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Abstract—Localization is a fundamental issue of wireless sensor networks that has been extensively studied in the literature. Our
real-world experience from GreenOrbs, a sensor network system deployed in a forest, shows that localization in the wild remains very
challenging due to various interfering factors. In this paper we propose CDL, a Combined and Differentiated Localization approach
for localization that exploits the strength of range-free approaches and range-based approaches using RSSI. A critical observation is
that ranging quality greatly impacts the overall localization accuracy. To achieve a better ranging quality, our method CDL incorporates
virtual-hop localization, local filtration, and ranging-quality aware calibration. We have implemented and evaluated CDL by extensive
real-world experiments in GreenOrbs and large-scale simulations. Our experimental and simulation results demonstrate that CDL
outperforms current state-of-art localization approaches with a more accurate, and consistent performance. For example, the average
location error using CDL in GreenOrbs system is 2.9m, while the previous best method SISR has an average error of 4.6m.

Index Terms—Localization, Wireless Sensor Network, RSSI, Ranging Quality.
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1 INTRODUCTION

LOCALIZATION is crucial for many services pro-
vided by wireless sensor networks (WSNs), which

has received substantive attention in recent years. The
Global Positioning System (GPS) are popular localization
schemes, but usually fail to function indoors [11], under
the ground [10], or in forests with dense canopies [14].
Range-based approaches measure the Euclidean dis-
tances among the nodes with various ranging techniques
[16], [20], [24]. They are either expensive with respect to
hardware cost, or susceptible to environmental noises
and dynamics [23]. Range-free approaches perform lo-
calization by relying only on network connectivity mea-
surements. However, localization results by range-free
approaches are typically imprecise and easily affected
by node density.

This work is motivated by the need for accurate loca-
tion information in GreenOrbs [14], a large-scale sensor
network system deployed in a forest. An indispensable
element in various GreenOrbs applications is the location
information of sensor nodes for purposes such as fire
risk evaluation, canopy closure estimates, microclimate
observation, and search and rescue in the wild. Our real-
world experiences of GreenOrbs reveal that localization
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in the wild remains very challenging, in spite of great
efforts and results developed in the literature. The chal-
lenges come from various aspects. First, non-uniform de-
ployment of sensor nodes could affect the effectiveness
of range-free localization. On the other hand, for range-
based localization, the received signal strength indicators
(RSSIs) used for estimating distances are highly irregular,
dynamic, and asymmetric between pairs of nodes. To
make it even worse, the complex terrain and obstacles in
the forest easily affect RSSI-based range measurements,
thus incurring undesired but ubiquitous errors.

Ranging based localization techniques often produces
better localization than range-free techniques. Rang-
ing quality determines the overall localization accuracy.
Bearing this in mind, recently proposed approaches fo-
cused more on error control and management. Some
of those methods enhance the localization accuracy by
deliberately reducing the contribution of error-prone
nodes to the localization process [13]. Other schemes are
to identify large ranging errors and outliers relying on
topological or geometric properties of a network [7], [27].

Ranging quality indeed includes two aspects. One
of them refers to the location accuracy of the refer-
ence nodes. The other concerns the accuracy of range
measurements. Both aspects play important roles on
the accuracy of localization. Most of the recently pro-
posed techniques address only one aspect, thus failing
to achieve satisfactory accuracy.

To address these challenges and limitations, we pro-
pose CDL, a Combined and Differentiated Localization
approach. CDL inherits the advantages of both range-
free and range-based methods. It starts from a coarse-
grained localization achieved by method such as DV-
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hop, and then it keeps improving the ranging quality
and localization accuracy iteratively throughout the lo-
calization process. The contributions of this work are
summarized as follows.

1) We propose a range-free scheme called virtual-hop
localization, which makes full use of local informa-
tion to mitigate the non-uniform node distribution
problem. Using virtual-hop, the initial estimated
locations are more accurate than those output by
other range-free schemes.

2) To improve the ranging quality, we design two
local filtration techniques, namely neighborhood hop-
count matching and neighborhood sequence matching,
to find nodes with better location accuracy. The
filtered good nodes can be used to improve the
location accuracy of neighboring nodes.

3) Using the good nodes to calibrate the bad ones, we
employ the weighted robust estimation to empha-
size contributions of the best range measurements,
eliminate the interfering outliers, and suppress the
impact of ranges in-between.

4) We implement CDL in GreenOrbs system with
more than 300 sensor nodes deployed in a forest
and evaluate it with extensive experiments and
large-scale simulations. Our experimental and sim-
ulation results demonstrate that CDL outperforms
existing approaches with high accuracy, efficiency,
and consistent performance. For example, the aver-
age location error using CDL in GreenOrbs system
is 2.9m, while the previous best method SISR has
an average error of 4.6m.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 presents real-
world observations on GreenOrbs. The design of CDL is
elaborated in Section 4, followed by performance evalu-
ation in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

The existing work on localization falls into two main
categories: range-based and range-free localization.

Range-free approaches, such as Centroid [2], APIT [5],
and DV-HOP [17], mainly rely on connectivity measure-
ments (for example hop-count) from landmarks to the
other nodes. Since the quality of localization is easily
affected by node density and network conditions, range-
free approaches typically provide imprecise estimation
of node locations. Range-based approaches measure the
Euclidean distances among the nodes with certain rang-
ing techniques and locate the nodes using geometric
methods, such as TOA [1], TDOA [18], [20], and AOA
[16]. All those approaches require extra hardware sup-
port.

RSSI-based range measurements are easy-to-
implement and popular in practice. Empirical models
of signal propagation are constructed to convert RSSI
to distance [21]. The accuracy of such conversions,
however, is sensitive to channel noise, interference, and

multipath effects. Besides, when there are a limited
number of landmarks, range-based approaches have to
undergo iterative calculation processes to locate all the
nodes, suffering significant accumulative errors [13].

More recent proposals mainly focus on the issue of
error control and management [12], [26]. J. Liu et al. [13]
propose iterative localization with error management.
Only a portion of nodes are selected into localization,
based on their relative contribution to the localization
accuracy, so as to avoid error accumulation during the
iterations. Similarly, H.T. Kung et al. [8] propose to assign
different weights to range measurements with different
nodes and adopt a robust statistical technique to tolerate
outliers of range measurements [7].

A range-free approach beyond connectivity is pro-
posed in [27]. The signature distance is proposed as a
measure of the Euclidean distance between a pair of
nodes. In order to address the issue of non-uniform de-
ployment, the authors further propose regulated signature
distance (RSD), which takes node density into account.
Based on the comparison among nodes’ neighbor se-
quences, RSD is quantified. This approach needs to be
integrated with a certain existing localization approach
to function.

