
1

Truthful Auction Mechanisms with Performance
Guarantee in Secondary Spectrum Markets

He Huang, Member, IEEE, Yu-e Sun, Xiang-Yang Li, Senior Member, IEEE, Shigang Chen, Senior
Member, IEEE, Mingjun Xiao, Member, IEEE, and Liusheng Huang, Member, IEEE

Abstract—We study a spectrum auction problem where each request from new spectrum users has spatial, temporal, and spectral
features. Our goal is to design truthful auction mechanisms that maximize either the overall social efficiency of new users (a.k.a buyers)
or the revenue of the spectrum owner (a.k.a seller). Given that the optimal conflict-free spectrum allocation problem is NP-hard, this
paper proposes a series of near-optimal auction mechanisms based on the following approximation techniques: linear programming
(LP) relaxation, randomized rounding, derandomized rounding, monotone derandomization, and Lavi-Swamy method. Comparing with
the prior art, we make two significant advances: First, our auction mechanisms are not only truthful but also provide theoretically-
provable performance guarantee, an important feature that existing work under the same auction model does not have. Second, our
auction mechanisms support both spatial and temporal spectral reuse, which makes the problem more challenging than existing work
that deals with only spatial or temporal reuse. We perform extensive simulations to study the performance of the proposed mechanisms,
and the simulation results corroborate our theoretical analysis.
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1 INTRODUCTION

T HE growing demand for limited spectrum resource poses
a great challenge in spectrum allocation and usage [3].

One of the most promising methods is spectrum auction, which
gives incentive for a spectrum owner (a.k.a seller) to sublease
spectrum to new users (a.k.a buyers). The design of spectrum
auction mechanisms faces two major challenges. First, spec-
trum channels can be reused in spatial, temporal, and spectral
domains. We show that allocating buyer requests in channels
optimally and conflict-free is an NP-hard problem. Second,
truthfulness is regarded as one of the most critical properties,
which ensures that it is to the best interest of each buyer to
bid with the true valuation that it deems for the requested
spectrum resource. But designing a truthful spectrum auction
mechanism is non-trivial when user requests have both spatial
and temporal dimensions. Third, it is highly desirable for a
practical spectrum auction mechanism to offer performance
guarantee, which guards the seller’s (or buyers’) interest by
ensuring the auction result will be within a reasonable margin
from the optimal result.
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The prior art has only partially addressed the above chal-
lenges. There is an active line of research studying auction
with spectrum spatial reuse [9], [11], [13], [17], [28]–[30],
[38]–[41], but they do not consider the temporal demands from
buyers, where each buyer may only require a channel within a
certain period of time and different buyers may have different
time periods. While other work considers spectrum temporal
reuse [8], [26], [31], they ignore spatial reuse by assuming
that the conflict graph amongst buyers’ geometry locations is
a completed graph for each channel. Moreover, most of these
auction mechanisms were designed to achieve truthfulness,
without considering performance guarantee. Designing a truth-
ful auction mechanism with provable performance guarantee
is a harder problem, particularly if we want to support both
spatial and temporal spectrum reuse. Solving this problem will
require new techniques.

The auction model considered in this paper has a single sell-
er and multiple buyers, with the latter bidding for channels that
the former offers. We define a flexible optimization objective
that can be set to either maximize the overall social efficiency,
i.e., allocating channels to buyers who value spectrum resource
the most, or maximize the expected revenue, i.e., allocating
channels to buyers who will pay the most. Both are natural
goals for spectrum auction.

Our model is different from double auction [9], [26], [28],
[40], which involves multiple sellers and multiple buyers,
with buyers bidding for resources and sellers bidding for
demands. Research on double auction does not consider the
maximization of revenue (or social efficiency) because it is
not practically viable to maximize the overall revenue with
multiple sellers each seeking its own interest. For example,
although Feng et al. [9] considers spectrum reuse in both
spatial and temporal domains, its double auction mechanism
cannot be applied to our auction model because revenue (or
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social efficiency) optimality is not defined in double auction,
let alone performance guarantee (which is based on a certain
optimization target). Not surprisingly, the techniques used in
their double auction are very different from ours. Also related
is the work on combinatorial auction [8], [38], [42], where
each buyer requests for a specific bundle of discrete resources,
such as specific time blocks at specific channels [8]. This
is different from our model (or the double auction model)
where each buyer request may be allocated in one of multiple
channels (or sellers) that meet the buyer’s spectrum demand. In
another related work [4], Chen and Zhong propose a spectrum
auction framework for multiple collision domains, using a
greedy-like channel allocation mechanism. However, this work
mainly focuses on allocating spectrum with variable bandwidth
to buyers, without providing a performance guarantee (which
is the focus of our paper).

In this paper, we first design a strategy-proof spectrum
auction framework, using an objective function based on
virtual valuation, which can be flexibly turned into either social
efficiency or revenue. With channels being reused spatially
and temporally, we prove that it is an NP-hard problem to
optimally allocate buyer requests in channels in order to
maximize the social efficiency or the expected revenue. We
develop an integer programming formulation for this optimal
channel allocation problem, and relax it into a linear program-
ming (LP) problem, which is solvable in polynomial time,
resulting in a fractional solution for channel allocation. We
then transform this fractional solution into a feasible integer
solution of the original channel allocation problem by using a
randomized rounding procedure that ensures the feasibility of
the solution and good approximation to the objective function.
We prove that the expected total valuation for the feasible
integer solution is at least (1−1/e) times the total valuation of
the optimal solution. However, the feasible solution produced
by the randomized rounding procedure might be arbitrarily
bad in the worst case. To achieve a performance guarantee, we
propose a derandomized rounding algorithm, called DCA, to
produce a feasible solution whose total valuation is guaranteed
to be at least (1 − 1/e) times of the total valuation of the
optimal solution.

On the other hand, truthfulness is a critical issue of spectrum
auction; it guarantees the dominating strategy to bid the true
valuation of the resource for each buyer. To this end, we
propose a truthful auction mechanism called MDCA, which
is built on top of DCA. It has been proved that an auction
mechanism is truthful if its channel allocation algorithm is
bid-monotone and the seller always charges a payment of the
critical value from each winner [23]. Here, a bid-monotone
channel allocation algorithm means that, once a buyer wins by
bidding bi, it will always win if it bids b′i > bi. The critical
value is the minimum bid value for a buyer to win the auction.
In this paper, we prove that the channel allocation mechanism
of MDCA is bid-monotone. This implies that MDCA is a
truthful auction mechanism.

Finally, in order to ensure that the critical values of user
payment can be determined in polynomial time, we design a
channel allocation and payment calculation mechanism, called
CATE, which is another revised version of DCA and has an

approximation factor of (1 − 1/e). We prove that CATE is
truthful in expectation, which means that each buyer always
maximizes its expected profit by revealing its true valuation.
To the best of our knowledge, we are the first to design truthful
spectrum auction mechanisms with performance guarantee
with both spatial and temporal spectrum reuse.

The rest of the paper is organized as follows. We first
present the spectrum auction model and the problem formula-
tion in Section 2. Then, we develop an integer programming
formulation for optimal channel allocation in this section. Our
generic spectrum auction framework is discussed in the last
of this section. In Sections 3-5, we propose three spectrum
auction mechanisms: DCA, MDCA, and CATE, respectively.
To make our model more general, we also give a further
discussion on how to relax some assumptions in Section 6.
These spectrum auction mechanisms are evaluated through
simulations in Section 7. We discuss the related literature in
Section 8, and conclude the paper in Section 9.

