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Abstract—Human-carried or vehicle-mounted sensors can be exploited to collect data ubiquitously for building various sensing maps.
Most of existing mobile sensing applications consider users reporting and accessing sensing data through the Internet. However,
this approach cannot be applied in the scenarios with poor network coverage or expensive network access. Existing data forwarding
schemes for mobile opportunistic networks are not sufficient for sensing applications as spatial-temporal correlation among sensory
data has not been explored. In order to build sensing maps satisfying specific sensing quality with low delay and energy consumption,
we design COUPON, a novel cooperative sensing and data forwarding framework. We first notice that cooperative sensing scheme
can eliminate sampling redundancy and hence save energy. Then we design two cooperative forwarding schemes by leveraging data
fusion: Epidemic Routing with Fusion (ERF) and Binary Spray-and-Wait with Fusion (BSWF). Different from previous work assuming
that all packets are propagated independently, we consider that packets are spatial-temporal correlated in the forwarding process,
and derive the dissemination law of correlated packets. Both the theoretic analysis and simulation results show that our cooperative
forwarding schemes can achieve better tradeoff between delivery delay and transmission overhead by both by theory and simulation
analysis. We also evaluate our proposed framework and schemes with real mobile traces. Extensive simulations demonstrate that
the cooperative sensing scheme can reduce the number of samplings by 93% compared with the non-cooperative scheme; ERF can
reduce the transmission overhead by 78% compared with Epidemic Routing (ER); BSWF can increase the delivery ratio by 16%, and
reduce the delivery delay and transmission overhead by 5% and 32% respectively, compared with Binary Spray-and-Wait (BSW).

Index Terms—Mobile opportunistic networks; opportunistic sensing; people-centric sensing; data fusion; routing.
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1 INTRODUCTION

Recent advancements in mobile sensing and communi-
cation technologies, especially the proliferation of smart
phones, offers novel, efficient ways to opportunistically
collect data, enabling numerous monitoring applications
for obtaining sensing maps of air quality [1], noise [2],
[3], temperature [4], CO2 concentration [5], etc. The
application scenario is illustrated in Fig. 1: a group of
mobile phone users equipped with various sensors, GPS
receivers, and wireless communication modules (e.g.,
bluetooth, Wi-Fi) roam within the monitoring region;
each user opportunistically takes samples and reports its
sensory data to the monitoring center; the monitoring
center then calculates the distribution of sensory data
and presents the result on the maps (e.g., Google map).
Such sensing paradigm is popularly called opportunistic
sensing [6], participatory sensing [1], [3], mobile crowd-
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Fig. 1. The illustration of an opportunistic sensing system.

sourced sensing [7], [8] or people/human-centric sensing [6],
[9], [10].

Most of existing mobile sensing applications consider
mobile users who can report and access sensory data
through the Internet by cellular networks (e.g., 3G/4G
mobile networks) or Wi-Fi connections. However, this
approach cannot be applied in some scenarios where
network coverage is poor or network access is expen-
sive. For example, dead spots of network coverage are
commonly found in remote areas and even in some
part of major cities [11]. For another, the infrastructure
(such as power and cell towers) is down in disaster
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recovery scenarios [12]. On the contrary, opportunistic
data forwarding among mobile users becomes possible
through intermittent connections with short-range radio
communications, which offers another way to collect and
share data in areas with poor or no network coverage.
It works well without requiring any centralized server
or infrastructure for communication and management,
and also reduces the workload of cellular networks in
dense areas. Moreover, the opportunistic data forward-
ing approach is more energy-efficient and less expensive,
which is very important because most users hope to
save the battery energy and data usage of their mobile
phones. To fully explore these potentials, it is necessary
to design new efficient sensing and data forwarding
schemes.

Many opportunistic forwarding protocols, such as
Epidemic Routing (ER) [13] and its variations, have
been proposed to route data among mobile nodes in
Mobile Opportunistic Networks (MONs) [14] and Delay
Tolerant Networks (DTNs) [15]. Recently, some work
proposed to use mobile phone users as data mules for
collecting sensory data opportunistically [11], [12], [16],
[17]. However, the spatial-temporal correlation among
sensory data and its impact on the network performance
have not been thoroughly investigated. In this paper,
we integrate the opportunistic forwarding protocols with
data fusion (or aggregation) for two reasons. First, the
users may be interested only in the aggregated results
of the sensory data; for example, only the average value
of the relevant parameter (e.g. temperature, noise) may
be of interest. Secondly, sensory data collected in close
proximity or time period may be highly correlated, and
data fusion can effectively eliminate redundancy and
hence reduce network overhead. Although many routing
schemes supporting data fusion have been proposed in
WSNs [18], to the best of our knowledge, we are the
first to investigate the opportunistic forwarding schemes
supporting data fusion in MONs.

Although the idea of integrating opportunistic for-
warding protocols with data fusion seems simple and
straightforward, we still face some new challenges for
both performance modeling and protocol design in prac-
tice. Pervious work on performance modeling of oppor-
tunistic forwarding protocols assumed that all packets
are propagated independently. However, the packets are
spatial-temporal correlated in the forwarding process
with data fusion, which causes a more complex propaga-
tion process. We derive an ordinary differential equation
(ODE) model for analyzing the dissemination law of
correlated packets, and theoretically prove the bounds
of transmission overhead and delivery delay. Our anal-
ysis framework can serve as fundamental guidelines on
integrating various opportunistic forwarding protocols
with data fusion, and achieving desirable tradeoff among
various performance metrics. On the other hand, Binary
Spray-and-Wait (BSW) [19] is considered to be one of the
most efficient methods to reduce the large overhead of
the ER scheme without incurring significant delay penal-

ties. However, when we consider integrating BSW with
data fusion, an important question must be answered:
how many forwarding tokens should be assigned to the
nodes for the new fused packet? In order to solve this
problem, we design a series of rules to assign proper
number of forwarding tokens to the nodes, and theoret-
ically prove the performance improvement in terms of
transmission overhead and delivery delay.

There are also some other challenges, such as incentive
mechanism design [20], [21] and privacy preserving
problems [22], [23], that have attracted much attention
from researchers recently. But they are out of the scope
of our discussion in this paper.

As a summary, the contributions of this paper are:

• We propose COUPON, a novel cooperative sensing
and data forwarding framework for building sens-
ing maps while satisfying specific sensing quality
with low delay and energy consumption. The co-
operative sensing scheme can eliminate sampling
redundancy and hence save energy. Through coop-
erative forwarding schemes with data fusion, we
can improve the network performance in terms
of delivery ratio, delivery delay and transmission
overhead significantly.

• We design two novel protocols by leveraging data
fusion: Epidemic Routing with Fusion (ERF) and
Binary Spray-and-Wait with Fusion (BSWF). We de-
rive the dissemination law of correlated packets,
theoretically prove that ERF has the same delivery
delay with ER [13] while significantly reducing the
transmission overhead, and BSWF can reduce both
the delivery delay and transmission overhead com-
pared with BSW [19].

• Extensive simulations are conducted based on re-
al mobile traces [24], which demonstrate that the
cooperative sensing scheme can reduce the num-
ber of samplings by 93% compared with the non-
cooperative scheme; ERF can reduce the transmis-
sion overhead by 78% compared with ER; BSWF
can increase the delivery ratio by 16%, and reduce
the delivery delay and transmission overhead by 5%
and 32% respectively, compared with BSW.

