. The results relating to
achievable throughput are shown in the upper part of
Fig.12. It is no doubt that: 1) the achievable throughput
of all the three policies are increasing with N ; and 2) the
achievable throughput decreases as per channel sensing
cost α increases. More interesting observations is that,
with the increase of N , the achievable throughput of all
the three policies are increasing sub-linearly. However,
the throughput gaps between SCB and the other two
policies are increasing with the number of channels.
As the number of channels are commonly more than
10 in practical dynamic spectrum access systems, our
proposed SCB would outperform Sin.Index and Rnd.Seq.
by more than 30% and 10%, respectively. Consider the
variation of α. The throughput gain of SCB over Sin.Index
deceases as α increases, while that of SCB over Rnd.Seq.
is increasing with α, which means online SSA is more
sensitive to sensing cost.

The results relating to normalized sensing cost are
shown in the lower part of Fig.12. Similar to the results
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Fig. 12. Achievable throughput & normalized sensing cost vs. number of channels
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Fig. 13. Convergence vs. number of channels

in Fig.10, the normalized sensing cost of SCB is larger
than that of Sin.Index, but less than that of Rnd.Seq..
Consider the variation of environmental parameters. The
total sensing time of all the three policies are linearly
increasing with per channel sensing cost α. While the
relationship between total sensing time and N is much
more diverse: 1) the normalized sensing time of Sin.Index
is constant; 2) with the increase of N , the normalized
sensing time of Rnd.Seq. is increasing sub-linearly when
N < 6, but goes to be a constant when N > 6 (it
is approximately double sensing time comparing with
Sin.Index, as the average idle probability in this settings is
0.5); 3) the normalized sensing time of SCB is increasing
with N when N <≤ 4 but decreases when N > 4, which
shows a good scalability with respect to N .

In Fig.13, it is clearly show that the learning speed
of SCB is much faster than Sin.Index (at least 9 times)
and the value of normalized per channel sensing cost α
has little impact on learning speed of the both policies.
Moreover, the learning time of SCB for achieving 0.9-
LP is almost linearly increasing with N , which indicates
SCB is scalable with the increase of N in respect to

learning speed. Note that we depict only the cases when
N ≤ 6. This is because the time used by Sin.Index for
achieving 0.9-LP is too long in N > 6. In that case, the
corresponding height of SCB bar would be too small
(especially at N=2) as we need plot the results of both
SCB and Sin.Index in a figure for comparison.

5 RELATED WORK

In classic multi-armed bandit problem, there are M
independent arms, each generating rewards are i.i.d.
over time from a given family of distributions with un-
known parameters. Lai and Robbins [4] write one of the
earliest paper, presenting a general policy that provides
expected regret that is O(M logL). They also show that
this policy is order optimal, in which, no policy can do
better than Ω(M logL). Agrawal et al. [5] present policies
easier to compute, leveraging the sample mean with
asymptotically logarithmic regret. Further, Auer et al. [6]
consider an arbitrary un-parameterized i.i.d arms with
non-negative rewards. They provide a simple policy
(referred to as UCB1), which achieves logarithmic regret
uniformly over time, differs from asymptotical result.
However, as we show in this paper, a direct application
of the algorithms proposed for classic MAB problem
performs poorly, due to the exponential regret value with
the increasing number of channels.

Several recent work pay attention to the case where the
rewards of different arms are correlated. Mersereau et al.
[7] consider a bandit problem where the expected reward
is defined as a linear function with random variables.
They show the upper bound of the regret is O(

√
L) and

the lower bound is Ω(
√
L). Dani et al. [8] consider linear

reward models and presented a randomized policy for
the case of a compact set of arms, showing the regret
is upper bounded by O

(
N
√
L log3/2 L

)
for sufficiently

large L with high probability, and lower bounded by
Ω(N

√
L). Seminar work of [7] and [8] assume that the
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reward is always observable at each time. While in
[9], authors present a deterministic policy with a finite
time bound of regret, in the order of O (

N4 logL
)
. All

those work consider the linear reward model, while we
consider non-linear correlated arms in our model.

It should be noted that the parallels between cognitive
medium access and the multi-armed bandit problem has
been explored in various works. Lai et al. [10] firstly
apply multi-arm bandit formulations to user-channel
selection problems in OSA networks and the UCB1
[6] algorithm is applied. Liu and Zhao [11] formulate
the secondary user channel selection to a decentralized
multi-armed bandit problem, where contentions among
multiple users are considered. Anandkumar in [14] and
[15] proposed two policies for distributed learning and
accessing rule, lead to order-optimal throughput. In ad-
dition to learning the channel availability, the secondary
users also learn others’ strategies through channel level
feedback. Tekin and Liu [12] model each channel as a
restless Markov chain with multiple channel states, and
present a sample-mean based index policy, showing that,
under mild conditions, it could achieve logarithmic re-
gret uniformly over time. For the multiuser-multichannel
matching problem, Gai et al. [13] develop a combinatorial
multi-armed bandits (MAB) formulation. An centralized
online learning algorithm that achieves O (log T ) regret
uniformly over time is derived. Later, Kalathil et al. [21]
consider a decentralized setting where there is no ded-
icated communication channel for coordination among
the users. An online index-based distributed learning
policy is developed, which achieves the expected regret
growing at most as near−O

(
log2 T

)
. However, all these

studies focus on one channel per slot scheme and fail to
exploit multichannel diversity during the online learning
process. This is the key insight where our sequencing
multi-armed bandit formulation is novel.

There are also some other papers in the area of optimal
control in sequential sensing and accessing systems.
Considering i.i.d. Rayleigh fading channels, Sabharwal
et al. [17] firstly analyze the gains from opportunistic
band selection. More generalized scenarios, e.g., with ar-
bitrary number of channels and statistically non-identical
channels, are studied in seminar work [19], [22]. In
[23], Shu and Krunz consider cognitive radio networks
with i.i.d channels, and an infinite-horizon optimal stop-
ping model is leveraged to formulate the online control
problem. Jiang et al. firstly considered the problem of
acquiring the optimal sensing/probing order for a single
user case in [20]. Later, Fan et al. [24] extends sensing
order selection to a two-user case. Zhao et al. [25] pro-
pose a novel sensing metric to guide the sensing order
selection in multiuser case with dynamic programming.
Pei et al. [26] extend the sequential channel sensing
and accessing control to a new scenario, where energy-
efficiency is mainly concerned. However, all these work
are constructed on perfect knowledge of channel statis-
tics, which differs from the online learning paradigm.

6 CONCLUSION

Sequential channel sensing and accessing (SSA) is an
efficient channel utilization scheme for acquiring instan-
taneous opportunities among multiple channels. In this
work, we investigated online learning policy for achiev-
ing optimal SSA strategy in unknown environment. A
sequencing multi-armed bandit (SMAB) model is pro-
posed for formulating our problem. We first applied
the classic UCB1 algorithm and developed an improved
version, i.e. UCB1-VS, in solving the SMAB problem.
Analysis results show that such UCB1 based policies lead
to exponentially increasing regret and complexity. Then,
a novel SCB algorithm was proposed, whose storage
and computation complexity are linear to the number
of channels. We further proved that the expected regret
of SCB is upper bounded by O(NK logL), which is in
optimal logarithmic rate in time and polynomial in the
number of channels.
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