2 PRELIMINARIES

2.1 Spectrum Auction Model
Auctions in our model are executed periodically. In each
round, the spectrum owner (a.k.a seller) subleases the access
right of m channels in certain fixed areas during time interval
[0, T ]1, and n buyers request the usage of channels in fixed
time intervals and geographical locations/areas. Our goal is
to allocate these buyer requests in the channels, such that
either social efficiency or revenue is maximized. We do not
consider the problem of individual wireless users equipped
with cognitive radio to dynamically acquire unused spectrum
on the fly. The users in our model are more likely to be
organizations or companies who need spectrum to support
certain communication functions among their clients for a
certain period of time. The spectrum allocation is performed
offline beforehand.

Assume each channel provided by the seller has a set of
conflict-free license areas and the seller only sells the right
of accessing his under-used channels in the license areas.
The license areas of different channels may be different,
partially overlapped, or identical. We use S to denote the set
of channels, and define each channel sj ∈ S as sj = (Rj , Aj),
where Aj is the set of license areas of channel sj , and Rj is
the interference radius of a transmission when a user transmits
in channel sj . For example, the license area set of channel s4
in Fig. 1 is A4 = {Area 3, Area 4, Area 5}.

Let B be the set of buyers, in which each buyer i ∈ B has
a request. We define buyer i = (vi, ri), where vi is buyer i’s
true valuation which is not revealed to the seller, and ri is
the request of i. The auction mechanism we studied in this
work is a sealed-bid offline auction. Each buyer only knows
its own bid, and has no idea of others’ bids. Moreover, each
buyer can only submit its bid and request once in each round
of auction. Since spectrum auction is actually a game between
the seller and buyers, each buyer can also change its strategy in

1. Note that our results apply to a more general model where, for each
channel, the seller only subleases the access right for some time intervals in
[0, T ].
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Fig. 1: The license areas of channels

the following auctions according to the history auction results.
Let R be the set of requests of buyers. To make our auction
model more general, we consider two buyer request models.
The first one is the Point model, in which each buyer requests
for the usage of channel in a particular geographical location
and during a fixed time interval. The second one is the Area
model, in which each buyer requests for the usage of channel in
a particular geographical area and during a fixed time interval.
We assume that if a request is admitted, it can only be served
by a unique channel. Buyers will not use one channel for
certain time duration and then switch to another channel later
for the same request. Moreover, the requested area of a buyer
should be fully covered by the license areas of the allocated
channel. For example, if a requested area is Area 2 or a portion
of Area 2 in Fig. 1, this request can only be allocated in
channel s2 or s3. 2 Then, each request ri ∈ R can be defined
as ri = (Li, bi, ai, ti, di), where Li is buyer i’s geographical
location in the Point model or the area where buyer i wants to
access the channel in the Area model, bi is the buyer’s bidding
price, and finally ai, di, and ti denote the beginning time, the
ending time, and the duration of channel usage, respectively.
In this paper, we only consider the case of di − ai = ti,
which means that the request from the buyer is a fixed time
interval. We leave the case of di − ai > ti as future work.
The beginning time and the ending time of the requests from
different buyers can be different. The time lengths of different
requests can also be different, either. Notice that in an auction,
the value bi provided by a buyer may be different from its true
valuation vi. When the dominating strategy for each user i is
to bid bi = vi, we say the mechanism is truthful.

We say that two requests ri and rk conflict with each other if
they satisfy the following constrains: (1) the distance between
Li and Lk is smaller than twice of the interference radius in
the Point model, or Li

∩
Lk ̸= ∅ in the Area model; and (2)

the required time intervals from ri and rk overlap with each
other. We denote the conflict relationship among the requests
by a conflict graph G = (V, E), where a vertex in V represents
a request in R, and there is an edge (ri, rk) ∈ E if requests ri
and rk conflict with each other. Note that, for the same requests
ri and rk, different interference radius in each channels will
lead to a different conflict relationship. We use a matrix Y =
(yi,k,j)n×n×m to represent the conflict relationship in graph
G, where yi,k,j = 1 if requests ri and rk conflict with each

2. We will give a further discussion on how to relax these assumptions in
Section 6.

other in channel j, or yi,k,j = 0 otherwise. Since the spectrum
is a local resource, we need a location matrix C = (ci,j)n×m

to represent whether Li is in the license area of channel sj ,
where ci,j = 1 if Li is in the license regions of channel sj ,
or ci,j = 0 otherwise. Therefore, two requests ri and rk can
share channel sj only if yi,k,j = 0, and ci,j = 1, ck,j = 1.

2.2 Problem Formulation

The objective of our work is to design a truthful (or strategy-
proof) auction mechanism where the buyers send their con-
cealed requests to the seller, who will then determine which
requests are allocated in which channels as well as the
payment from each buyer, such that the social efficiency or
revenue is maximized. A mechanism is composed of two
methods: allocation method and payment computation method.
In a spectrum auction mechanism, the allocation method will
determine which buyer will get which spectrum for what time
intervals. The payment computation method will determine
how much each buyer will pay for the allocated spectrum
based on the bidding values from all buyers. A mechanism
is said to be truthful or strategyproof if a buyer bidding its
truth bid will maximize its profit (i.e., the true valuation vi
minus its payment pi) regardless of the bid of other buyers. If
we can find the allocation that maximizes the social efficiency,
the payment by each buyer can be directly computed by the
celebrated VCG mechanism. When considering different bids
from other buyers, a buyer’s profit under his/her own bid
will be a random variable depending on other buyer’s bid
distribution. A mechanism is said to be truthful in expectation
if for every buyer, bidding his/her true value will maximize
the expected profit when considering the bid distributions of
other buyers.

The payment from a buyer must be equal to or lower than
the buyer’s bidding price bi, and it is determined in a way
(explained shortly) that ensures a truthful auction. Since an
auction mechanism is truthful if its channel allocation algo-
rithm is bid-monotone and the seller always charges a payment
of the critical value from each buyer, we divide the problem of
designing the truthful spectrum auction mechanism into two
parts: the bid-monotone channel allocation problem and the
critical payment calculation problem, which are defined as
follows.

Bid-monotone Channel Allocation Problem: Given a re-
quest set R and a channel set S, the bid-monotone channel
allocation problem is to determine which requests are allo-
cated in which channels, so that the social efficiency or the
revenue of seller is maximized, and that the channel allocation
mechanism has the bid-monotone property. We say a channel
allocation mechanism is bid-monotone, if and only if, when
each winner i wins by bidding bi, it will always win by bidding
b′i > bi.

Critical Payment Calculation Problem: Given the bid of all
other buyers, the critical value of buyer i is such a bid value:
when i bids no less than this value, it always win; otherwise, it
will lose. To ensure the truthfulness of the auction mechanism,
the critical payment calculation problem is to find the critical
values for winners, given the bid of all other buyers.
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Below we define our optimization objective.
Social Efficiency Maximization: The social efficiency for

an auction M is defined as
∑

ri∈R bixi, where xi = 1 if buyer
i wins in M; otherwise, xi = 0. Then, the social efficiency
maximization problem is to find a mechanism M which can
maximize the social efficiency.

Revenue Maximization: The revenue of an auction is the
total payment from the buyers. An auction that maximizes
the revenue for the seller is known as an optimal auction
in economic theory. Myerson introduces the notion of virtual
valuation ϕi(bi) as

ϕi(bi) = bi −
1− Fi(bi)

fi(bi)
, (1)

where Fi is the probability distribution function for the true
valuation of the spectrum resource requested by buyer i, and
fi(bi) =

dFi(bi)
dbi

is the corresponding probability density func-
tion [22]. As in [17], we assume that the exact valuation of the
requested resource at the present time is private information to
the buyer, but its distribution Fi is known to the seller based on
the records of history transactions.3 According to the theory of
optimal auction [22], maximizing the revenue is equivalent to
finding the optimal solution that maximizes

∑
ri∈R ϕi(bi)xi,

where xi = 1 if buyer i wins in the auction; otherwise xi = 0.