Compared to our previous conference version of this
work [25], this paper presents more theoretical analysis
and additional simulation results. The remainder of this
paper is organized as follows: Section 2 reviews the
related work. Section 3 describes the system model and
design objective of COUPON. In Section 4, we introduce
the framework of COUPON, including the cooperative
sensing scheme and the basic idea of the cooperative
forwarding with data fusion. We detail the two coop-
erative forwarding schemes, and analyze the effects of
data fusion on network performance in Section 5. In
Section 6, we conduct extensive simulations to evaluate
our solution based on real mobile traces. Finally, we
conclude the paper in Section 7.
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2 RELATED WORK

2.1 People-Centric Sensing
Recently, many people-centric sensing applications have
been developed to leverage human-carried or vehicle-
mounted sensors to share local data, increase global
awareness, compute community statistics, or map phys-
ical phenomena. These applications can be classified
into three categories: environment-centered, infrastructure
and facility related, and social or community centered. In
this paper, we mainly focus on the periodic monitoring
applications that generally belong to the first two cate-
gories. In the first category, the Common Sense project
[1] developed an urban sensing system using handheld
air quality monitors. NoiseTube [2] and Ear-Phone [3]
were two urban noise mapping systems that created
open and inexpensive platforms for rendering up-to-date
noise maps. A vehicle sensor network was developed
to monitor the CO2 concentration in areas of interest
[5]. The compressed sensing approach was proposed to
recover the sensing map from random and incomplete
samples more effectively [3], [4]. The relationship be-
tween the sensing delay of an urban vehicular sensing
system and the number of vehicles was analyzed based
on taxis mobility traces [26]. In the second category,
Sensorly [27] was a sensing platform for constructing
cellular/WiFi network coverage maps. CarTel [28] was
a mobile sensor computing system designed to collect,
process, deliver, and visualize data from sensors located
on mobile units such as automobiles, which can provide
urban sensing information such as traffic conditions. Pot-
hole Patrol (P 2) system [29] used the inherent mobility
of the participating vehicles, opportunistically gathering
data from vibration and GPS sensors, and processing
the data to assess road surface conditions. ParkNet [30]
detected available parking spots using ultrasonic sensing
devices installed on cars, combined with smart phones.

Most of existing applications exploit the data report-
ing approach through the Internet by cellular networks
or Wi-Fi connections. By contrast, MetroSense [6] is a
novel opportunistic sensor networking architecture that
leverages mobility-enabled interactions and provides co-
ordination between people-centric mobile sensors, stat-
ic sensors, and edge wireless access nodes in support
of opportunistic sensing, opportunistic tasking, and oppor-
tunistic data collection. Some fundamental issues in the
opportunistic sensor networking paradigm have been
discussed and partly solved, such as networking per-
formance [6], [16], security and privacy [6], [22], [23].

2.2 Opportunistic Forwarding Protocols
Many opportunistic forwarding protocols have been
proposed in MONs [14] and DTNs [15]. Among these
protocols, ER [13] is the first and the most generic
one. It has the minimum delivery delay under ideal
conditions at the cost of heavy overhead, and thus can
serve as a baseline method. In order to reduce the
large transmission overhead, many variants of ER have

been proposed, e.g., K-hop schemes [31], probabilistic
forwarding [32], spray-and-wait [19], etc. More recently,
some work proposed to use mobile phone users as
data mules for collecting sensory data opportunistically.
Ngai et al. [11] presented a context-aware sensing data
dissemination framework for mobile phone users in a
remote sensing field. Uddin et al. [12] presented a picture
delivery service for disaster-response applications where
a group of survivors and first responders sent images to
a rescue center using mobile phones in the absence of
a functional communication infrastructure. Ngai et al.
[16] presented a novel design to provide efficient oppor-
tunistic information exchange for mobile phone users
in sensing field with data repositories that tackled the
fundamental availability and overhead issues. Park et
al. [17] implemented a mobile-phone-based data muling
system, and used it in four sensornet deployments in-
cluding rural region, residential and office environments.
However, these work failed to consider the spatial-
temporal correlation among sensory data and its impact
on the network performance.

2.3 Data Fusion
Many routing schemes supporting data fusion have been
exploited in WSNs [18]. They have been proved to be
effective strategies to curtail the network load and hence
reduce energy consumption by fusing correlated data
along gathering routes. However, these work cannot be
applied for dynamic and mostly disconnected network
such as MONs and DTNs. On the contrary, we design
opportunistic forwarding protocols by leveraging data
fusion, and verify that network performance can be
significantly improved in terms of delivery delay and
transmission overhead.

3 SYSTEM MODEL

We consider a MON composed of N mobile nodes
U = {u1, u2, · · · , uN} equipped with sensors in a sensing
field. Each node has a movement trajectory, which is
a sequence of time-ordered GPS points. The position
of node uk at time t is denoted by Lk(t). Each node
has a sampling period with the size of Ts, and it can
take samples at the end of each sampling period. The
mobile nodes forward sensory data using short-range
radio communications in the “store-carry-forward” way
for saving battery energy and data usage. Namely, a
node receiving a packet buffers and carries that packet
as it moves, and passes the packet to new nodes that it
encounters, until the packet is received by one sink node.
Here we assume that some sink nodes are deployed in
the network, which can connect with the monitoring
center directly. Finally, the monitoring center aggregates
all the sensory data, and builds a sensing map. Both the
sensing and data forwarding processes are opportunistic
due to the randomness of node mobility and intermittent
connectivity of the network. We aim to build a sensing
map while satisfying specific sensing quality with low
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Fig. 2. The illustration of discretizing the time-space
domain.

delay and energy consumption. In the following, we
introduce these performance metrics respectively.

3.1 Sensing Quality
In this paper, we use a basic metric called coverage to
characterize the quality of a sensing map. The sensory
data is often highly correlated in the time and space
domains. For example, the air quality at one point in the
sensing field at some time could represent the air quality
in its neighborhoods within a time period. Thus, we
need to discretize the time-space domain of the sensing
coverage. In space domain, the whole sensing field is
divided into a set of grid cells G = {g1, g2, · · · , gm}, as
illustrated in Fig. 2(a). The size of grid cells represents
the spatial sensing granularity, which is decided by the
application requirements. Assume that we would like to
build a sensing map during a time span T , including l
sampling periods, i.e., T = l × Ts. A grid cell is said to
be covered by a node only when a new sampling period
arrives and the location of the node is just within the
area of the grid cell. Let C(gi, Lk(t)) denote whether the
grid cell gi is covered by the node vk at the instant t, i.e.,

C(gi, Lk(t)) =

{
1, if t ∈ {Ts, 2Ts, · · · , lTs} and Lk(t) ∈ gi;

0, otherwise.

In time domain, we further divide T into l′ time periods
with the same size of Tp, i.e., T = l′×Tp, Ts < Tp < T , as
illustrated in Fig. 2(b). Note that we may need a grid
cell be covered once within a time period instead of
being covered all the time. So the size of time periods
represents the required temporal sensing granularity,
which is also decided by the application requirements.
To build an accurate sensing map, we consider a general
definition of coverage constraints:

Definition 1 (Effective Coverage). A grid cell gi ∈ G is
said to be effectively covered within the x-th (x = 1, 2, . . . , l′)
time period, if the number of times that it is covered by all
mobile nodes in U within this time period is not less than
K(K ≥ 1), i.e,

∑xTp

t=(x−1)Tp

∑n
k=1 Ci(Lk(t)) ≥ K.