Differing with most of the existing approaches, CDL
is a combination of range-free and range-based schemes.
It can independently localize a WSN. CDL addresses
the issue of non-uniform deployment with virtual-hop
localization (Subsection 4.1). Utilizing the information
of estimated node locations, RSSI readings, and network
connectivity, CDL filters good nodes from bad ones with
two techniques (Subsection 4.2), namely neighborhood
hop-count matching and neighborhood sequence match-
ing. CDL pursues better ranging quality (namely more
accurate reference locations and more accurate ranging)
throughout the localization process. This is the most
significant characteristic of CDL that distinguishes it
from existing approaches.

For ease of presentation, we use the terms “rang-
ing” and “range measurement”, “location” and “coordi-
nates”, interchangeably throughout the rest of this paper.

3 PRELIMINARY AND DESIGN MOTIVATION

3.1 GreenOrbs

GreenOrbs is an ongoing research project that aims
at building long-term large-scale WSN systems in the
forest. It adopts TelosB motes with MSP430 processor
and CC2420 radio. The software running on the nodes
is developed based on TinyOS 2.1. There are 330 nodes
in a deployment area of about 40, 000m2. The majority
of Greenorbs nodes should be deployed where environ-
mental information is required by forestry applications.
The rest are used to improve network connectivity.

The collected data can be utilized to support a wide
variety of applications, e.g. distance-dependent compe-
tition measurement for predicting growth of individual
trees, light detection and ranging to characterize forest
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Fig. 1: GreenOrbs deployment in the campus woodland

stand condition, and percentage estimation of ground
area vertically shaded by overhead foliage. These appli-
cations generally require accurate coordinates of sensor
nodes’ locations to provide high-quality information of
the forest [9], [14], [25].

This work is carried out in GreenOrbs. The ground-
truth coordinates of the nodes are measured using
an EDM (Electronic Distance Measuring Device) [3].
The measurement process is hence laborious and time-
consuming. So far we have succeeded in measuring
the coordinates of 100 nodes, as shown in Fig. 1. The
observations and experiments in this paper are then
mainly conducted using those 100 nodes. The other 230
nodes, although deployed in an adjacent area, are not
shown in the figure.

3.2 Observations

As shown in Fig. 1, most sensor nodes are under dense
tree cover, where GPS usually does not work [1]. Even
in areas with less dense tree cover, our experience shows
that the errors produced by a portable GPS device
(compared to an EDM) are often about 15m. Thus lo-
cating nodes basically comes down to in-network local-
ization. This subsection presents real-world observations
on GreenOrbs, which illustrate that a single approach,
whether it is range-based or range-free, has limitations
in locating a number of nodes in the wild.

3.2.1 Non-uniform Deployment

Driven by forestry applications, GreenOrbs deploys
more sensor nodes in regions with diverse or uneven
vegetation to provide fine-grained information of the
monitored area. Such a rule leads to non-uniform de-
ployment of sensor nodes, as we can see from Fig. 1.
Specifically, some nodes have more than 20 neighbors,
while some nodes have less than 5 neighbors. The
shortest distance is 5m and the longest is around 108m.
Range-free localization in a non-uniform deployment
often incurs large errors.

3.2.2 Irregularity of RSSI

Besides the non-uniform deployment problem, complex
terrain and obstacles (e.g. shrubs and tree trunks) also
affect signal propagation in the forest. Fig. 2 plots the
RSSI between node pairs in GreenOrbs at a certain time.
It also includes a curve, which shows the mapping
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Fig. 3: RSSI between nodes
A and B over time

between RSSI and the distance based on the log normal
shadowing model, see Equation (1).

PL(d) = PL(d0)− 10× η × log(
d

d0
) +Xσ (1)

where PL(d) denotes the reduction in received signal
strength after propagating through a distance d, PL(d0)
stands for the path loss at a short reference distance d0,
η is the path loss factor (also named signal propagation
constant), and Xσ is a random environment noise fol-
lowing X∼N(0, σX2) reported in [19].

We can see that the real distances between node pairs
differ greatly from the model-based estimations. Though
the mapping between the RSSI and the distance is actu-
ally very uncertain, RSSI still offers useful information.
In most cases, a stronger RSSI corresponds to a shorter
distance, as is also observed in [4], [27].

3.2.3 Asymmetry and Dynamics of RSSI
Fig. 3 shows the RSSI of two directed links AB and
BA between two nodes A and B in GreenOrbs over
time. The distance between A and B is 41.27 meters. We
can see that the RSSI between two nodes is asymmetric.
Two pairwise links often have unequal RSSI. Moreover,
RSSI is often susceptible to environmental factors, such
as humidity and temperature. The RSSI over a directed
link also fluctuates over time.

In summary, we have the following important ob-
servations on GreenOrbs. First, the sensor nodes are
deployed with diverse densities in different regions,
causing the non-uniform distribution problem. Second,
RSSI is very unstable and sensitive to various environ-
mental factors. The uncertainty of RSSI is hard to model
in practice, therefore, RSSI-based range measurements
exhibit quite diverse errors. To make matters even worse,
typically only large ranging errors can be detected or
tolerated by the existing approaches.

4 CDL DESIGN

We consider locating a network of wireless nodes on a
two dimensional plane by using the connectivity infor-
mation and RSSI readings. A few nodes, which know
their own coordinates once they are deployed, are used
as landmarks. The design of CDL mainly consists of
virtual-hop localization, local filtration, and ranging-quality
aware calibration. Fig. 4 illustrates the CDL workflow.
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Fig. 4: The workflow of CDL

Virtual-hop localization initially estimates node locations
using a range-free method. In order to approximate
the distances from each node to the landmarks, we let
each node count the virtual-hops instead of DV-hops,
compensating particularly for the errors caused by the
non-uniform deployment problem.

Subsequently, CDL executes an iterative process of
filtration and calibration. In each filtration step, CDL uses
two filtering methods to identify good nodes whose lo-
cation accuracy is already satisfactory. Neighborhood hop-
count matching filters the bad nodes by verifying a node’s
hop-counts to its neighbors. Furthermore, neighborhood
sequence matching distinguishes good nodes from bad
ones by contrasting two sequences on each node. Each
sequence sorts a node’s neighbors using a particular
metric, such as RSSI and estimated distance.