2.3 Optimal Channel Allocation
For channel allocation, we need to match requests and chan-
nels optimally under their constraints. For each request ri, it
can only be allocated in the time slice between ai and di.
For each channel sj , it can only allocate time slices to the
requests which are entirely in its license area. Moreover, we
can only allocate channels to requests that are conflict-free of
each other. In order to simplify the matching between requests
and channels, we segment the available time of each channel
into many time slices. Recall that the available time of each
channel is [0,T] in each auction period. We use the arrival
time ai and deadline di of each request ri to partition the
time interval [0,T]. As shown in Fig. 2, the arrival times and
deadlines of requests r1, r2 and r3 divide the time interval
[0,T] into 7 time slices. Suppose there are n requests, it is
easy to see that the time interval [0,T] will be divided into
no more than 2n+ 1 time slices. Next, we will formulate the
channel allocation problem.

First, the time slices of channel sj can only be allocated to
the requests within the license area of the channel. Let xl

i,j be
an indicator variable for whether the l-th time slice of channel
sj is allocated to request ri. We have the constraint xl

i,j ≤ ci,j .
Second, each time slice can only be allocated to requests

that are conflict-free of each other. Thus, we have another
constraint

∑
k ̸=i x

l
k,jyi,k,j + xl

i,j ≤ 1.
Third, let tlj be the length of l-th time slice in channel sj .

With a little abuse of notation, we use ai to denote the first
time slice that ri wants to use, and di the last time slice that ri
wants to use. If we allocate request ri in channel sj , the time
assigned to request ri from channel sj should be equal to the

3. With a truthful auction mechanism, to the best interest of each buyer
i, the bidding price bi is expected to be the true valuation of the spectrum
resource at the time of the request.
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Fig. 2: An instance of the time interval segmentation

required time of request ri. Hence, we have
∑di

l=ai
xl
i,jt

l
j =

tixi,j .
From the analysis above, the allocation problem can be

formulated as an integer programming IP(1) below.
max

∑
sj∈S

∑
ri∈R′

ϕi(bi)xi,j ,

subject to

∑
sj∈S xi,j ≤ 1, ∀ri ∈ R′

xl
i,j ≤ ci,j ,∀sj ∈ S, ∀ri ∈ R′, ∀l∑
k ̸=i x

l
k,jyi,k,j + xl

i,j ≤ 1, ∀sj ∈ S, ∀ri ∈ R′, ∀l
di∑

l=ai

xl
i,jt

l
j = tixi,j , ∀sj ∈ S, ∀ri ∈ R′

xi,j ∈ {0, 1}, ∀sj ∈ S,∀ri ∈ R′

xl
i,j ∈ {0, 1}, ∀sj ∈ S,∀ri ∈ R′,∀l

where xi,j indicates whether channel sj is allocated to request
ri, yi,k,j indicates whether request ri conflicts with request rk
in channel sj , and

∑
sj∈S

∑
ri∈R′ ϕi(bi)xi,j is called the total

valuation, which is to be maximized.
If we obtain the optimal solution of the integer programming

IP(1), we can design a truthful auction mechanism by applying
the well-known Vickrey-Clarke-Groves (VCG) mechanism.
Unfortunately, the optimal channel allocation problem is NP-
hard. Thus, VCG mechanism can be used only if the optimal
allocation can be computed using non-polynomial time method
for the problem with small input size. Otherwise, we cannot
apply the VCG mechanism to compute the payment in a
truthful mechanism based on an approximation allocation
method. In order to tackle the NP-hardness, we need to design
approximation allocation method, implying that the celebrated
VCG mechanisms cannot be applied here. In the following
sections, we will employ the LP relaxation method to design
a series of polynomial-time channel allocation mechanisms
with an approximation factor of 1− 1/e.

Theorem 1: The optimal channel allocation problem is NP-
hard.

Proof: Consider a simple case where there is only one
channel. Given a conflict graph G, we need to allocate requests
in this channel. This simple case of channel allocation is
equivalent to finding maximum weighted independent sets,
which is an NP-hard problem.

2.4 A Truthful Spectrum Auction Framework
In this subsection, we propose a general truthful spectrum auc-
tion framework with the goal of maximizing social efficiency
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or revenue, as shown in Algorithm 1. In our framework, we
can flexibly choose different optimization targets according to
the practical requirements of auction problems. The details are
described below.

At the beginning of every auction period, we choose an
optimization target. If we choose the social efficiency maxi-
mization as our target, we let the virtual valuation ϕi(bi) = bi.
Then, we use the set Φ = (ϕi(bi))ri∈R′ as input to the channel
allocation and payment calculation mechanism A. A returns an
optimal channel allocation X = (xi)ri∈R′ , which maximizes∑

ri∈R ϕi(bi)xi, where xi = 1 means that buyer i wins the
auction, and xi = 0 means it loses. Meanwhile, A also returns
a corresponding payment vector P̃=(p̃i)ri∈R′ , and we charge
each buyer pi = p̃i.

Algorithm 1 Spectrum Auction Framework
Input: the set of channels S, the set of requests R, and the

monotone allocation and payment mechanism A;
Output: the channel allocation vector X, and the payment

vector P;
1: R′ = R;
2: for each ri ∈ R do
3: pi = 0;
4: if optimization target is to maximize social efficiency

then
5: ϕi(bi) = bi;
6: else
7: ϕi(bi) = bi − 1−Fi(bi)

fi(bi)
;

8: if ϕi(bi) < ηϕti then
9: R′ = R′/ri;

10: Run A using the set of virtual valuations {ϕi(bi)}ri∈R′ ;
11: Let X = (xi)ri∈R′ be the channel allocation and P̃ =

(p̃i)ri∈R′ be the corresponding payment returned by A;
12: for each xi = 1 do
13: if target is to maximize social efficiency then
14: pi = p̃i;
15: else
16: pi = ϕ−1

i (p̃i);
17: return (X,P);

If we choose to maximize the revenue of the seller, we
convert the bid of each buyer into its corresponding virtual
valuation by setting ϕi(bi) = bi − 1−Fi(bi)

fi(bi)
. Then, we can

use the same allocation mechanism A as in the case of social
efficiency to maximize

∑
ri∈R ϕi(bi)xi. To ensure the worst

case profit, the seller may set a virtual reservation price ηϕ,
which is the minimum price for spectrum usage per unit time.
We remove the requests ri whose virtual valuations are smaller
than ηϕti, and use the remaining requests as input of A,
which returns an allocation vector X and the corresponding
payment vector P̃. Different from the previous optimization
target, the payment vector P̃ we obtain in this case contains
virtual payments of the buyers. Therefore, we need to convert
the virtual payments back into the actual payments through
pi = ϕ−1

i (p̃i).
As we have discussed previously, if mechanism A is a

monotonic allocation and it always charges each winning

buyer its critical value, the proposed auction framework is
truthful. To this end, we give our solution on designing the bid-
monotone channel allocation mechanisms and calculating the
critical value for each winner in the following three sections.