Here we define a general coverage constraint, K ≥ 1,
to avoid the measurement error and obtain better sens-
ing quality. For example, K samples of the same grid

cell can be fused (e.g., averaging, summation, voting,
max/min, etc.) to obtain more accurate values. A similar
concept is the K-coverage in stationary WSNs, where
each point in the target area should be within the sensing
range of at least K sensors, because it provides redun-
dancy and fault tolerance, and facilitate some functions
such as detection, localization, classification and tracking
of targets [33], [34]. A larger K provides the grid cells
the better sensing quality at the cost of more redundant
samplings and energy consumption.

3.2 Delivery Delay

Definition 2 (Delivery Delay). For an effectively covered
grid cell within the x-th (x = 1, 2, . . . , l′) time period, its
delivery delay is the duration from the beginning of this time
period to the time when K sensory data sampled in this grid
cell within this time period has been delivered to the monitor
center.

If the delivery delay is too high, the sensory data
will be out of date. Thus, we give a Time to Live
(TTL) constraint for each grid cell. Namely, all packets
generated within the x-th (x = 1, 2, . . . , l′) time period
will be forwarded among mobile nodes only within the
duration of TTL from the beginning of this time period.

Definition 3 (Effective Delivery). For an effectively covered
grid cell within the x-th (x = 1, 2, . . . , l′) time period, it is
said to be effectively delivered, if K sensory data sampled in
this grid cell within this time period has been delivered to the
monitor center before the TTL expires.

3.3 Energy Consumption

The energy consumption of the system is involved in
two processes: sensing and data forwarding. The energy
consumption in the sensing process is mainly decided
by the total number of samples. Without global cover-
age information or centralized controlling mechanism,
mobile nodes will make redundant samples. Thus, a
distributed cooperative sensing scheme is necessary to
reduce the sampling redundancy by leveraging spatial-
temporal correlation among sensory data.

The energy consumption in the data forwarding pro-
cess depends on the transmission overhead (namely
the total number of packets forwarded) of the adopted
forwarding scheme. Although many opportunistic for-
warding protocols have been proposed, to the best of
our knowledge, none of them considered the spatial-
temporal correlations among sensory data. In fact, for
each effectively covered grid cell, there are at least
K sensory data that are spatial-temporal correlative in
the same time period. Thus, a cooperative forwarding
scheme will be beneficial for reducing the transmission
overhead of the network by fusing the sensory data in
the forwarding process.
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4 COUPON: COOPERATIVE FRAMEWORK

In order to optimize the system performances in terms of
sensing quality, delivery delay and energy consumption,
we design two cooperative schemes: through coopera-
tive sensing, the specific sensing quality can be achieved
with reduced energy consumption; through cooperative
forwarding with data fusion, it can obtain higher deliv-
ery ratio with reduced delivery delay and transmission
overhead.

4.1 Cooperative Sensing

Without centralized controlling mechanism, each node
only locally decides whether to perform the sampling
task on runtime based on the knowledge exchanged
with other nodes and the spatial-temporal correlation
among sensory data. Specially, we set a coverage table
CovTable(vk) stored at each node vk, the size of which is
dynamic. Each entry in the table is a two-tuple consisting
of the grid cell identifier and the times (at least once)
that the grid cell has been covered during some time
period. Note that this table not only contains the grid
cells covered by node vk, but also contains the grid
cells covered by other nodes, by exchanging coverage
information with other nodes. At the beginning of each
time period, we clear out the coverage table of each node.
If some grid cell gi, within which the node vk is located,
is not in its coverage table, or the coverage times of
gi is less than K, we make node vk take a sample in
gi, and update its coverage table. Through cooperative
sensing among mobile nodes, the sampling redundancy
will be significantly reduced. The detailed algorithm is
presented in Appendix A (see the supplementary file).

4.2 Cooperative Forwarding with Data Fusion

Before describing the cooperative forwarding schemes
with data fusion, let us first illustrate the importance
of coupling between opportunistic forwarding and data
fusion in MONs.

As depicted in Fig. 3, assume that two nodes u1 and u2

carry two correlated packets (two samples generated in
the same grid cell within the same time period) at time
t1, and opportunistically forward the packets to a sink
node S. Finally, S obtains the average of two samples.
Fig. 3(a) illustrates the forwarding process without data
fusion: when node u1 encounters node u2 at time t2,
they forward the data to each other; then at time t3,
node u2 encounters the sink node S, and delivers both
the two packets A and B to S; S take the average of
two samples after it has received both the two original
packets. Thus, the transmission overhead (i.e., the total
number of transmissions) is 4. Next, let us see the
forwarding process with data fusion as illustrated in Fig.
3(b): when u1 encounters u2, they forward the data to
each other, and store the fused result, namely a new
packet C = (A + B)/2, instead of two original packets;
then at time t3, u2 encounters S, and delivers the packet

u1

u2

S

u1 u2

S

A

B A,B A,B

u1

u2
S

A,B

A,B
C=(A+B)/2

A

B
A,B

t1 t2 t3

(a) Data forwarding without fusion. At time t1, nodes u1 and u2

carry two correlated packets A and B respectively; at time t2, u1

forwards A to u2, and u2 forwards B to u1; at time t3, u2 delivers
A and B to the sink node S, and S obtain the average C.

u1

u2

S

u1 u2

S

A

B C C

u1

u2
S

C

C
C

A

B
C

C=(A+B)/2
t1 t2 t3

(b) Data forwarding with fusion. At time t1, nodes u1 and u2 carry
two correlated packets A and B respectively; at time t2, u1 forwards
A to u2, and u2 forwards B to u1, then both u1 and u2 obtain the
fused packet C; at time t3, u2 delivers C to the sink node S.

Fig. 3. Illustration of data forwarding with or without
fusion.

GID Time Period <UID, SEQ #> DATA_1

.

.

.

Time Period <UID, SEQ #> DATA_KGID

K data

(a) K original packets without data fusion.

GID Time Period <UID, SEQ #>, . . . , <UID, SEQ #>

K data IDs

DATA

(b) one packet fusing K data.

Fig. 4. Packet format with or without data fusion.

C to S. Thus, the transmission overhead is 3, which
is lower than that of forwarding process without data
fusion.

Now we introduce the packet format of the two types
of forwarding schemes. As depicted in Fig. 4(a), an origi-
nal packet includes gird ID (GID), time period, generator
ID (UID), locally unique sequence number (SEQ #) and
the data. We consider such a node that has obtained
K samples, either took by itself or received from other
nodes, in the same grid cell within the same time period.
If data fusion is not adopted in the forwarding process,
this node needs to store K original packets as depicted
in Fig. 4(a). In contrast, if data fusion is adopted, this
node only needs to store one packet fusing K data
(original packets), as depicted in Fig. 4(b). A more formal
definition is given as follows:

Definition 4 (Forwarding with Data Fusion). Let X =
{x1, x2, · · · , xi} and Y = {y1, y2, · · · , yj} denote two pack-
ets having already fused i and j original packets respectively,
and 0 ≤ i ≤ j. When any node u1 with packet X encounters
another node u2 with packet Y , both of them obtain a
new fused packet by using a fusion function f(X,Y ). The
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forwarding process follows the three rules below:
(i) if X = Y , then nodes u1 and u2 do not forward any

packet to each other;
(ii) if X ⊂ Y , then u2 forwards a copy of packet Y to u1;

(iii) if X " Y , then u1 forwards a copy of packet X to u2,
and u2 forwards a copy of packet Y to u1.