Those identified good nodes are regarded as refer-
ences and used to calibrate the location of bad ones.
Links with different ranging quality are given different
weights. Outliers in range measurements are tolerated
using robust estimation.

In the next three subsections, we elaborate on the
design of the above three phases respectively.

4.1 Virtual-Hop Localization

For the first phase of CDL, virtual-hop localization ini-
tially computes node locations. This is an enhanced ver-
sion of hop-count based localization. Compared to the
DV-hop scheme, virtual-hop particularly addresses the
issue of non-uniform deployment. Based on the output
of virtual-hop localization, the subsequent localization
processes in CDL (filtration and calibration) are expected
to achieve higher accuracy and efficiency of iteration.

4.1.1 Weakness of Range-free localization algorithm

As analyzed in [15], there is a theoretical limitation
on range-free localization algorithm that is based only
on connectivity. Suppose sensor nodes are randomly
distributed in the monitoring area. Each sensor can be
regarded as a node in a graph, so that two nodes are
connected by an edge if and only if they can communi-
cate with each other in one hop, i.e. they are less than the
distance r from each other. It is possible to move a sensor
node over nonzero distance without changing the set of
its one-hop neighbors. The original and moved locations
of nodes are indistinguishable from the point of view

r

d k i

(a) (b)

Fig. 5: Intuition of virtual-Hop distance: (a) cumulative
distribution of node distances, (b) relationship among

neighbors with different hop counts.

of the network connectivity. The average Euclidean dis-
tance between its original location and a moved location
that does not changing the network connectivity gives a
lower bound on the expected resolution achievable.

As shown in Fig. 5(a), a sensor node can be moved
distance d without changing the connectivity, if there is
no sensor in the shaded area.

Nagpal et al. [15] have claimed that rπ/4nlocal is the
expected lower bound for the error in any range-free
localization algorithm in static sensor networks where
nlocal is the connectivity degree, and the nodes only use
the connectivity information of the seeds within their
first-hop neighborhoods.

DV-hop is one of the common range-free localiza-
tion approaches that utilize connectivity information
to estimate node locations. Every node counts its hop
counts to landmarks. The distance between a node and
a landmark is calculated as the product of the hop count
between them and the per-hop distance, which is a pre-
determined constant for all the nodes. The location of
a node is calculated by using Least Squares Estimation.
However, nodes with the same hop often have quite dif-
ferent distances to landmarks. Fig. 6 shows some nodes
that are within three hops away from the landmark. For
example, nodes va and vb are both two hops away from
landmark Rk, while va is closer to landmark than vb.
A constant value of per-hop distance for every node
often causes errors on distance calculation from a node
to landmarks. As a result, the localization accuracy of
DV-hop is far from satisfactory.

4.1.2 Virtual-hop

Since traditional hop-count based technology doesn’t
differentiate two distances with the same hop counts, we
propose a metric virtual-hop-count, Vjk , to represent the
distance between an ordinary node vj and a landmark
Rk. Among the nodes with the same hop count to Rk,
node closer to Rk should have a smaller Vjk . For ease
of presentation, Table 1 lists the symbols and notations
used in this paper. Each node vj computes its Vjk by

Vjk =
1

|Pjk|

∑

vi∈Pjk

Vik + Ljk (2)
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Fig. 6: The same hop counts have different distances

TABLE 1: Symbols and notations

Symbol Definition
hij hop count from node vi to node vj
Vjk virtual-hop-count from landmark Rk to node vj
ℜj {vi

∣

∣hij = 1}
Pjk {vi

∣

∣hij = 1 and hki < hkj}
Njk {vi

∣

∣hij = 1 and hki > hkj}
ζjk min{|Pik|

∣

∣ vi is in Njk}
ϕjk min{|Nik|

∣

∣ vi is in Pjk}

where

Ljk =











|Njk|

|Njk|+ ζjk − 1
, |Njk| > 0

ϕjk

|Pjk|+ ϕjk − 1
, |Njk| = 0

Vjk consists of two parts: The first part is the average
virtual-hop-count of node vj ’s previous-hop neighbors.
The second part is the last virtual-hop-count, that is,
the incremental virtual-hop-count from vj ’s previous-
hop neighbors to vj , denoted by Ljk . Here, a node
vj ’s previous-hop neighbor is defined as a neighboring
node whose hop count to landmark Rk is just one hop
less than vj , (denoted by Pjk in Table 1). vj ’s next-hop
neighbor is defined as a neighboring node whose hop
count is just one hop more than vj (denoted by Njk in
Table 1).

We now explain the intuition behind our definition
of virtual-hop-count using probability analysis. Fig. 5(b)
shows the relationship among neighbors with different
hop counts. The concentric circles separately denote the
location boundary of one-hop, two-hops and three-hops
neighbors of landmark Rk. The dashed circle denotes the
communication range of vi who is a two-hops neighbor
of Rk. The intersection, denoted as A(Pik), of dashed
circle and small circle (centered at Rk) is the region
where vi’ previous-hop neighbors locate. The intersec-
tion, denoted as A(Nik), of the dashed circle and the big
circle centered at Rk is the region where vi’s next-hop
neighbors could locate.

For any node vi, as long as the distance between it
and landmark Rk (denoted by d) satisfies r < d < 2r,
it has two hops to Rk. In this case, the maximum
residual of two distances with the same hop count is
close to r. For virtual-hop, such two nodes have different
virtual-hop-counts. For ease of explanation, we assume
connectivity degree is nlocal and calculate the residual
of node vi’s last virtual-hop-count to Rk denoted by
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Fig. 7: Virtual-hop VS DV-
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Fig. 8: Indiscriminate Cal-
ibration

Lik defined in Equation 2. The closer vi is to Rk, the
larger the area of A(Pik), and smaller Lik is, while DV-
hop has a constant hop count. The maximum value of
Lik is close to 1. The minimum value of Lik is close
to 1

ζik
= 1/[nlocal

πr2

∫ Y

0
(
√

4r2 − y2 − 2r +
√

r2 − y)dy] ≈
π/1.4nlocal. The upper bound for expected ranging error
of DV-hop is r, while the bound for virtual-hop is
πr/1.4nlocal. Therefore, virtual-hop can reduce both the
upper bound and average of localization error when
nlocal is greater than 3.