3 (1-1/e)-APPROXIMATION CHANNEL ALLO-
CATION METHODS
The LP relaxation technique can often be used to design
a good approximation algorithm for NP-hard problems. In
this section, we present a randomized method for channel
allocation problem by using LP relaxation technique. We relax
IP(1) to linear programming LP(2) by replacing xi,j ∈ {0, 1}
with 0 ≤ xi,j ≤ 1, and by replacing xl

i,j ∈ {0, 1} with
0 ≤ xl

i,j ≤ 1. Then, xi =
∑

sj∈S xi,j . The allocation problem
is reformulated as the following relaxed LP problem:

max
∑

sj∈S

∑
ri∈R′

ϕi(bi)xi,j

subject to

∑
sj∈S xi,j ≤ 1, ∀ri ∈ R′

xl
i,j ≤ ci,j ,∀sj ∈ S, ∀ri ∈ R′, ∀l∑
k ̸=i x

l
k,jyi,k,j + xl

i,j ≤ 1, ∀sj ∈ S, ∀ri ∈ R′, ∀l
di∑

l=ai

xl
i,jt

l
j = tixi,j , ∀sj ∈ S, ∀ri ∈ R′

xl
i,j = xl′

i,j , ∀ri ∈ R′, ∀l, l′ ∈ [ai, di]

0 ≤ xi,j ≤ 1, ∀sj ∈ S,∀ri ∈ R′

0 ≤ xl
i,j ≤ 1, ∀sj ∈ S,∀ri ∈ R′,∀l

Recall that the number of time slices is no more than
2n + 1 for each channel, so LP(2) has a polynomial number
of variables and constraints, and can be solved optimally
in polynomial time. Clearly, the solution of this relaxed LP
formulation is often not feasible. Then we need to convert the
solution of LP(2) to a feasible solution for IP(1), the channel
allocation problem.

3.1 Randomized Rounding
Let OLP2 be the optimal solution of LP(2). We apply the
standard randomized rounding to obtain a feasible integer
solution fIP1 to IP(1). The rounding procedure is presented
as follows:

• Randomly choose a channel sj , for any request with
xi,j > 0, choose ri for channel sj with probability xi,j ,
and if chosen, set xi,j = 1;

• If xi,j = 1, set xk,j = 0 for all requests rk with yi,k,j =
1;

• If xi,j = 1, set xi,k = 0 for all channels with k ̸= j.
• Repeat steps 1 to 3 until all requests have been processed.
Through the randomized rounding procedure above, the

optimal solution of LP(2) is converted into a feasible solution
of IP(1). Let wOLP2 be the total valuation of OLP2, and let
E(wfIP1

) be the expected total valuation of fIP1. We show
by Theorem 2 that E(wfIP1) ≥ (1− 1/e)wOLP2 .

Theorem 2: The expected total valuation of the rounded
solution is at least (1 − 1/e) times the total valuation of the
optimal solution to LP(2).
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Proof: For each request ri, let H = {sj ∈ S|xi,j > 0}
be the set of channels sj ∈ S with xi,j > 0, and let h =
|H|. Clearly, 0 ≤ h ≤ m. The probability that request ri is

not allocated in any channel by fIP1 is
h∏

j=1

(1− xi,j). Let qi

denote the probability that request ri is allocated in one of the

h channels by fIP1. Then, we have qi = 1 −
h∏

j=1

(1− xi,j).

It’s obvious that E(wfIP1
) = wOLP2

when h = 0 or 1. Thus,
we only consider the case h ≥ 2 in the following. In this
case, qi is minimized when xi,j = xi/h. Hence, we have
qi ≥ 1− (1− xi/h)

h, and

qi
xi

≥ 1

xi
(1− (1− (xi/h)

h). (2)

The right side of the inequality is a monotonically decreas-
ing function of xi, with 0 ≤ xi ≤ 1. Thus, it is minimized
when xi = 1, and we have

qi
xi

≥ (1− (1− 1/h)h)

≥ 1− 1

e
+

1

32h2

≥ 1− 1/e.

(3)

For each request ri with qi > 0, its contribution to the
expected total valuation of the rounded solution is qiϕi(bi),
and its contribution to the total valuation of the optimal
solution of LP(2) is xiϕi(bi). Hence we have qiϕi(bi)

xiϕi(bi)
≥ 1− 1

e .
Since this inequality holds for any request ri ∈ R′, and
E(wfIP1

) =
∑

ri∈R′ qiϕi(bi), wOLP2
=

∑
ri∈R′ xiϕi(bi), we

must have E(wfIP1
) ≥ (1− 1/e)wOLP2

.
We have shown that the expected total valuation of feasible

solution fIP1 to IP(1) obtained by our randomized rounding
is at least (1 − 1/e) times the total valuation of the optimal
solution to LP(2). Obviously, the total valuation of the optimal
solution to LP(2), which is denoted by wOLP2

, is no less
than that of the optimal solution to IP(1), which is denoted
by wOIP1

. Therefore, we have the following theorem.
Theorem 3: The expected total valuation of the rounded

solution is at least (1 − 1/e) times the total valuation of the
optimal solution to IP(1).

The random rounding procedure just ensures that the ex-
pected total valuation of fIP1 is at least (1 − 1/e) times of
the total valuation of OLP2. Consider a simple case, in which
there are only one channel and two requests. We use r1 and r2
to denote the two requests. Suppose t1 ≫ t2 and b1 ≫ b2, the
per-unit bid of r1 is smaller than that of r2, and the requested
time slots of r1 and r2 overlap with each other. In this case,
x2 may not equal to zero in the optimal solution of LP (2).
Thus, our random rounding procedure may allocate r2 in the
channel. Since the bid of r2 can be arbitrarily close to zero, the
feasible solution produced by the random rounding procedure
might be arbitrarily bad.

3.2 Derandomized Rounding
To achieve a performance guarantee in the worst case, we need
to find a feasible solution of IP(1) whose total valuation is
always no less than (1−1/e) times of wOLP2 . In the following,

we show that this can be achieved through a derandomized
rounding procedure.

Algorithm 2 DCA: Derandomized Channel Allocation
Input: the set of channels S, and the set R′ (which are sorted

in an ascending order of ai);
Output: the channel allocation vector X∗;

1: Solve LP(2) optimally;
2: for i = 1 to n do
3: if xi > 0 then
4: for j = 1 to m do
5: if E(wfIP1

) ≤ E(wfIP1
|ri → sj) then

6: set xi,j = 1, xi = 1;
7: set all xi,k = 0 and xl

i,k = 0 if k ̸= j;
8: set all xk,j = 0 and xl

k,j = 0 if k ̸= i and
yi,k,j = 1;

9: modify fIP1 by assigning ri in sj and update
X∗;

10: Break
11: if xi ̸= 1 then
12: xi = 0;
13: modify fIP1 by rejecting ri and update X∗;
14: return X∗;

Let E(wfIP1
|ri → sj) be the expected total valuation when

request ri is allocated in channel sj , and E(wfIP1
|̃i) be the

expected total valuation when request ri is not allocated in
any channel.
E(wfIP1) =

∑
rj∈S

E(wfIP1 |ri → sj)qi,j +E(wfIP1 |̃i)qĩ, (4)

where qi,j denotes the probability that request ri is allocated
in channel sj , and qĩ denotes the probability that ri is not allo-
cated in any channel. Hence, there must exist at least one con-
ditional expectation in E(wfIP1

|ri → s1), · · · , E(wfIP1
|ri →

sm), E(wfIP1 |̃i), which is larger than or equal to E(wfIP1).
Next, we show how to compute E(wfIP1) and

E(wfIP1
|ri → sj), ∀sj ∈ S. First, we know that

E(wfIP1
) =

∑
ri∈R′

ϕi(bi)qi, (5)
where qi is the probability that request ri is allocated in one
of the channels, and it can be computed by

qi = 1−
∏
sj∈S

(1− xi,j). (6)

Next, let qri→sj ,k be the probability that request rk is
allocated in a channel when request ri is allocated in sj . It
can be calculated by

qri→sj ,k =

{
1−

∏
o̸=j (1− xk,o), if yi,k,j = 1;

qk, otherwise.
(7)

Hence, we can compute E(wfIP1 |ri → sj) as follows:

E(wfIP1 |ri → sj) = ϕi(bi) +
∑

k ̸=i
ϕk(bk)qri→sj ,k. (8)

We now describe the derandomized channel allocation
procedure. We sort all requests by their arrival times ai in
ascending order to decide which request should be allocated
in which channel. Let xi =

∑
j∈S xi,j . For any request with

xi = 0, we reject the request. Without loss of generality, let
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ri be the first request with xi > 0 in the order. We examine
E(wfIP1 |ri → sj) for all sj ∈ S to see if any of them satisfies
E(wfIP1

|ri → sj) ≥ E(wfIP1
).