In order to compare the relationship between X and
Y , we exploit a space-efficient data structure for mem-
bership checking, i.e., a Bloom filter. The approach is
similar to [35]. Each node uses a Bloom filter to represent
its set of original packets, where each <UID, SEQ #>
pair is used as input for the hash functions. By using
this approach, only a small amount of data needs to be
transmitted.

Many fusion functions, such as averaging, summation,
voting, and max/min, can be applied in this scheme.
According to the above rules, the transmission overhead
in each forwarding process is at most 2. Thus the trans-
mission overhead can be well controlled by data fusion.
Note that some other fusion functions, such as median
and histogram, cannot be applied in this scheme, because
all original data should be reserved for computing the
final result. In this paper, we focus only on the fusion
functions that permit in-network processing.

5 COOPERATIVE FORWARDING SCHEMES

In this section, we present two cooperative forwarding
schemes, and analyze their performance improvements
in terms of delivery delay and transmission overhead.

5.1 Epidemic Routing with Fusion
Epidemic routing (ER) [13] has the minimum delivery
delay under ideal conditions (unlimited resources such
as bandwidth and buffer space), and thus can serve
as an optimality baseline. Thus, we first integrate the
ER scheme with data fusion, called ERF scheme. This
integration is straightforward: whenever two nodes en-
counter, they perform forwarding process with fusion
according to Definition 4. Since previous work on per-
formance modeling of ER assumes that all packets are
propagated individually, it is necessary to propose a new
model to characterize the dissemination law of correlated
packets, and analyze the effects of data fusion on the
forwarding performance.

The propagation of one single packet can be modeled
as spread of one infectious disease and the S-I-R model
is often used for analyzing the propagation process [36].
The node is “infected” if it has already received a copy.
The node is “susceptible” if it has not yet received a
copy, but could potentially receive a copy from another
node. We assume that all nodes move in the network
independently and randomly, and the time duration be-
tween contacts of any two nodes follows an exponential
distribution. The accuracy of this model has been shown
for a number of random mobility models (e.g., random
walk, random direction, and random waypoint) [31] and

some real mobility traces [37]. Let β denote the contact
rate of the pairwise nodes. Let I(t) denote the number
of infected nodes at time t, including the source node.
Based on an ordinary differential equation (ODE) as a
fluid limit of Markovian models, it is derived in [36]
that:

I(t) =
N

1 + (N − 1)e−βNt
.

Let F (t) denote the ratio of the nodes which carry a
copy of the packet, which also equals to the probability
that a given node has a copy of the packet. Then, we
have

F (t) =
I(t)

N
=

1

1 + (N − 1)e−βNt
.

Let Ii(t) denote the number of nodes which have i
copies of K original packets under the ER scheme. It
also equals to the number of nodes which have a packet
fusing K original packets under the ERF scheme. Since
each original packet is propagated individually, we can
derive that

Ii(t) =

(
K

i

)
F i(t)(1− F (t))K−iN. (1)

Lemma 1. Let’s assume that there are K correlated packets
originated from the mobile nodes in U at the same time. If the
K packets are propagated individually using the ER scheme,
then the total transmission overhead of K packets by time t
is given by C(t) = KF (t)N −K.

Proof: The detailed proof of this lemma is provided
in Appendix B (see the supplementary file).

Theorem 1. Let’s assume that there are K correlated packets
originated from the mobile nodes in U at the same time. If the
K packets are propagated using the ERF scheme, then the total
transmission overhead by time t, denoted as Cf (t), is given
by the solution of the following system of rate equations:

dCf (t)

dt
=

∑
0≤i<j≤K

(
2−

(
j
i

)(
K
i

)) Ii(t)Ij(t)β

+
∑

0<i=j≤K

(
1− 1(

K
i

)) I2i (t)β, (2)

Cf (0) = 0. (3)

Proof: The detailed proof of this theorem is provided
in Appendix C (see the supplementary file).

The above result, albeit quite useful in accurately pre-
dicting the transmission overhead of ERF, is not in closed
form. This makes it difficult to theoretically compare the
performances of ERF and ER. For this reason, we also
derive a lower bound and an upper bound in closed
form as follows.

Theorem 2. The following lower bound and upper bound
hold for the total transmission overhead of ERF:

(1− (1− F (t))K)N −K ≤ Cf (t) ≤ KF (t)N −K.
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Proof: The detailed proof of this theorem is provided
in Appendix D (see the supplementary file).

The above theorem shows that the transmission over-
head of ERF is less than or equal to that of ER. Now
we analyze the delivery delay of the two schemes.
Since we consider the scenario with K original packets
propagating in the network, we define the delivery delay
as the time within which all K original packets have
been delivered to the monitoring center.

Theorem 3. The expected delivery delay of ERF is equal to
that of ER.

Proof: The detailed proof of this theorem is provided
in Appendix E (see the supplementary file).

To get some insight into the above formulation, we
will look in more detail into the special case of K = 2,
as in Section 4.2. We present the theoretical analysis
and simulation results under the Random Way Point
mobility model to compare the transmission overhead
and delivery delay of the BSW and BSWF schemes in
Appendix F (see the supplementary file).

5.2 Spray-and-Wait with Fusion
Spray-and-wait [19] is considered to be one of the most
efficient methods to reduce the large overhead of ER
without incurring significant delay penalties. The ratio-
nale is: the source node distributes only a small num-
ber of copies to different relay nodes using epidemic-
based schemes (spray phase), and then each relay node
performs “direct transmission”, i.e., only forwards the
packet to its destination (wait phase). Among various
spraying heuristics, Binary Spraying is proved to be
optimal [19], when node movement is independent and
identically distributed. We give a formal definition as
follows:

Definition 5 (Binary Spray-and-Wait (BSW)). When a new
packet is generated at a source node, this node also creates
L > 1 “forwarding tokens” for this packet. A forwarding token
implies that the node that owns it can spawn and forward an
additional copy of the given packet. The forwarding process
consists of the following two phases:

• binary spray phase: if a node (either the source or a relay),
carrying a packet copy and l > 1 forwarding tokens for
this packet, encounters a node with no copy of the packet,
it spawns and forwards a copy of that packet to the second
node; it also hands over ⌊l/2⌋ forwarding tokens to that
node and keeps the rest ⌈l/2⌉ for itself;

• wait phase: when a node has a packet copy and l = 1 for-
warding tokens for this packet, then it can only forward
this packet to the destination itself.

If we consider integrating BSW with data fusion,
an important question must be answered: how many
forwarding tokens should be assigned to the nodes for
the new fused packet? Compared to the epidemic-based
forwarding schemes, BSW can reduce the transmission
overhead at the cost of increasing delivery delay. Thus,

we prefer to design such a BSW scheme with data
fusion that the delivery delay can be reduced while not
increasing the transmission overhead. According to this
criterion, we assign proper number of forwarding tokens
to the nodes. The detailed rules are defined as follows.