Let R be the set of landmarks in the sensor network
whose exact positions are known in advance. Let ρtk be
the Euclidean distance between landmarks Rt and Rk.
The per-virtual-hop distance, denoted as d̃k, regarding
landmark Rk is calculated by

d̃k =

∑

Rt∈R ρtk
∑

Rt∈R Vtk

(3)

Each node vj without known location then estimates its
distance, denoted as ρjk , to each landmark Rk by

ρjk = d̃k · Vjk (4)

After calculating the distances to landmarks, each node
computes its coordinates based on trilateration using
Least Square Estimation (LSE), which is similar to DV-
hop.

4.1.3 Localization Accuracy of Virtual-hop

We carry out an experiment using the data from
GreenOrbs to compare virtual-hop localization with DV-
hop, which includes 100 ordinary nodes and 4 land-
marks. The experimental result is shown in Fig. 7. We
can see virtual-hop outperforms DV-hop remarkably.
The performance gain of using virtual-hop varies much
among different nodes.

By fully exploiting the connectivity information of
the local neighborhood, virtual-hop-counts finely char-
acterize the non-uniform distribution properties with
more reasonable hop counting. Nevertheless, it is worth
noticing that there are still sizable errors (> 5m) at
many nodes. Those nodes with sizable location errors
should be identified and calibrated. We will present the
solutions in the next two subsections. Without causing
confusion, hereafter we use “estimated coordinates” to
denote the node coordinates before filtration.
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Fig. 9: ADM reflects the localization error of a node

Given the estimated coordinates, the iterative process
of filtration and calibration further enhances localization
accuracy. This involves the following two design criteria:
First, filtration must identify as many good nodes with
high localization accuracy as possible to facilitate cali-
bration. Second, a good node is likely to have both good
and bad links. Only the good links (with small ranging
errors) should dominate calibration, while the impact of
the bad links must be restrained. Filtration addresses the
first criterion, while calibration resolves the second.

4.2 Local Filtration

Filtration consists of two steps: neighborhood hop-count
matching and neighborhood sequence matching. Neigh-
borhood hop-count matching identifies the bad nodes
with apparently wrong coordinates according to the
residual between the real hop counts and estimated hop
counts. Neighborhood sequence matching distinguish
good nodes from bad ones according to the matching
degree between RSSI sequence and distance sequence.

4.2.1 Large Error of Model-based Filtration
Filtration is very important in CDL. In order to illustrate
its significance, we carry out an experiment to examine
the efficacy of location calibration without differentiating
good nodes and bad nodes. We call this straightforward
model-based calibration indiscriminate calibration. Using
such calibration, every node’s location is adjusted di-
rectly based on the distances to neighbors converted
from RSSI, using the log-normal shadowing model.

Fig. 8 compares the localization errors of nodes before
and after indiscriminate calibration. In this experiment, we
set the parameters as η = 3.3, Xσ = 6. Surprisingly, we
find the output to be even worse than before. Model-
based filtration is infeasible, considering the estimated
localization error and irregularity of RSSI.

Based on the information available, there are two ways
to estimate the distances between two nodes, for exam-
ple vi and its neighbor vj . One way is to calculate the
distance based on their estimated coordinates, denoted
by d′ij . The other converts the RSSI from vj to vi into a
distance (tentatively named RSSI-distance) based on the
log-normal shadowing model, denoted by dij . Ideally,
we expect dij = d′ij . Due to the errors of estimated co-
ordinates and the error from the log-normal shadowing
model, however, there is often some difference between
them. By summing up |dij − d′ij | corresponding to every

neighbor vj , we can measure the Aggregated Degree of
Mismatches (ADM) of vj .

ADM actually reflects the error of a node’s estimated
location. For example in Fig. 9 (a), va is a good node
(whose estimated location is close to its real location)
with six neighbors. Among them only vg is a bad node.
Let v′g denote its estimated location. Clearly the ADM
of va is mainly caused by v′g . In Fig. 9 (b), va is a bad
node with six good neighbors. The link to every neighbor
contributes to the ADM of va. By comparing these two
figures, we can see the ADM of a bad node is typically
higher than that of a good one. Thus we may distinguish
good nodes from bad ones by contrasting their ADMs.

4.2.2 Neighborhood Hop-Count Matching

To quantify ADM, each node takes neighborhood hop-
count matching as the first step to identify whether it
is a good node based on local connectivity information.
Note that hop-count is indeed a rough estimation of the
distance between two nodes. If a node’s hop-counts to
its neighbors greatly mismatches the distances calculated
using the nodes’ estimated coordinates, w.h.p. the local
node’s coordinates will have a large error. We use vi as
an example to illustrate the matching procedure.

First, every node exchanges the estimated coordinates
with its 2-hop neighborhood. Second, after received the
estimated coordinates of vj , vi estimates the distance
between them, denoted by d′ij . Third, for each node vj
within its 2-hop neighborhood, vi estimates the hop-
count to vj as h′

ij = ⌈d′ij/r⌉, where r is the communi-
cation range. Fourth, vi computes its ratio of matched
hop-counts within its 2-hop neighborhood vj as follows:

Hij =

{

0 (hij 6= h′
ij)

1 (hij = h′
ij)

(5)

r̃i =
1

n

n
∑

j=1

Hij (6)

ri =
1

n+ 1
(

n
∑

j=1

r̃j + r̃i) (7)

where hij denotes the hop count from vi to vj and n is
the number of its 2-hop neighbors of vi. ri denotes the
mean matched ratio in the neighborhood of vi. If r̃i < ri,
vi regards itself as a bad node, which has an apparent
error in its estimated coordinates. Otherwise, the role of
node vi is left undetermined for further filtration.

Hop-counts actually offer relatively limited informa-
tion to filtration. As a result, neighborhood hop-count
matching only identifies a small portion of bad nodes
with apparently wrong coordinates. In order to ensure
that all the sifted good nodes do have satisfactory lo-
cation accuracy, we need to further filter bad nodes.
In the next subsections, we illustrate our scheme of
neighborhood sequence matching.
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Fig. 10: Neighborhood sequence matching

4.2.3 Neighborhood Sequence Matching

Though model-based straightforward filtration is infea-
sible, RSSI still offers useful information. Generally, the
RSSI between two nodes decreases monotonically as the
distance increases observed from the RSSI readings in
Fig. 2. Based on this observation, we propose a filtration
scheme called neighborhood sequence matching.

First, va sorts its neighbors in descending order with
regard to the RSSI from them, generating a sequence
number for each neighbor. By mapping the sequence
numbers into va, we get the first sequence called RSSI
sequence. Let Sa denote it, as illustrated in Fig. 10.