• If we find one, we allocate request ri in channel sj , and
perform the following operations: (1) set xi,j = 1 and
xi = 1, (2) set xi,k = 0 for all channels with k ̸= j, and
(3) set xk,j = 0 for all requests rk with yi,k,j = 1.

• If we do not find one, E(wfIP1
|̃i) ≥ E(wfIP1

) must hold,
and we reject request ri.

After request ri is processed, we have
E(wfIP1

| cond1) ≥ E(wfIP1
), (9)

where cond1 is either ri → sj or ri is rejected, depending on
which of the above two cases has been performed.

We repeat the above process on other requests one after
another to determine whether it is allocated in a channel and
if so, which channel. More specifically, after we process the
next request ri′ after ri using the same process except for
replacing fIP1 with fIP1| cond1, we will have

E(wfIP1
| cond1, cond2) ≥ E(wfIP1

| cond1), (10)
where cond2 is either ri′ → sj′ or ri′ is rejected.

Furthermore, after we process yet the next request ri′′ with
fIP1| cond1 replaced by fIP1| cond1, cond2, we will have

E(wfIP1 | cond1, cond2, cond3) ≥ E(wfIP1 | cond1, cond2),
(11)

where cond3 is either ri′′ → sj′′ or ri′′ is rejected.
We keep an invariant that the conditional expectation

E(wfIP1
|...) never deceases.After processing all the request-

s, we will have a feasible solution of IP(1), whose total
valuation is larger than or equal to E(wfIP1

), i.e., at least
(1 − 1/e)wOLP2

, according to the transitive inequalities of
(9), (10), (11), ...

The pseudo code of the above derandomized channel allo-
cation algorithm (DCA) is given in Algorithm 2. Furthermore,
we have the following theorem.

Theorem 4: DCA can be executed in polynomial time.
Proof: As mentioned above, LP(2) can be solved in

polynomial time. Then, we allocate requests in channels with
time complexity O(nm) in DCA with the optimal solution of
LP(2). This finishes the proof.

In our spectrum auction model, we assume that one request
can only be allocated in one unique channel. However, we
relax IP(1) to a linear programming LP(2) by replacing xi,j ∈
{0, 1} with 0 ≤ xi,j ≤ 1, and by replacing xl

i,j ∈ {0, 1} with
0 ≤ xl

i,j ≤ 1. In LP(2), we only restrict that the time assigned
to a request ri from all the channels should be no longer than
the required time of request ri. In other words, a request can be
served by different channels in LP(2). We prove that the total
valuation of the solution of DCA is at least (1−1/e) times of
the total valuation of the optimal solution of LP(2). Thus, DCA
can also achieve the approximation factor of (1− 1/e), even
if we release the assumption of one request being allocated in
one unique channel.

4 A TRUTHFUL SPECTRUM AUCTION MECHA-
NISM

Recall that to ensure the truthfulness of our auction mech-
anism, the allocation algorithm must be bid-monotone. This

means that if request ri wins the auction with bid bi, it always
wins with bid b′i > bi. In Algorithm 2, request ri wins in
the auction only if there exists a channel sj which satisfies
E(wfIP1

|ri → sj) ≥ E(wfIP1
). However, with the arbitrary

selection of a channel that satisfies this condition and the use
of (8), we find that it is hard to judge if E(wfIP1

|ri → sj) is
still larger than E(wfIP1

) when request ri increases its bid.
We cannot prove or disprove the bid-monotone property of
the allocation method DCA. Thus, it is unknown whether we
can design a truthful mechanism based on this method. In the
following, we revise DCA and show that the revised method
does satisfy the bid-monotone property.

The first revision is to find the channel that has the largest
conditional expectation maxsj∈SE(wfIP1 |ri → sj). If we al-
locate ri in the channel with the maximal conditional expecta-
tion as long as maxsj∈SE(wfIP1 |ri → sj) ≥ E(wfIP1 |̃i), and
do not allocate ri in any channel otherwise, we can obviously
obtain a feasible solution of IP(1), whose weight is as good
as E(wfIP1

), because either maxsj∈SE(wfIP1
|ri → sj) or

E(wfIP1 |̃i) must be larger than or equal to E(wfIP1).
The second revision is an improved definition of

E(wfIP1
|ri → sj) and E(wfIP1

|̃i) as follows:
E(wfIP1

|ri → sj) = ϕi(bi) + Ek ̸=i(wf ′
IP1

|ri → sj), (12)
where Ek ̸=i(wf ′

IP1
|ri → sj) is the expected weight of all

other requests when request ri has been allocated in channel
sj . We can compute it by allocating ri in channel sj first,
and then solve LP(2) optimally with other requests. Because
optimization is performed after allocating ri in sj , (12) pro-
duces an equal or higher expected value that (8) at the cost of
additional computation overhead for solving LP(2).

E(wfIP1
|̃i) = ER′/ri(wf ′

IP1
), (13)

where ER/ri(wf ′
IP1

) is the expected weight of all other
requests when request ri does not be allocated in any channel.
We can compute it by solving LP (2) optimally with requests
except ri.

We give the revised version of Algorithm DCA as follows.
In MDCA, we first sort all of the requests by their arrival

times in ascending order, and then scan all requests one by one
to decide which request can be allocated in channels. When
request ri is considered, we compute E(wfIP1

|ri → sj) for
all channels sj ∈ S that no request conflicting with it has been
allocated in. We allocate ri in channel sk when E(wfIP1

|ri →
sk) = maxsj∈SE(wfIP1

|ri → sj) ≥ E(wfIP1
|̃i), and reject

it otherwise; note that in order to simplify notations we do
not include the conditions for channel allocation of requests
prior to ri. After the last request was considered in MDCA,
we get a feasible solution of IP(1), whose weight is as good
as E(wfIP1

).
Theorem 5: MDCA (see Algorithm 3) is bid monotone.

Proof: Suppose request ri wins the auction with the
bid bi, and it is allocated with the channel sj . To prove by
contradiction, we assume that ri cannot be allocated in any
channel with the bid b′i > bi. There are two possible cases.

Case 1: maxsj∈SE(wfIP1 |ri → sj) < E(wfIP1 |̃i) when ri
bids some value b′i that is greater than bi. However, when ri
increases its bid, clearly Ek ̸=i(wf ′

IP1
|ri → sj) and E(wfIP1 |̃i)
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Algorithm 3 MDCA: Monotone Derandomized Channel Al-
location Based on Linear Programming
Input: the set of channels S, and the set R′ (which are sorted

in an ascending order of ai);
Output: the channel assignment X∗ ;

1: Solve LP(2) optimally;
2: for i = 1 to n do
3: for j = 1 to m do
4: if xi,j > 0 then
5: E(wfIP1

|ri → sk) = maxsj∈SE(wfIP1
|ri → sj)

6: if E(wfIP1 |ri → sk) ≥ E(wfIP1 |̃i) then
7: set xi,j = 1, xi = 1;
8: set all xi,k = 0 and xl

i,k = 0 if k ̸= j;
9: set all xk,j = 0 and xl

k,j = 0 if k ̸= i and
yi,k,j = 1;

10: Break
11: if xi ̸= 1 then
12: xi = 0;
13: return X∗;

keep invariant, and E(wfIP1
|ri → sj) ≥ E(wfIP1

|̃i) always
holds in this case. Thus, our hypothesis does not hold in this
case.