Definition 6 (Binary Spray-and-Wait with Fusion (B-
SWF)). Let X = {x1, x2, · · · , xi} and Y = {y1, y2, · · · , yj}
denote two packets having already fused i and j original
packets respectively, and 0 ≤ i ≤ j. Assume that one node
u1 carries a copy of packet X and l1 ≥ 0 forwarding tokens
for X , and another node u2 carries a copy of packet Y and
l2 ≥ 0 forwarding tokens for Y ∗. When u1 encounters u2,
they forward data following the rules in Table 1, based on the
relationship between X and Y , and the number of copies.

In order to facilitate comparing the performances of
BSW and BSWF in terms of delivery delay and trans-
mission overhead, we will use the variant of Definition 5
to characterize BSW without data fusion by considering
the scenario with K original packets propagating in the
network individually.

Definition 7 (BSW without Fusion (a variant of Defini-
tion 5)). Let X = {x1, x2, · · · , xi} and Y = {y1, y2, · · · , yj}
denote two sets of original packets, and 0 ≤ i ≤ j. Assume
that one node u1 carries a set of packets X and l1 ≥ 0
forwarding tokens for each original packet in X , and another
node u2 carries a set of packets Y and l2 ≥ 0 forwarding
tokens for each original packet in Y . When u1 encounters u2,
they forward data following the rules in Table 2, based on the
relationship between X and Y , and the number of copies.

More detailed comparison between BSW and BSWF is
presented in Appendix G (see the supplementary file).

Theorem 4. The transmission overhead of BSWF is lower
than or equal to that of BSW.

Proof: The detailed proof of this theorem is provided
in Appendix H (see the supplementary file).

Theorem 5. The expected delivery delay of BSWF is lower
than that of BSW.

Proof: The detailed proof of this theorem is provided
in Appendix I (see the supplementary file).

We perform simulations under the Random Way Point
mobility model to compare the transmission overhead
and delivery delay of the BSW and BSWF schemes. The
detailed results are presented in Appendix J (see the
supplementary file).

6 PERFORMANCE EVALUATION

6.1 Evaluation Environment and Settings

We evaluate the performance of COUPON based on the
real mobility traces collected from KAIST [24]. Altogeth-
er 92 daily trajectories are collected by participants with

∗. Only when i = 0 or j = 0, we have l1 = 0 or l2 = 0; otherwise
we have l1 ≥ 1 and l2 ≥ 1.
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TABLE 1
Forwarding rules of BSWF.

Rules Conditions Operations

(i)
X ⊂ Y u2 spawns and forwards a copy of Y to u1; u1 and u2 hold ⌊(l1 + l2)/2⌋ and ⌈(l1 + l2)/2⌉
l2 > 1 forwarding tokens for a new fused packet Z = f(X,Y ) = Y , respectively.

(ii-i)
X " Y , X ∩ Y ̸= ∅, u1 spawns and forwards a copy of X to u2, u2 spawns and forwards a copy of Y to u1; u1 and u2 hold

l1 > 1, l2 > 1 ⌊(l1 + l2)/2⌋ and ⌈(l1 + l2)/2⌉ forwarding tokens for a new fused packet Z = f(X,Y ), respectively.

(ii-ii)
X " Y , X ∩ Y ̸= ∅, u2 spawns and forwards a copy of Y to u1; u1 holds ⌊(1 + l2)/2⌋ forwarding tokens for a

l1 = 1, l2 > 1 new fused packet Z = f(X,Y ), and u2 holds ⌈(1 + l2)/2⌉ forwarding tokens for the packet Y .

(ii-iii)
X " Y , X ∩ Y ̸= ∅, u1 spawns and forwards a copy of X to u2; u2 holds ⌊(l1 + 1)/2⌋ forwarding tokens for a

l1 > 1, l2 = 1 new fused packet Z = f(X,Y ), and u1 holds ⌈(l1 + 1)/2⌉ forwarding tokens for the packet X .

(iii-i)
X " Y , X ∩ Y = ∅ u1 spawns and forwards a copy of X to u2, u2 spawns and forwards a copy of Y to u1; u1 and u2 hold

l1 > 1, l2 > 1 ⌊max(l1, l2)/2⌋ and ⌈max(l1, l2)/2⌉ forwarding tokens for a new fused packet Z = f(X,Y ), respectively.

(iii-ii)
X " Y , X ∩ Y = ∅ u2 spawns and forwards a copy of Y to u1; u1 holds ⌊l2/2⌋ forwarding tokens for a

l1 = 1, l2 > 1 new fused packet Z = f(X,Y ), and u2 holds ⌈l2/2⌉ forwarding tokens for the packet Y .

(iii-iii)
X " Y , X ∩ Y = ∅ u1 spawns and forwards a copy of X to u2; u2 holds ⌊l1/2⌋ forwarding tokens for a

l1 > 1, l2 = 1 new fused packet Z = f(X,Y ), and u1 holds ⌈l1/2⌉ forwarding tokens for the packet X .
(iv) others not applicable u1 and u2 do not forward any packet or hand over any forwarding token to each other.

TABLE 2
Forwarding rules of BSW.

Rules Conditions Operations

(i)
X ⊂ Y u2 spawns and forwards a copy of each packet in Y −X to u1; u1 hands over
l2 > 1 ⌊l2/2⌋ forwarding tokens for each packet in Y −X to u2, and keeps the rest ⌈l2/2⌉.

(ii-i)
u1 spawns and forwards a copy of each packet in X −X ∩ Y to u2, u2 spawns and forwards a copy of each

X " Y , X ∩ Y ̸= ∅, packet in Y −X ∩ Y to u1; u1 hands over ⌊l1/2⌋ tokens for each packet in X −X ∩ Y to u2, and keeps the
l1 > 1, l2 > 1 rest ⌈l1/2⌉; u2 hands over ⌊l2/2⌋ tokens for each packet in Y −X ∩ Y to u1, and keeps the rest ⌈l2/2⌉.

(ii-ii)
X " Y , X ∩ Y ̸= ∅, u2 spawns and forwards a copy of each packet in Y −X ∩ Y to u1; u2 hands over

l1 = 1, l2 > 1 ⌊l2/2⌋ forwarding tokens for each packet in Y −X ∩ Y to u1, and keeps the rest ⌈l2/2⌉.

(ii-iii)
X " Y , X ∩ Y ̸= ∅, u1 spawns and forwards a copy of each packet in X −X ∩ Y to u2; u1 hands over

l1 > 1, l2 = 1 ⌊l1/2⌋ forwarding tokens for each packet in X −X ∩ Y to u2, and keeps the rest ⌈l1/2⌉.

(iii-i)
u1 spawns and forwards a copy of each packet in X to u2, and u2 spawns and forwards a copy of each

X " Y , X ∩ Y = ∅, packet in Y to u1; u1 hands over ⌊l1/2⌋ tokens for each packet in X to u2, and keeps the rest ⌈l1/2⌉;
l1 > 1, l2 > 1

u2 hands over ⌊l2/2⌋ tokens for each packet in Y to u1, and keeps the rest ⌈l2/2⌉.

(iii-ii)
X " Y , X ∩ Y = ∅, u2 spawns and forwards a copy of each packet in Y to u1; u2 hands over

l1 = 1, l2 > 1 ⌊l2/2⌋ forwarding tokens for each packet in Y to u1, and keeps the rest ⌈l2/2⌉.