Second, according to the estimated coordinates, va
sorts its neighbors in the ascending order with regard
to the estimated distance to them, generating the second
sequence called distance sequence. Let S′

a denote it.
In environment without noises, Sa and S′

a should
be identical. If there is significant mismatch between
them, it indicates a large error in the node’s estimated
coordinates. We use the same examples as that in Fig. 9
to illustrate the above idea. As shown in Fig. 10 (a), there
is not a significant mismatch between Sa and S′

a in this
case. Comparatively in Fig. 10 (b), there appears to be
significant mismatch between Sa and S′

a.
Now that the difference between Sa and S′

a is caused
by following categories of reasons: the location esti-
mation errors, the irregularity of RSSI between va and
its neighbors, and the log norm shadowing model for
estimating distance using RSSI.

Since the location estimation error is analyzed before,
we discuss the influence of the irregularity of RSSI.
From the Fig. 2, we can think that RSSI still satisfies
the property that it decreases with the increase of the
distance between two neighboring nodes.

The next step is to quantify the distance between RSSI
sequence and distance sequence to distinguish good
nodes from bad ones. In order to improve the filtration
performance, we need to suppress the influence of the
irregularity of RSSI first.

The cosine distance is a measure of similarity between
two vectors by finding the cosine of the angle between

them. It is considered to be used to measure the similar-
ity between sequences Sa and S′

a. Given two vectors of
attributes, the cosine distance is represented using a dot
product and magnitude as following:

CosDist =
a1a

′
1 + a2a

′
2 + ...+ ana

′
n

√

a21 + a22 + ...+ a2n
√

a
′2
1 + a

′2
2 + ...+ a′2

n

=
a1a

′
1 + a2a

′
2 + ...+ ana

′
n

12 + 22 + ...+ n2

(8)

In Equation (8), a1, a2, ..., an are the sequence numbers
in Sa while a′1, a′2, ..., a′n are the sequence numbers
in S′

a. These two sequences are actually two differ-
ent permutations of 1, 2, ..., n. Thus they are two
equal sets. The cosine distance filtration reduces the
influence of RSSI irregularity. For example, RSSI se-
quence Sa is {6, 5, 1, 2, 4, 3}, and distance sequence S′

a

is {6, 4, 1, 2, 3, 5} as shown in Fig. 10 (a) CosDista is
equal to 0.967. As the irregularity, Sa occurs local flips
in the nodes with similar distance such as vd and ve, or
vf and vg . It may become {6, 5, 2, 1, 3, 4}, then CosDista
becomes 0.978 which is close to the theoretical value. The
cosine filtration distance has good fault tolerance to sup-
press the influence of RSSI irregularity. Upper bound of

CosDist is 1, lower bound is 1·n+2(n−1)+3(n−2)+...+n·1
12+22+...+n2 =

n+2
2n+1 , which is not less than 0.5.

However, when a good node has some bad neighbors
with large location errors, the cosine distance between
two sequences of a good node does not apparently differ
from that of a bad node. To deal with this issue, we
introduce the LCS (longest common subsequence) length
ratio δa. Let n denote the number of va’s neighbors. Then
δa denotes the ratio of the length of the LCS between Sa

and S′
a to n. It is easy to see that the LCS length ratio of

a good node is higher than that of a bad node.
The LCS length ratio δa is error-tolerant to interference

of bad neighboring nodes with large location estimation
errors. The boundary of δ is between 0 and 1.

We define the matching degree Mi between the RSSI
sequence and distance sequence as follows.

Mi = δi · CosDisti (9)

Clearly Mi is a better metric to distinguish good nodes
from bad nodes. When a small portion of RSSI readings
have relatively large errors, or a good node has some
bad neighbors with large location errors, the matching
degree cannot be influenced too much.

We use the same trace as that in Fig. 7 to calculate the
matching degree of all the nodes after initial localization.
The results are plotted in Fig. 11. Nodes of a matching
degree over 0.6 have location errors of less than 4 meters.
We regard them as good nodes. Nodes of less than 0.4
degree have location errors over 5 meters. We regard
them as bad nodes. The other nodes have matching
degrees between 0.4 and 0.6, but their location errors
vary from 0.1 to 12 meters. The excessive number of
bad neighbors with large location estimation errors or



8

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Matching Degree

E
st

im
at

ed
 L

oc
at

io
n 

E
rr

or
 (

m
)

M
i

Fig. 11: Filtration result of
virtual-hop

0 5 10 15 20
0

2

4

6

8

10

12

Distance Measurement Error in One Node (%)

M
ea

n 
Lo

ca
tio

n 
E

rr
or

 (
%

)
 

 
Least Squares
SISR
RQAC

Fig. 12: Localization perfor-
mance

bad RSSI measurements causes some good nodes with
relatively low matching degree. It is by far too hard to
decide whether they are good or bad. Thus we tenta-
tively set them as undetermined nodes.

For ease of expression later, we use Gi as a mark of
node vi. Gi = 0, Gi = 0.5 and Gi = 1 mean vi is a bad
node, an undetermined node, and a good node.

Gi =







0 Mi < τl
0.5 τl < Mi < τu
1 Mi > τu

(10)

Here τl = 0.4 and τu = 0.6 are two empirical parame-
ters, called the lower matching threshold and the upper
matching threshold. One can increase both thresholds
to execute stricter filtration. One can also decrease both
thresholds to allow more nodes to contribute as good
nodes in the calibration process. The tradeoff in the
threshold settings could be an interesting issue to study.
We leave it for future work.

4.3 Ranging-Quality Aware Calibration

4.3.1 Motivation of RQAC Approach

Given the range measurements between bad node vi and
its good neighbors, the estimation of vi’s location usually
works by minimizing an objective function, denoted by
f∗, over node pairs (i, j), which is denoted by

f∗ =
∑

j

g(i, j) (11)

where g(i, j) takes different forms with different ap-
proaches. We use RSSI for calibration, which adjusts the
node locations so as to minimize (9).

When LSE is used,

g(i, j) = (lij − dij)
2 (12)

where lij denotes the distance estimated by LSE and dij
denotes the RSSI range measurement between vi and its
neighbor vj based on the log-normal shadowing model.
The problem with LSE is that it does not differentiate
between nodes and links. LSE leads to error diffusion
where a bad link will seriously affect good links. It
suffers great errors when outliers are present in locations
or range measurements.

Snap-Inducing Shaped Residuals (SISR) [8] outper-
forms LSE by assigning different weights to the range
measurements with different neighbors.

g(i, j) =

{

α(lij − dij)
2 |lij − dij | < λ

ln(lij − dij − u)− v otherwise
(13)

where α, λ, u and v are constant parameters. Once a node
is identified as either a good or bad node, its contribution
to the calibration is fixed.