Case 2: When ri is considered with bid b′i > bi, the channel
sj has been occupied by a previously processed request rl,
which conflicts with ri. Obviously, rl is not allocated in sj
when ri bids bi. That means E(wfIP1

|rl → sj) < E(wfIP1
|l̃)

or the channel sj has been occupied by other requests which
conflict with rl but conflict-free with ri when rl was consid-
ered. In the first subcase, the contribution of ri in E(wfIP1

|l̃)
is larger than the contribution in E(wfIP1

|rl → sj). Then, the
increment of E(wfIP1 |l̃) is lager than that of E(wfIP1 |rl →
sj) when ri increases its bid from bi to b′i. Thus, rl cannot
be allocated in sj when ri bids b′i > bi. Assume that
rk which conflicts with rl is allocated in sj when ri bids
b′i in the second subcase. However, the contribution of ri
in E(wfIP1

|rk → sj) is no less than the contribution in
E(wfIP1 |k̃). Thus, the increment of E(wfIP1 |rk → sj) is
lager than that of E(wfIP1

|k̃) when ri increases its bid from
bi to b′i. rk will also be allocated in sj when ri bids b′i > bi. In
conclusion, rl cannot be allocated in sj when ri bids b′i > bi.

Based on the analysis above, if ri wins the auction with a
bid bi, it always wins with the bid b′i > bi.

Theorem 6: MDCA can be executed in polynomial time.
Proof: We have shown that LP(2) can be solved in

polynomial time. For each request with xi ≥ 0 in the optimal
solution of LP(2), we solve LP(2) no more than m times to
check if request ri can be allocated in a channel. Hence, the
time complexity of MDCA is O(nm) multiplied by the time
complexity of solving LP(2). This completes the proof.

Theorem 7: We can build a truthful spectrum auction mech-
anism based on MDCA.

Proof: We have proved that MDCA is bid-monotone and
it can be executed within a polynomial time. To build a truthful
auction mechanism, we need to charge each winner its critical
value. Fortunately, we can find the critical value for each

winner by using a binary search method. Thus, we can build
a truthful spectrum auction mechanism based on MDCA.

We have shown that buyers will truthfully report their
valuations in MDCA. Now, we prove that buyers cannot
benefit from misreporting their requested time slots and areas
either.

Theorem 8: Buyers will report their requested time slots
and areas truthfully in MDCA.

Proof: As the buyers will not report a smaller requested
area or less time slots than what they need, we only need
to consider the case that each buyer may request a larger
area or more time slots than those he needs. Actually, when a
request ri submits a larger area or more time slots, E(wfIP1

|̃i)
will keep unchanged and maxsj∈SE(wfIP1 |ri → sj) will
decrease. Thus, ri will still lose by misreporting if he loses by
bidding truthfully. Note that the payment of each winner is his
critical value. When ri submits a larger area or more time slots,
there will be some additional requests which overlap with ri.
As a result, the critical value of ri will increase. Thus, ri
cannot benefit from misreporting his need. Since each buyer
is rational and selfish, he will submit his request truthfully.
This completes the proof.

However, binary search can be slow, depending on the ratio
of the max bid among requests to the step size of bids. To
address this issue, we further design another channel allocation
mechanism that is efficient in determining critical values and
truthful in expectation.

5 A TRUTHFUL IN EXPECTATION SPECTRUM
AUCTION MECHANISM

Although we fail to prove the truthfulness of DCA, we can
revise DCA to derive a truthful spectrum auction mechanism
in expectation, called CATE. It is more efficient than MDCA,
and it also has an approximation factor of 1− 1/e.

The basic idea is depicted as follows. With the optimal
solution of LP(2), X = (xi)n, we first employ the technique
proposed by Lavi and Swamy [18] to obtain a set of feasible
solutions of IP(1), L, by allocating requests with xi ≥ 0 in
channels. The size of L can be made polynomial; see the
proof of Theorem 13. Each feasible solution f ∈ L has a
probability q(f) of being chosen as the final solution. We will
explain how to compute q(f) shortly. Let Xf = {xf

i }ri∈R
denote the channel allocation vector of a feasible solution
f ∈ L. Let xf

i = 1 denote that request ri wins in solution
f , and xf

i = 0 denote that ri loses. The overall proba-
bility for request ri to win in the final chosen solution is∑

f∈L xf
i q(f). Let

∑
f∈L xf

i q(f) =
xi

α . We want to establish
α = e

e−1 , so that the expected total valuation of CATE will
be

∑
ri∈R′

xi

α ϕi(bi) = (1 − 1/e)
∑

ri∈R′ xiϕi(bi), which is
(1− 1/e) of the optimal.

For each winner, the payment can be calculated as follows:

pi =
1

xi
(
∑

j ̸=i
ϕj(bj)x

′
j −

∑
j ̸=i

ϕj(bj)xj), (14)

where the vector X′ = (x′
j)n is obtained by computing LP(2)

with bi = 0. We show that this allocation and payment mech-
anism results in an auction, which is truthful in expectation.
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Theorem 9: CATE is truthful in expectation.
Proof: Let ui(bi) be the profit of request ri when bidding

with bi, vi be the true valuation of request ri. The expected
profit of ri is

E[ui(bi)] =
xi

α
[vi −

1

xi
(
∑
j ̸=i

ϕj(bj)x
′
j −

∑
j ̸=i

ϕj(bj)xj)]

=
1

α
[vixi +

∑
j ̸=i

ϕj(bj)xj −
∑
j ̸=i

ϕj(bj)x
′
j ].

(15)
Since

∑
j ̸=i ϕ(j)x

′
j keeps unchanged when we increase or

decrease the bid of ri, E[ui(bi)] is maximized when bi = vi.
That means the expected profit of ri is maximized when ri
bids truthfully.

Theorem 10: Buyers will report their requested time slots
and areas truthfully in CATE.

Proof: When buyer i bids a larger area or more time
slots than that he needs,

∑
j ̸=i ϕ(j)x

′
j will keep unchanged

and
∑

rj∈R
ϕj(bj)xj will never increase. According to Eq.

(15), E[ui(bi)] keeps unchanged or decreases when buyer i
misreports his need. Thus, the rational and selfish buyers will
report their requested time slots and areas truthfully in CATE.

The values of q(f) can be found by solving by the following
LP(3).

min
∑

f∈L
q(f),

subject to 
∑
f∈L

xf
i q(f) =

xi

α ,∀ri ∈ R′∑
f∈L

q(f) ≥ 1

q(f) ≥ 0, ∀f ∈ L

The dual of LP(3) is LP(4):

max z +
∑

ri∈R′

xi

α
wi,

subject to z +
∑

ri∈R′
xf
i wi ≤ 1, ∀f ∈ L

z ≥ 0

We can view w in LP(4) as a valuation. If there exists an
α-approximation algorithm App that proves an integrality gap
of α with the optimal solution of LP(2), it has been shown in
[18] that a separation oracle for LP(4) can be obtained by using
Algorithm App with valuation w, so the ellipsoid method can
be used to solve LP(4) and thus LP(3). In CATE, we choose
the channel allocation algorithm DCA in the previous section
as App. Then, we have α = e

e−1 . Since the probability of any
request ri being assigned a channel is exactly xi

α , we conclude
that the expected total valuation of the solution of CATE is at
least 1− 1/e times the total valuation of the optimal solution
to IP(1). More details of CATE are shown in Algorithm 4.