(iii-iii)
X " Y , X ∩ Y = ∅, u1 spawns and forwards a copy of each packet in X to u2; u1 hands over

l1 > 1, l2 = 1 ⌊l1/2⌋ forwarding tokens for each packet in X to u2, and keeps the rest ⌈l1/2⌉.
(iv) others not applicable u1 and u2 do not forward any packet or hand over any forwarding token to each other.

GPS hand-held receivers at every 10 seconds. To account
for GPS errors, a position is recomputed at every 30
seconds by averaging three samples over that 30 second
period. The minimum time duration of the 92 trajectories
is 15150 seconds length. In this work, we exploit the
92 trajectories during the first 14400 seconds (i.e., 4
hours) for evaluation. All trajectories are mapped into
a two dimensional area. We divide the sensing field into
200×200m2 grid cells. This size is the same as the setting
in [5] for CO2 concentration monitoring according to
actual measurements of the spatio-temporal sensitivity.
One sink node is placed at the center of the sensing
field. The time period and sampling period are set to
be Tp = 1800s and Ts = 30s. Five different coverage
constraints (K = 1 ∼ 5) are set for each effectively
covered grid cell. The communication range of each node
is set to be 70m, which is the same as the setting in [11],

[16], [17]. The TTL constraint for each grid cell is set to
be 3600s.

6.2 Evaluation Results of Cooperative Sensing

Table 3 shows the number of effectively covered grid
cells with various values of K within different time
periods. The larger the value of K, the more coverage
times are constrained for each effectively covered grid
cell. Thus, we can see that the number of effectively
covered grid cells decreases with the increase of K. Fig.
5 compares the total number of samplings performed in
all effectively covered grid cells within 8 time periods by
using non-cooperative sensing and cooperative sensing.
We can see that the cooperative sensing scheme can sig-
nificantly reduce the number of samplings, thus reduce
the energy consumption in the sensing process. Specially,
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TABLE 3
The number of effectively covered grid cells with various
values of K within different time Periods (“P.”, for short).

K
# of effectively covered girds

1st P. 2nd P. 3rd P. 4th P. 5th P. 6th P. 7th P. 8th P.
1 121 124 141 128 96 77 132 110
2 80 74 97 81 62 63 88 76
3 64 65 84 63 59 57 76 67
4 54 56 71 53 51 53 69 62
5 44 50 53 49 46 49 64 60
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Fig. 5. The total number of samplings performed in all
effectively covered grid cells within 8 time periods, with
various values of K.

the total number of samplings of the cooperative sensing
scheme at K = 5 reduces by 93% compared with the
non-cooperative scheme.

6.3 Evaluation Results of Cooperative Forwarding
We compare and evaluate the performances of four
forwarding schemes in terms of three metrics as follows.

Average number of effectively delivered grid cell-
s: It denotes how many effectively covered grid cells
can be effectively delivered within one time period on
average. Fig. 6(a) compares the results with various
values of K by using four forwarding schemes. The
number of effectively delivered grid cells decreases with
the increase of K by using any forwarding scheme. As
expected, both ER and ERF have the largest number of
effectively delivered grid cells. In general, more grid cells
can be effectively delivered by using BSWF compared
with BSW. Specially, the delivery ratio of BWSF at K = 5
increases by 16% compared with BSW.

Average delivery delay: Fig. 6(b) compares the aver-
age delivery delay of each effectively delivered grid cell
by using four forwarding schemes. As expected, both
ER and ERF have the lowest delivery delay. In general,
by using data fusion, BSWF can achieve lower delivery
delay than BSW. Specially, the average delivery delay of
BSWF at K = 5 reduces by 5% compared with BSW.

Average transmission overhead: Fig. 6(c) compares
the average transmission overhead of each effectively
delivered grid cell by using four forwarding schemes.
As expected, ER has the highest transmission overhead.
In general, by using data fusion, ERF and BSWF can
achieve lower transmission overhead than ER and BSW

respectively. Specially, the average transmission over-
heads of ERF and BSWF at K = 5 reduce by 78%
and 32% compared with ER and BSW respectively. In
addition, the transmission overhead of ER increases lin-
early with the value of K. By contrast, the transmission
overheads of the other three schemes increase slowly
with the value of K.

In summary, the above simulation results verify that:
1) the ERF scheme can significantly reduce the trans-
mission overhead of the ER scheme with the same
delivery ratio and delivery delay; 2) the BSWF scheme
can increase the delivery ratio of the BSW scheme,
and reduce both the delivery delay and transmission
overhead; 3) the ERF and BSWF schemes can achieve
excellent tradeoff among delivery ratio, delivery delay
and transmission overhead by integrating the forward-
ing schemes with data fusion.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed COUPON, a novel coop-
erative sensing and data forwarding framework for
building sensing maps while satisfying specific sensing
quality with low delay and energy consumption. The
cooperative sensing scheme can eliminate sampling re-
dundancy and hence save energy. Two cooperative data
forwarding schemes, ERF and BSWF, can achieve better
tradeoff between delivery delay and transmission over-
head by taking advantage of data fusion. We evaluated
our schemes using real mobile traces. Extensive simula-
tions demonstrated that the cooperative sensing scheme
could reduce the number of samplings by 93% compared
with the non-cooperative scheme; ERF could reduce the
transmission overhead by 78% compared with ER; BSWF
could increase the delivery ratio by 16%, and reduce the
delivery delay and transmission overhead by 5% and
32% respectively, compared with BSW.

Although we only focus on two opportunistic for-
warding protocols in this paper, we believe that our
derived dissemination law of correlated packets can
serve as fundamental guidelines on integrating other op-
portunistic forwarding protocols with data fusion. In the
future, we are interested in combining some other oppor-
tunistic forwarding protocols, such as context-aware and
social-based forwarding, with in-network processing for
further improving network performance in different ap-
plication scenarios. We will also explore the possibility to
combine opportunistic forwarding protocols with more
complex in-network processing.
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APPENDIX A
COOPERATIVE SENSING ALGORITHM

Algorithm 1 Cooperative Sensing Algorithm (for each
node vk)

1: for t = Ts to T do
2: if t%Tp = 0 then
3: Set CovTable(vk) = NULL;
4: end if
5: Obtain the position of vk: Lk(t);
6: Obtain the grid identifier gi, which is covered by

vk, i.e., Ci(Lk(t)) = 1;
7: if gi is not in CovTable(vk) then
8: Take a sample in gi;
9: Add gi to CovTable(vk);

10: Set the coverage times of gi to 1;
11: end if
12: if gi is in CovTable(vk), and the coverage times of

gi is less than K then
13: Take a sample in gi;
14: Add 1 to the coverage times of gi;
15: end if
16: end for

We outline the cooperative sensing algorithm in Algo-
rithm 1. Take node vk as an example. At each time slot,
it performs cooperative sensing algorithm. If the current
time slot is just at the beginning of one time period, node
vk clears out its coverage table (line 2-4). Then we do the
following steps: if the current grid cell gi, within which
the node vk is located, is not in its coverage table, or the
coverage times of gi is less than K, we make node vk
take a sample in gi, and update its coverage table (line 6-
18). Through cooperative sensing among mobile nodes,
the sampling redundancy will be significantly reduced.

APPENDIX B
PROOF OF LEMMA 1

Each packet will have F (t)N copies in the network by
time t. Without data fusion, each copy of packets means
one transmission except for the K original packets. Thus,
we have that: C(t) = KF (t)N −K.