SISR actually prefers the uneven situations where the
majority of range measurements are accurate. It is pro-
posed to cope with the presence that small amounts of
ranging measurements have large non-Gaussian errors.
It is inefficient in GreenOrbs System where ranging
errors are not uneven as shown in Section 4.1.

To address the limitations of LSE and SISR, our
scheme, called range-quality aware calibration (RQAC),
adopts the weighted robust estimation technique.

4.3.2 RQAC Estimator

As the set of undetermined nodes include both good and
bad, we only use good nodes as references and do not
include any undetermined nodes in the calibration. From
the viewpoint of vi, the ranging quality of its neighbor
vj is simultaneously determined by two factors: the
location accuracy of vj , and the ranging error over the
link from vj to vi. RQAC estimates the ranging quality
of a good node vj with its good neighbors as follows.

ω̃j =

|ℜj |
∑

k=1

ω′
jk · ⌊Gk⌋ (14)

ω′
jk =

{

1 |ljk − djk| < θ
0 otherwise

(15)

where θ is a pre-configured parameter, ⌊Gk⌋ ensures
that each good node only communicates with its good
neighbors to estimates its ranging quality. The weight of
good node vj in calibrating bad nodes is defined as a
normalized value of ω̃j .

ωj =
ω̃j

∑|ℜj |
k=1 ω̃k

(16)

We can see that good nodes of different ranging qual-
ity have different weights. A good node has a relatively
high weight if its estimated location is highly accurate
and the ranging quality of all its links is good. Otherwise,
the weight of the good node will be relatively low. The
objective function of RQAC is defined as follows:

g(i, j) =

{

αωj(lij − dij)
2 |lij − dij | < ε

ln(|lij − dij | − ε+ 1) |lij − dij | ≥ ε
(17)

Note that ωj and |lij−dij | thus jointly denote the ranging
quality from vj to vi and α is constant parameter.

As we can see from Equation (17), range measure-
ments to vi are divided into two classes according to
their ranging quality. The range measurements with
errors less than ε contribute more to the calibration
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process by taking the quadratic form of |lij − dij |. For
a range measurement with an error not less than ε,
its contribution is suppressed by taking the logarithmic
form of |lij − dij |. Moreover, range measurements in the
same class are also differentiated from each other, by
taking the weights of reference nodes (εj) into account.
In this way, RQAC respects the contributions of the
best range measurements, eliminates the interference
of outliers, and suppresses the contributions from the
ranges in-between.

4.3.3 Analysis of RQAC: An Illustrative Simulation

As for the parameter setting in RQAC, a small θ ex-
presses a conservative calibration strategy. Only a small
fraction of the best range measurements receives enough
respect, which results in highly accurate calibration but
likely more rounds of iterations. A large θ expresses an
optimistic calibration strategy. Many good range mea-
surements make contributions, such as increasing the
efficiency of iterations but likely introducing new errors.
Getting an appropriate ε is also important to RQAC.
Basically, a smaller ε results in more accurate calibration,
and also increases the possibility of falling into the local
minimum. In contrast, a lager ε may cause RQAC to
degrade to ordinary LSE. In our work, we get θ and ε
from the empirical results of our experiments.

In the simulation, we placed 30 nodes on a plot of 100
* 100, where σ = 3 and ε = 5. Fig. 12 is an illustrative
experiment comparing localization performance of least-
squares, SISR and RQAC under exactly erroneous link
of one node. The mean error of least-squares grows
along with the input error, while the results of SISR
and RQAC go up a little and then decreases into place.
That is because the influence of bad link is weakened by
the estimator when measurement error exceeds a certain
level. Furthermore, the suppression result of SISR is not
as significant as RQAC. For RQAC, if the link errors are
less than the certain level, their contributions may also be
different from each other. The introduction of ω can treat
distinctively for different nodes with different location
accuracy and link quality.

The RQAC estimator is based on robust statistics.
Robust statistics methods [6] is tools for statistics prob-
lems in which underlying assumptions are inexact. It is
well known that the least squares (LS) error estimates
can be arbitrarily wrong when outliers are present in
the data. The estimation can be altered without bound
by an extremely noisy outlier. In contrast, the median
estimator is not as susceptible to such polluting data,
and is considered a robust estimator.

The RQAC is a weighted method. Each node has
different ranging quality with different weight values.
The ranging quality ωi of node vi is decreased with the
increasing of link errors. For SISR estimator, the function
will sustain quadratic growth when link error below
a threshold. For RQAC estimator, the growth trend is
restrained by decreasing ranging quality ω.
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tion results

5 PERFORMANCE EVALUATION

We have implemented CDL with GreenOrbs. The per-
formance of CDL and other three existing localization
approaches, namely DV-hop [17], MDS-MAP(C,R) [22],
and SISR [8], is evaluated through real experiments and
large-scale simulations.

5.1 Experiments on Real Outdoor System

Corresponding to the deployment map in Fig. 1, Fig. 15
plots the 100 GreenOrbs nodes in a rectangular region.
Four nodes positioned near the border of the deploy-
ment area are selected as landmarks. In our experiments,
we use a globally synchronized duty-cycling mechanism
and the CTP protocol to collect data from the nodes.
There are two kinds of data: one is sensing data (i.e.
temperature, humidity, illumination, etc), and the other
is networking data (i.e. neighbor node IDs, RSSI, routing
path, etc).

The localization experiments are implemented based
on the collected data traces in an offline manner. Ac-
cording to the list of neighbor node IDs, the hop counts
from landmarks to each node can be calculated. Then
localization result of DV-hop algorithm is obtained. Ac-
cording to connectivity information and RSSI readings,
the localization performance of MDS-MAP(C,R), SISR,
and CDL can be worked out. In Subsections 5.1.1 and
5.1.2, experiments of CDL and SISR are executed for six
iterations.

5.1.1 Impact of unreliable wireless links

Fig. 13 compares the RSSI-ranging error and localization
performance of CDL and SISR using one month data
of GreenOrbs. During that month, the environmental
factors, such as temperature, humidity, and wind power,
changed frequently. As a result, the system experienced
fluctuating packet reception rate (PRR). We use PRR as
the indicator of wireless link quality, the change of which
actually reflects the impact of environmental dynamics.