Theorem 11: CATE can be executed in polynomial time.
Proof: With DCA and the optimal solution of LP(2),

we apply the ellipsoid method on LP(4) to compute a set of

Algorithm 4 CATE: Truthful in Expectation Channel Alloca-
tion and Payment Calculation Mechanism
Input: the set of channels S, the set of requests R;
Output: the channel assignment vector X, payment vector P;

1: Solve LP(2) optimally, let X∗ be the solution;
2: Use ellipsoid algorithm and DCA on LP(4) with X∗ to

compute the set of solutions {xf}f∈L;
3: Solve LP(3) to compute the probability of solutions

{q(f)}f∈L;
4: Choose a solution f in L randomly with the probability

of q(f), let f∗ be the chosen solution;
5: Let X = Xf∗

, where Xf∗
is the channel assignment

vector of solution f∗;
6: for i = 1 to n do
7: if xf∗

i = 1 then
8: Compute pi by using Equation (14);
9: else

10: pi = 0;
11: return (X, P);

feasible solutions of IP(1). Since the ellipsoid method takes
a polynomial number of steps and DCA is also executed
in polynomial time, they will return a solution set L of
a polynomial size. Obviously, LP(3) can also be solved in
polynomial time if L has a polynomial size. This completes
the proof.

6 FURTHER DISCUSSION

In the previous mentioned spectrum auction model, we assume
that each request can only be allocated in one channel and
the requested area of a buyer should be fully covered by the
license areas of the allocated channel. In this section, we give
a further discussion on how to relax these assumptions.

6.1 Requests can be allocated in different channels
We first relax the assumption that each request can only be
allocated in one channel. In fact, this relaxed model can
be seen as a special case of LP(2). Moreover, we have the
following theorem:

Theorem 12: DCA and MDCA can also achieve the ap-
proximation factor of (1 − 1/e) in the relaxed model, where
requests can be allocated in different channels.

Proof: In LP(2), we have a restriction that the time
assigned to a request ri from all channels should be no longer
than the required time of request ri. Besides this, we also
restrict that the time slots assigned to the request ri from
different channels should be different in the relaxed model.
In other words, LP(2) describes a more general case than the
relaxed model. We have proved that the total valuations of
DCA and MDCA are at least (1 − 1/e) times of the total
valuation of the optimal solution of LP(2). Thus, DCA and
MDCA can also achieve the approximation factor of (1−1/e),
even if we relax the assumption of each request only being
allocated in one channel.

Although DCA and MDCA can be directly used in the
relaxed model and provide a (1−1/e) performance guarantee,
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their performance can still be further improved by a simple
modification. The details are shown in Algorithm 5. We first
use MDCA to allocate requests in channels, and then we sort
the losers of MDCA in the descending order of their bids.
After that, we scan all of the sorted requests one by one to
check whether each of them can be allocated in channels or
not. When request ri is considered, we fist compute the total
remaining time of all the channels, and then check whether
there exists enough time to be allocated to ri. If ri can be
allocated to channels, we scan all the channels to find the
time slots which can serve ri; otherwise, we will drop ri.

Algorithm 5 EMDCA: The extended version of MDCA
Input: the set of channels S, the set of requests R;
Output: the channel assignment vector X;

1: Run algorithm MDCA to allocate requests in channels;
2: Sort all the losers of MDCA in the descending order of

their bids;
3: for each loser ri in the sorted list do
4: if ri can be allocated in channels then
5: Allocate ri in channels;
6: else
7: Set ri as a loser;
8: return X

Theorem 13: The EMDCA is bid-monotone.
Proof: Since we have proved that MDCA is bid-

monotone, we only need to prove that if request ri loses in
MDCA but wins in EMDCA with bid bi, it will always win
in EMDCA by bidding b′i > bi. Obviously, the sequence of
ri in the loser list of MDCA will not decrease if ri remains
a loser in MDCA with bid b′i. Moreover, the requests, which
overlap with ri and lose in MDCA when ri bids bi, will still
lose when ri bids b′i > bi. Thus, there are also enough time
slots for ri when he bids b′i > bi if he can win in EMDCA
with bid bi.

Since EMDCA is bid-monotone, we can use the binary
search to find the critical value for each winner as its payment.
Then, we get a truthful auction mechanism.

6.2 Each buyer has multiple requests
Now, we relax the assumption that the requested area of a
buyer should be fully covered by the license areas of the
allocated channel. When a buyer’s requested area overlaps with
the license areas of multiple channels, we allow this buyer to
submit multiple requests in one auction, each of which is fully
covered by the license areas of one allocated channel. There
are two possible model: The first one is that all the requests
of a wining buyer should be fully satisfied. This case is also
known as the combinatorial auction model [19], [21], and it
has been proved that

√
m is tight for combinatorial auction.

Thus, we only consider the second case that a buyer can be
satisfied by part of his requests.

Since the demand of a buyer can be partly satisfied, we
view a multi-request buyer as multiple virtual buyers. Each
virtual buyer has one request. Then, we can directly solve this
problem by using the approximation algorithms proposed in

previous sections. Moreover, we can prove that the auction
mechanisms design in the previous sections can still preserve
the truthfulness under this model.

Theorem 14: MDCA and CATE can preserve the truthful-
ness under the multi-requests model.

Proof: In the multi-requests model, the requests from
each buyer will not conflict with each other under different
non-overlapping license areas of channels. Thus, they will
compete for different channels and will not affect others’
auction results and payments. In other words, buyers cannot
misreport a portion of his requests to benefit the remaining
requests. Since the requests which belong to the same buyer
cannot improve their utilities through collusion, our auction
mechanism design in the previous sections can still preserve
the truthfulness under this model.

7 SIMULATION RESULTS

We conduct extensive simulations to evaluate the performance
of the proposed auction mechanisms. Below we first introduce
the simulation settings and performance metrics, and discuss
the algorithms under comparison. We then present the results
under various settings.

7.1 Simulation Settings and Metrics
In the simulations, we assume that there is only one seller,
who subleases the usage of 3 channels in the spectrum market.
The auction period T is 6 days. The license area of each
candidate spectrum follows the disk model, and the radius of
each license area is randomly selected from 40 to 70 units of
distance (where a unit may be a kilometer or any other chosen
measure). All the buyers are randomly distributed within a
fixed area of 100× 100 square units. Our simulations use the
point model as the buyer request model. For conciseness, we
do not include the other buyer request model, i.e., the area
model, because the two models only differ in the definition of
conflict, and they will lead to the same performance analysis
results. We also assume that all the buyers’ bid values are
uniformly, exponentially or Gaussian distributed in (0, 1], and
the time duration ti for each request ri is randomly generated
from 1 to 3 days. All simulation results are the average of 50
runs.

We adopt the widely used performance metrics, including
social efficiency ratio, revenue ratio, and spectrum utilization
ratio. The social efficiency ratio of an algorithm is the ratio
of the social efficiency of this algorithm and that of the
optimal solution. The revenue ratio is the ratio of the total
payments from winners and the optimal social efficiency,
which is actually an upper bound of the revenue. The spectrum
utilization ratio is the ratio of the combined time allocated to
all winners and the total time available by all the channels for
allocation.

7.2 Algorithms under Comparison
In the evaluation, we compare the performance of the proposed
algorithms, including DCA, MDCA, and CATE, as well as
the best that the existing auction mechanisms can achieve.
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Unlike our algorithms that take both spatial and temporal
reuse into account, the previous spectrum auction mechanisms
only consider either spatial reuse or temporal reuse separately.
(Moreover, they are generally designed for different scenarios
and settings.) Hence, we use an optimal spectrum auction
algorithm only with spatial reuse and an optimal spectrum
auction algorithm only with temporal reuse for comparison
under our simulation settings. The two algorithms are named
OPT S and OPT T, respectively.