APPENDIX C
PROOF OF THEOREM 1

A unified framework based on ODEs has been used to
study ER and its variations [36]. Here, we extend this
framework to analyze the transmission overhead of ERF.
dCf (t)

dt means the increasing rate of the total transmission
overhead, which is caused by two cases: 1) a class of
nodes with a packet fusing i original packets encounter
another class of nodes with a packet fusing j original
packets, i ̸= j; 2) two classes of nodes with a packet
fusing the same number of original packets but with

different data encounter with each other. We discuss the
two cases as follows.

Case 1: In this case, the increasing rate of the trans-
mission overhead can be expressed by:

dCf1(t)

dt
=

∑
0≤i<j≤K

Ii(t)Ij(t)E[Qij ]β,

where Qij denotes the transmission overhead when a
node with a packet fusing i original packets encounters
another node with a packet fusing j original packets,
and E[Qij ] denotes its expectation.

Let X = {x1, x2, · · · , xi} and Y = {y1, y2, · · · , yj}
denote two packets fusing i and j original packets
respectively, and 0 ≤ i < j ≤ K. When two nodes with
the two packets encounter, the transmission overhead is
given by:

Qij =

{
1, if X ⊂ Y ;

2, otherwise.

It can be derived that:

P (X ⊂ Y ) =

(
j

i

)
/

(
K

i

)
.

E[Qij ] = 1× P (X ⊂ Y ) + 2× (1− P (X ⊂ Y ))

= 2−
(
j

i

)
/

(
K

i

)
.

Case 2: In this case, we divide the nodes with a packet
fusing i original packets into

(
K
i

)
classes, where the

nodes from the same class have a packet fusing the same
data, and the nodes from different classes have a packet
fusing different data. Each class contains Ii(t)/

(
K
i

)
n-

odes. When two nodes from the same class encounter,
since they have the same data, no transmission is need-
ed; when two nodes from different classes encounter,
the transmission overhead is 2. There are

((Ki )
2

)
cases

that two nodes from different classes encounter. Thus,
the increasing rate of the transmission overhead can be
expressed by:

dCf2(t)

dt
=

∑
0<i=j≤K

((K
i

)
2

)(
Ii(t)(
K
i

) )2

× 2β

=
∑

0<i=j≤K

(
1− 1(

K
i

))I2i (t)β.
Combining the above two cases together, we can ob-

tain the increasing rate of the total transmission over-
head:

dCf (t)

dt
=

dCf1(t)

dt
+

dCf2(t)

dt
.

Thus, Eq. (2) can be derived. The initial condition (3)
simply states that the transmission overhead is 0 at first.
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APPENDIX D
PROOF OF THEOREM 2
Assume that one node has a packet fusing i original
packets X = {x1, x2, · · · , xi}. We consider two extreme
cases: 1) this node receives the packet X directly from
another node, so it only needs one transmission; 2) this
node receives only one single original packet each time
from other nodes, so it needs to obtain the packet X
through i transmissions altogether. Thus, we can derive
that:

K∑
i=1

Ii(t)−K ≤ Cf (t) ≤
K∑
i=1

iIi(t)−K. (4)

According to the binomial theorem and Eq. (1), it can
be derived that:
K∑
i=1

Ii(t) =

K∑
i=0

Ii(t)−I0(t) = N−I0(t) = (1−(1−F (t))K)N.

(5)
Combing the equations (1),(4) and (5), we can easily

obtain the lower bound and upper bound of Cf (t).

APPENDIX E
PROOF OF THEOREM 3
From Definition 4, we see that during each forwarding
process, the data fusion cannot increase or decrease the
propagation speed of each original packet, thus it has
not any effect on the expected delivery delay.

APPENDIX F
SPECIAL CASE ANALYSIS (K=2)
Let’s consider the example in Fig. 3. We assume that
there are two correlated packet A and B, which denote
two samples taken by two different nodes in the same
grid cell within the same time period. When a node with
a copy of packet A encounters another node with a copy
of packet B, both the two nodes fuse the two packets
into a new packet C (e.g., take an average). Let IA(t)
and IB(t) denote the number of nodes that only carry a
copy of A or B. Let IC(t) denote the number of nodes
that carry a fused packet C, and I0(t) denote the number
of nodes that do not carry any one copy of A, B or C.
Then, we have

IA(t) = IB(t) =
1

2
I1(t) = F (t)(1− F (t))N,

IC(t) = I2(t) = F 2(t)N,

I0(t) = (1− F (t))2N.

According to Theorem 1, we can obtain that:

dCf (t)

dt
= F (t)(1− F (t))(F 2(t)− F (t) + 2)N2β. (6)

Now, we use Markov chain to derive the solution of
C(t) and Cf (t), and their relationship. This approach is
more straightforward. For the ER scheme, we classify

TABLE 4
Transition rules among various states under the ER

scheme.
∧ 0 A B A&B
0 0 (0) A (1) B (1) A&B (2)
A A (1) A (0) A&B (2) A&B (1)
B B (1) A&B (2) B (0) A&B (1)

A&B A&B (2) A&B (1) A&B (1) A&B (0)

TABLE 5
Transition rules among various states under the ERF

scheme.
∧ 0 A B C
0 0 (0) A (1) B (1) C (1)
A A (1) A (0) C (2) C (1)
B B (1) C (2) B (0) C (1)
C C (2) C (1) C (1) C (0)

all nodes into four states: A, B, A&B, and 0. The node
with only a copy of A or B is in the state A or B; the
node with copies of A and B simultaneously is in the
state A&B, and the node without any copy of A or B is
the sate 0. Similarly, for the ERF scheme, all nodes are
classified into four states: A, B, C, and 0. Let symbol “∧”
denote the transition rules among various states when
two nodes encounter with each other. All transition rules
under the ER and ERF schemes are listed in Table 4 and
Table 5, respectively. The number in the bracket denotes
the corresponding transmission overhead whenever the
states change.

According to Table 4 and Table 5, we can obtain that:

dC(t)

dt
= I0(t)IA(t)β + I0(t)IB(t)β + 2I0(t)IAB(t)β

+ 2IA(t)IB(t)β + IA(t)IAB(t)β + IB(t)IAB(t)β

= 2F (t)(1− F (t))N2β. (7)

dCf (t)

dt
= I0(t)IA(t)β + I0(t)IB(t)β + I0(t)IC(t)β

+ 2IA(t)IB(t)β + IA(t)IC(t)β + IB(t)IC(t)β

= F (t)(1− F (t))(F 2(t)− F (t) + 2)N2β. (8)

We see that the above result of dCf (t)
dt is consistent with

Eq. (6), which is derived by Theorem 1.
According to the above two equations, we can derive

the relationship between C(t) and Cf (t):

Cf (t) = C(t)−
∫

F 2(t)(1− F (t))2N2βdt.

In Fig. 7 we compare simulation results for the trans-
mission overhead of ER and ERF schemes against ana-
lytical values calculated according to Eq. (7) and Eq. (8),
as a function of time. We observe that theoretical and
simulation results are closely matched, which confirm
the accuracy of our analytical model.
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TABLE 6
Comparison between BSW and BSWF.