RSSI ranging error is the residual between real dis-
tance and estimated distance by RSSI ranging based on
Equation (1), which usually increases as the PRR shrinks.
CDL outperforms SISR under all the five PRR. The local
filtration and ranging-quality aware calibration of CDL
tend to select the nodes and links with good ranging
quality. This tendency appears to have more apparent
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Fig. 15: Localization results of SISR and CDL

effect when the quality of wireless links becomes diverse,
suppressing the negative impact of unreliable wireless
links on the ranging results.

When PRR decreases to 51%, the average RSSI-ranging
error increases to more than 15m, and the minimum
error is close to 30m. That is because the changes of
environmental factors affect the reliability of wireless
links. These outside interferences cause irregular RSSI
readings and PRR degradation. A high PRR indicates
relatively regular RSSI readings and stable environment.

In order to have a good performance, we select the
data in consecutive duty cycles with PRR above 96% for
all the rest experiments. We set the parameters as η = 3.3,
Xσ = 6, according to the empirical results [19].

5.1.2 Comparison among Approaches

Fig. 14 plots the cumulative distribution of the local-
ization errors using the four approaches. It is easy to
see that SISR performs better than DV-hop and MDS-
MAP(C,R). Thus we only compare the results of SISR
and CDL in Fig. 15.

Fig. 15 shows that for almost all the nodes, CDL
achieves higher accuracy than SISR. A detailed expla-
nation of the results can be found in Fig. 14.

Using CDL, 100% of the nodes have errors of less than
7 meters, while 65% of them have errors of less than 3
meters. Using SISR, at most 70% of nodes have errors of
less than 7 meters and at most 35% of nodes have errors
of less than 3 meters. It is also interesting to see that
CDL achieves the most consistent performance among
the four approaches. The average localization errors of
the four techniques are 8.7m, 5.9m, 4.6m and 2.9m.

From Fig. 14, we can see the performance of DV-hop
is the worst. Actually, we observe in the experimental
results that many different nodes are estimated to the
same locations by DV-hop, because they have the same
hop-counts to the landmarks, but their real locations are
far each other.

Another interesting finding is that SISR and MDS-
MAP perform similarly. In other words, a node with a
large error in MDS-MAP usually has a large error in SISR
too. Moreover, due to the “snap-in” behavior of SISR, it
is able to suppress the negative impact of noisy range
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Fig. 16: Impact of Multipath Effect

measurements. SISR therefore achieves slightly better
accuracy than MDS-MAP.

5.1.3 Impact of Multipath Effect
In the forest, the complex terrain and obstacles may
cause multipath effect. As shown in Fig. 1, there are
many big trees in the left center of the deployment
area, which makes surrounding nodes’ RSSI readings
irregular. The big tree trunks obstruct communication
among the nodes on opposite sides (e.g. nodes 65 and
73). The RSSI readings among them are weakened. At
the same time, the trunks reflect signal from the same
side (e.g. node 66 and 67). The RSSI readings among the
nodes are strengthened.

Fig. 16 compares the localization results of CDL and
SISR in this area. The numbers above the braces are the
node IDs, the numbers in the braces indicate the local
filtration results in two iterations. 0, 0.5 and 1 indicate the
node judged to be a bad node, an undetermined node,
and a good node, respectively.

Intuitively judging based on the result in Fig. 16, the
localization result of CDL approaches the real location of
a node step by step, even when some of the wireless links
are dominated by multipath effect. That is because that
CDL combines range-free and RSSI-based techniques to
play their respective advantages. In order to give more
insights on how CDL achieves this goal, we use nodes
65, 66, 67, 71 and 73 as a typical example and show their
localization process in Table 2.

Table 2 shows the RSSI-ranging error and its impact
in the iterative process. The first row is the node ID of
sender and the first column is the node ID of receiver. In
each cell, the first item is the RSSI-ranging error. Positive
number indicates the RSSI is weakened, and negative
number indicates the RSSI is strengthened. The second
and third items respectively show the error of each link
used in the first and second calibration.

Since node 65 is always judged to be bad node, the
RSSI-ranging from it is not used in the calibration steps.
After the first calibration, nodes 66 and 67 are judged to
be good nodes. They are used to calibrate nodes 65 and
71. Although there are large RSSI-ranging errors between
nodes 66 and 71, the ranging error of node 66 in cal-
ibration is not big. Ranging-Quality Aware Calibration
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TABLE 2: RSSI-ranging error and its impact (m)

65 66 67 71 73
65 -4.81, 0, -1.43 -2.77, 0, -0.92 10.34, 0, 0 10.87, 1.87, 1.65
66 -5.43, 0, 0 -4.85, 0, 0 8.49, 0, 0 5.21, 1.46, 0
67 -2.51, 0, 0 -4.22, 0, 0 1.63, 0, 0 -0.93, -0.97, 0
71 11.74, 0, 0 11.55, 0, 2.04 2.37, 0, 0.93 -2.14, 0, -0.79
73 11.26, 0, 0 5.37, 0, 0 -0.65, 0, 0 -2.78, 0, 0

(RQAC) can limit the influence of large ranging error
with the weighted robust estimator.

Overall, the node with bad ranging quality will either
be judged to be a bad node during local filtration or
be suppressed with respect to its weight in calibration
by RQAC. Thus, CDL can deal with the local multipath
effect well.

5.1.4 Interaction of Three Phases

CDL mainly consists of three phases: virtual-hop localiza-
tion, local filtration, and ranging-quality aware calibration.
Fig. 17 shows how these methods interact with each
other. To simplify the notations, we use the numbers 1, 2,
3 to represent the three phases. Then there are four kinds
of combinations: (2 ∪ 3), (1 ∪ 2), (1 ∪ 3), and (1 ∪ 2 ∪ 3).
The different bars indicate the mean localization errors
of different combinations.

For (2 ∪ 3), we use DV-hop instead of virtual-hop to
initialize locations of ordinary nodes. This combination
has large localization errors. That is because DV-hop
initializes many nodes’ locations to be far away from
their real locations. Then good nodes and bad nodes,
good links and bad links, cannot be easily differenti-
ated. It has serious impact upon the local filtration and
ranging-quality aware calibration, and finally reduces
the localization accuracy. From this we can see the
great importance of virtual-hop in CDL, which provides
accurate initial localization.

For (1 ∪ 2), we use Least Squares Estimate instead of
RQAC for calibration. This combination has higher accu-
racy than (2∪3). That is because virtual-hop localization
provides accurate localization for most nodes. In this
situation, nodes can be properly distinguished as good
nodes or bad ones. Meanwhile, it has larger maximum
error than (1∪3). That is because Least Squares Estimate
algorithm leads to error propagation when there are
some bad links. It indicates that it is meaningful and
beneficial to differentiate the ranging quality of different
links in the calibration phase.

For (1 ∪ 3), we use RQAC to directly calibrate each
node without local filtration. This combination has larger
minimum error than (1∪2). Without distinguishing good
nodes from bad nodes, it’s difficult to evaluate the rang-
ing quality due to the interference of bad nodes. Without
appropriate differentiation, the good nodes’ locations
are also calibrated by their neighbors, as reduces the
localization accuracy of good nodes. It indicates that
the negative impact of bad nodes may be serious and
cannot be neglected. In order to achieve highly accurate

localization in the end, we need to filter the bad nodes
first before entering the calibration phase.

5.2 Simulation on Large Scale Networks

Besides the above experiments, we further carry out
extensive simulations to evaluate the performance of
CDL. We examine the location accuracy of CDL by
tuning a series of parameters such as network topology,
connectivity degree and the relative ranging errors. The
results of DV-hop, MDS-MAP(C,R), and SISR are pre-
sented as well. The simulations run on Matlab, including
1000 ordinary nodes in a square region and 6 landmarks
around. We run all the simulations on a Windows 7
PC with an Intel i5 2.53GHz processor and two core
memories size of 2 Gbytes.

In the simulation setting of Section 5.2.1, each node
has 10 to 12 neighbors for uniform distribution, and
has 3 to 15 neighbors for non-uniform distribution. In
Section 5.2.2 and 5.2.3, nodes are randomly distributed
in a square region. Each node’s RSSI readings from its
neighboring nodes are assigned with values based on
the log normal shadowing model with random noise, to
be more close to the real fact. Two nodes are connected
with a link in the network, if the RSSI between them is
greater than -87dBm (the receiving sensitivity of CC2420
radio). In this way, the network topology is generated.

5.2.1 Impact of Network Topology

Virtual-hop is a range-free localization which utilizes
the connectivity information to locate sensor nodes.
We examine the performance of virtual-hop in both
scenarios with uniform distribution and non-uniform
distribution. DV-hop algorithm takes 43 seconds to run
in either uniform or non-uniform distribution simula-
tions. Virtual-hop takes 57 seconds to run in uniform
distribution simulation and 58 seconds to run in non-
uniform distribution simulation.

Fig. 18 compares the performance of virtual-hop and
DV-hop localization approaches in both scenarios. The
results indicate that the non-uniform deployment of
nodes does build up the average localization errors
for both two approaches. It is worth noticing that
even virtual-hop localization in the non-uniform deploy-
ment is more accurate than the performance of DV-
hop localization in the uniform deployment. DV-hop
doesn’t differentiate between two distances with the
same hop count to landmark, while virtual-hop-count
assigns small values to the near nodes.
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Fig. 19: Comparison of localization errors

5.2.2 Impact of Ranging Error

Considering the ubiquitous ranging errors in the wild,
the robustness of a localization approach against such
interfering factors is the last but not least metric we want
to evaluate. For this purpose, nlocal is set to 12.

We use two parameters to control the degree of rang-
ing errors. The first one is the percentage of bad links
which is respectively set at 0%, 10%, 20%, 30%, 40%,
and 50%. The other parameter is the relative ranging
error. We assume in the simulations that the links on
a node are either all good or all bad. The relative
ranging error of a link conforms to a Gaussian distri-
bution N(µbad, 0.2µbad), where µbad denotes the average
of relative ranging error and set at 0%, 10%, 20%, 30%,
40%, and 50%, respectively. Meanwhile, we assume the
links are asymmetric. CDL and SISR are executed for six
iterations. SISR runs for 282 min, and CDL runs for 213
min.

Fig. 19 plots the mean localization errors of SISR, and
CDL under different settings. SISR is specifically well
when the percentage of bad links is less than 30%. The
mean localization errors are less than 2m due to the
“snap-in” behavior of SISR. Its performance seriously
degrades when the percentage of bad links gets above
30%, in accordance with our analysis in Section 4.3.

Compared to SISR, CDL has even better performance.
When all the links are good, its localization errors reach
near zero. Even when there are 50% bad links, CDL still
performs robustly enough. The mean localization error
is around 5m. This simulation shows the remarkable
advantages of CDL in extremely complex environments.

5.2.3 Overhead Analysis

Though cost is not the first concern of localization, we
analyze the communication cost and time complexity in
each phase of CDL. Let m denote the number of beacon
nodes and k denote the average node degree.

In virtual-hop localization, landmarks flood their co-
ordinates to all the other nodes. The communication cost
for each ordinary node is O(m). A node exchanges rele-
vant information with its one-hop neighbors to estimate
virtual hop-counts. The communication cost is O(k).
Finally, landmarks flood their per-virtual-hop distance
and the cost is O(m). The overall communication cost
for each node in virtual-hop localization is thus to O(k).

Node vi computes its virtual-hop-count to landmark Rj

based on the average of its previous neighbors’ virtual-
hop-counts, so the time complexity is O(|Pi,j |). Since
a node uses LSE to compute its coordinate, the time
complexity is O((m− 1)3).

In local filtration, the communication cost of a node is
mainly incurred by information exchange with its one-
hop/two-hop neighbors. Thus the communication cost
in this phase is O(k2). The algorithm, called Longest
Common Subsequence Length, takes O(k2) time to com-
pute, and the algorithm Cosine Distance takes O(k) time
to yield the output.

In RQAC, all cost is incurred by local computation and
thus ignorable, compared to the communication costs
in the previous two phases. Each bad node vi uses the
robust estimator to calibrate its location, and the running
time of that procedure is O((n − 1)3), where n is the
number of vi’ good neighbors.

6 CONCLUSION

Localization has been extensively studied by both prac-
ticers and theoreticians over the past decade. Many
practical challenges exist for the state-of-the-art schemes,
especially when it comes to real-world WSNs in complex
environments. In this work, we share our real-world
experience, design, and evaluation of sensor nodes lo-
calization with GreenOrbs, a system deployed in a
forest. Our design, called CDL, applies a step-by-step
process to pursue the best possible localization quality.
We have implemented CDL and carried out extensive
experiments and simulations. The results demonstrate
that CDL outperforms existing approaches with higher
accuracy, efficiency, and consistent performance in the
wild. Though this work may not be generalized to every
possible case, we hope that the community could benefit
from our understanding of the practical challenges of
localization in large scale WSN deployed in wild.
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