Rules Schemes
Packets (# of forwarding tokens)

Current overhead Potential overhead
u1 u2

(i)
BSW X(l1), Y −X(⌊l2/2⌋) X(l2), Y −X(⌈l2/2⌉) ∥Y −X∥ (l1 + l2 − 2)∥X∥+ (l2 − 2)∥Y −X∥

BSWF Z(⌊(l1 + l2)/2⌋) Z(⌈(l1 + l2)/2⌉) 1 l1 + l2 − 2

(ii-i)
BSW

X ∩ Y (l1), X −X ∩ Y (⌈l1/2⌉), X ∩ Y (l2), X −X ∩ Y (⌊l1/2⌋), ∥X∥+ ∥Y ∥ (l1 + l2 − 2)∥X ∩ Y ∥+ (l1 − 2)∥X −X ∩ Y ∥
Y −X ∩ Y (⌊l2/2⌋) Y −X ∩ Y (⌈l2/2⌉) −2∥X ∩ Y ∥ +(l2 − 2)∥Y −X ∩ Y ∥

BSWF Z(⌊(l1 + l2)/2⌋) Z(⌈(l1 + l2)/2⌉) 2 l1 + l2 − 2

(ii-ii)
BSW X(1), Y −X ∩ Y (⌊l2/2⌋) X ∩ Y (l2), Y −X ∩ Y (⌈l2/2⌉) ∥Y −X ∩ Y ∥ (l2 − 1)∥X ∩ Y ∥+ (l2 − 2)∥Y −X ∩ Y ∥

BSWF Z(⌊(1 + l2)/2⌋) Y (⌈(1 + l2)/2⌉) 1 l2 − 1

(ii-iii)
BSW X ∩ Y (l1), X −X ∩ Y (⌈l1/2⌉) Y (1), X −X ∩ Y (⌊l1/2⌋) ∥X −X ∩ Y ∥ (l1 − 1)∥X ∩ Y ∥+ (l1 − 2)∥X −X ∩ Y ∥

BSWF X(⌈(l1 + 1)/2⌉) Z(⌊(l1 + 1)/2⌋) 1 l1 − 1

(iii-i)
BSW X(⌈l1/2⌉), Y (⌊l2/2⌋) X(⌊l1/2⌋), Y (⌈l2/2⌉) ∥X∥+ ∥Y ∥ (l1 − 2)∥X∥+ (l2 − 2)∥Y ∥

BSWF Z(⌊max(l1, l2)/2⌋) Z(⌈max(l1, l2)/2⌉) 2 max(l1, l2)− 2

(iii-ii)
BSW X(1), Y (⌊l2/2⌋) Y (⌈l2/2⌉) ∥Y ∥ (l2 − 2)∥Y ∥

BSWF Z(⌊l2/2⌋) Y (⌈l2/2⌉) 1 l2 − 2

(iii-iii)
BSW X(⌈l1/2⌉) X(⌊l1/2⌋), Y (1) ∥X∥ (l1 − 2)∥X∥

BSWF X(⌈l1/2⌉) Z(⌊l1/2⌋) 1 l1 − 2
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Fig. 7. Comparison of analytical and simulation results for
the total transmission overhead of ER and ERF schemes;
N=40 nodes exist in a 600 × 600 network, and K = 2; All
nodes move according to the Random Way Point model.

APPENDIX G

COMPARISON BETWEEN BSW AND BSWF

According to Definition 6 and Definition 7, Table 6 lists
the packets and forwarding tokens carried by u1 and u2

after they encounter and perform data forwarding under
various rules by using BSW and BSWF, respectively.
Rule (iv) is not listed since both u1 and u2 remain un-
changed. We also list the transmission overheads of the
two schemes, including current overhead and potential
overhead. Current overhead means the required number
of transmissions by the current forwarding process be-
tween u1 and u2. For example, u2 forwards a copy of
each packet in Y −X to u1 under Rule (i) by using BSW,
so the current transmission overhead is ∥Y − X∥†; by
contrast, u2 only forwards a copy of the fused packet
Y to u1 by using BSWF, so the current transmission

overhead is only 1. Potential overhead means that a
node needs to spawn and forward multiple additional
copies to other relay nodes according to the number
of forwarding tokens it owns, unless it only has one
forwarding token or it encounters the destination. For
example, u1 needs to spawn and forward l1 − 1 copies
of each packet in X , and ⌊l2/2⌋−1 copies of each packet
in Y −X to other relay nodes, and u2 needs to spawn and
forward l2−1 copies of each packet in X , and ⌈l2/2⌉−1
copies of each packet in Y −X to other relay nodes, un-
der Rule (i) by using BSW, so the potential transmission
overhead is (l1+l2−2)∥X∥+(l2−2)∥Y −X∥; by contrast,
u1 needs to spawn and forward ⌊(l1 + l2)/2⌋ − 1 copies
of Z to other relay nodes, and u2 needs to spawn and
forward ⌈(l1+ l2)/2⌉−1 copies of Z to other relay nodes
by using BSWF, so the potential transmission overhead
is l1 + l2 − 2.

APPENDIX H
PROOF OF THEOREM 4
From Table 6, we know that both the current and po-
tential overheads of BSWF are lower than or equal to
that of BSW under each rule. Thus, the total transmission
overhead of BSWF is lower than or equal to that of BSW.

APPENDIX I
PROOF OF THEOREM 5
From Table 6, we know that the data fusion can increase
the propagation speed of original packets compared to
that without data fusion. Let’s take Rule (i) for example.
By using BSW, u1 and u2 will have l1 + l2 forwarding
tokens for each original packet in X , and l2 forwarding
tokens for each packet in Y −X altogether. By contrast,

†. ∥·∥ denotes the cardinality of a set, namely the number of original
packets in the set.
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Fig. 8. Comparison of simulation results for the transmis-
sion overhead of BSW and BSWF schemes; N=40 nodes
exist in a 600×600 network, and K = 10, L = 5; All nodes
move according to the Random Way Point model. A static
sink is placed in the center of the simulation area. The
average results are obtained by 1000 runs of simulations.
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Fig. 9. Comparison of simulation results for the delivery
delay of BSW and BSWF schemes. The simulation envi-
ronments are the same as in Fig. 8.

by using BSWF, u1 and u2 will have l1 + l2 forwarding
tokens for the fused packet Z = f(X,Y ) = Y altogether.
It means that u1 and u2 will have l1 + l2 forwarding
tokens for each original packet in X and Y −X altogether
in essence. It also means that the propagation speed of
each original packet in Y −X will be increased if l1 > 0.
Only when l1 = 0, the propagation speed will remain
unchanged. For other rules, we can also obtain the same
conclusion. Thus, the expected delivery delay of BSWF
is lower than that of BSW.

APPENDIX J
SIMULATION RESULTS ON BSW AND BSWF SCHEMES
UNDER THE RANDOM WAY POINT MODEL

In Fig. 8, we compare simulation results for the transmis-
sion overhead of BSW and BSWF schemes varying with
the time. We observe that the transmission overhead of
the BSW scheme is lower than K × L = 50, and the
transmission overhead of the BSWF scheme is 7.74%

lower than that of the BSW scheme when t = 800s. Fig. 9
shows simulation results for the CCDF of delivery delay
of the two schemes. We observe that the BSWF scheme
has lower delivery delay than the BSW scheme. The
average delivery delay of the BSWF scheme is 192.05s,
which is 10.71% than that of the BSW scheme (215.09s).