OPT T is the optimal solution of the channel allocation
problem when the buyers can only share a single channel in
temporal domain, which is given by the following IP(5):

max
∑

sj∈S

∑
ri∈R′

ϕi(bi)xi,j ,

subject to

∑
sj∈S xi,j ≤ 1,∀ri ∈ R′

xl
i,j ≤ ci,j , ∀sj ∈ S, ∀ri ∈ R′, ∀l∑
k ̸=i x

l
k,jy

′
i,k,j + xl

i,j ≤ 1, ∀sj ∈ S,∀ri ∈ R′, ∀l
di∑

l=ai

xl
i,jt

l
j = tixi,j , ∀sj ∈ S,∀ri ∈ R′

xi,j ∈ {0, 1},∀sj ∈ S, ∀ri ∈ R′

xl
i,j ∈ {0, 1},∀sj ∈ S, ∀ri ∈ R′, ∀l

Here, y′i,k,j = 1 if requests i and k can share channel j in
temporal domain, and y′i,k,j = 0 otherwise.

Similarly, OPT S is the optimal solution of the channel
allocation problem when the buyers can only share a single
channel in spatial domain, which is given by IP(6):

max
∑

sj∈S

∑
ri∈R′

ϕi(bi)xi,j ,

subject to
∑

sj∈S xi,j ≤ 1, ∀ri ∈ R′

xl
i,j ≤ ci,j , ∀sj ∈ S,∀ri ∈ R′∑
k ̸=i xk,jy

′′

i,k,j + xi,j ≤ 1, ∀sj ∈ S, ∀ri ∈ R′

xi,j ∈ {0, 1}, ∀sj ∈ S, ∀ri ∈ R′

Here, y
′′

i,k,j = 1 if requests i and k can share channel j in
spatial domain, and y

′′

i,k,j = 0 otherwise.

7.3 Performance Analysis on Social Efficiency
We first evaluate the social efficiency performance of the pro-
posed algorithms DCA, MDCA and CATE. The interference
radius of each channel is set to be 30. For each type of
bid distribution (i.e., uniform, exponential and Gaussian), we
record the social efficiency ratio of the three algorithms, with
respect to the number of requests, shown in Figures 3-5. As
expected, the social efficiency ratios of DCA and MDCA are
better than that of CATE. This is because DCA and MDCA
always result in a solution whose value is larger than 1− 1/e
times of the optimal one, while the solution of CATE does not
have such a performance guarantee. The simulation results of
all three algorithms are much better than the theoretical bound
we have derived in the previous sections. Even the result of
CATE is larger than 70% of the optimal solution.

From Figures 3-5, we can also see that the social efficiency
ratio decreases slightly as we increase the number of requests.

When there are only a few requests, most requests can be
allocated in channels without conflict, and in this case the
three algorithms perform almost as well as the optimal auction
mechanism. However, as the number of requests increases,
the competition among the requests also increases and the
performance of DCA, MDCA and CATE decreases gradually.

Next, we compare the social efficiency performance of the
DCA algorithm with OPT S and OPT T. In this evaluation,
the uniform bid distribution is adopted, and the interference
radius is selected from 12 to 15. Fig. 6 plots the social
efficiency ratio of DCA, OPT S, and OPT T, which shows
that the performance of DCA is much better than OPT S and
OPT T. It means that not only can DCA increase the channel
utilization, but also it can improve the social efficiency. More-
over, Fig. 6 shows that the improvement of DCA over OPT S
and OPT T widens with more requests.

7.4 Performance Analysis on Revenue
Next we evaluate the revenue performance of the proposed
algorithms, including MDCA and CATE. Here, we ignore the
DCA algorithm. This is because we cannot prove that DCA
is bid monotone, and we cannot compute the critical payment
for each winner either. The revenue ratio results of MDCA
and CATE are shown in Fig. 7-9. We can see that the revenue
ratio of the seller increases along with the number of requests,
when the reservation price stays the same. That is because the
payment of each winner in our auction mechanisms is a critical
value, which becomes larger along with an increasing level of
competition among requests.

7.5 Other Performance Analysis
Finally, we study the spectrum utilization efficiencies of DCA,
OPT S and OPT T. As shown in Fig. 10, the spectrum
utilization efficiencies of the proposed algorithms are much
better than OPT S and OPT T, which allow spectrum reuse
in either spatial or temporal domain. In addition, the spectrum
utilization ratios of OPT S and OPT T become flat when
the number of requests is larger than 70. In comparison, the
spectrum utilization ratio of DCA keeps increasing along with
the number of requests. This indicates that when the request
number reaches a high level, they can still be satisfied by DCA
with the consideration of both spatial and temporal reuses at
the same time.

We also test the computation overhead of our proposed
algorithms. The hardware/software platform is a laptop with
Intel(R) Core(TM) i5 2.4GHz, 4.0GB RAM and Windows 7 64-
bit. Note that the optimal channel allocation problem in our
model is an NP hard problem. For the purpose of comparison,
we implement the optimal channel allocation scheme, denoted
by OPT; when there are 15 requests, the running time of
OPT is about 2652s. The running times of DCA, MDCA and
CATE are shown in Fig. 11. DCA only needs about 348s,
even when there are 200 requests, which is much less than
OPT. The upper bound of the running time of MDCA is
2MN times of the running time of DCA, where M is the
number of channels and N is the number of requests. However,
the actual running time of MDCA is 3132s, when there are
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Fig. 3: Social Efficiency under U-
niform Distribution
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Fig. 4: Social Efficiency under Ex-
ponential Distribution
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Fig. 5: Social Efficiency under
Gaussian Distribution
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Fig. 6: Social Efficiency Ratio
Comparison
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Fig. 7: Revenue Ratio under Uni-
form Distribution
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Fig. 8: Revenue Ratio under Expo-
nential Distribution
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Fig. 9: Revenue Ratio under Gaus-
sian Distribution
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Fig. 10: Spectrum Utilization Ratio
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Fig. 11: Run time comparison over different mechanisms

200 requests, which is much less than what the upper bound
suggests. We have claimed that CATE is more efficient than
MDCA in our theoretical analysis. This is because CATE is
proved to be a polynomial time algorithm, whereas the running
time of MDCA mainly depends on the ratio of the max bid
among requests to the step size of bids in the process of
payment calculation, which is not theoretically polynomial.
In our simulation, we set all the buyers’ bid values to be
distributed in (0,1], and set the step size of bids to be 0.000001.
As shown in Fig. 11, the simulation results corroborate our
theoretical analysis. If the ratio of the max bid among requests
to the step size of bids is large enough, CATE will perform
much better than MDCA.

8 LITERATURE REVIEWS

Auction theory, regarded as a subfield of economics and
game theory, serves as an efficient and fair way to distribute
scarce resources among competing users. In recent years,
various auction models have been successfully designed in
the communication and networking field [16], [27], [36],
[37]. For instance, Yang et al. proposed TASC [36], a double

auction scheme for the cooperative communication scenario.
A similar work for cooperative communications was proposed
to maximize each user’s profit function with the knowledge of
others’ previous bids [16].

There are also many state-of-the-art auction mechanisms
that have been extensively studied in the scope of spectrum
allocation [10], [15], [24]. They mainly cope with the dynamic
spectrum access problem from various perspectives by using
different optimization goals, such as maximizing the total
profit or minimizing the spectrum interference.

Truthfulness (or strategyproofness) is considered as one of
the most critical factors in the design of auction mechanism.
Although a large number of auction mechanisms have been
designed to achieve economical robustness (e.g. [2], [7],
[20], [25]), when these mechanisms are directly applied to
spectrum auctions, they will lose the truthful property, due
to some constraints, such as spatial and temporal reuse of
spectrum. Meanwhile, some well-known auction mechanisms
(such as VCG [5], [12], [25]) will also lose truthfulness when
applied to suboptimal algorithms. Therefore, these auction
mechanisms are not suitable for spectrum auction.

In recent years, some studies investigate the truthful auction
model with spectrum spatial reuse [9], [11], [13], [17], [28]–
[30], [38]–[41]. They do not consider the temporal demands
from buyers. Truthfulness is first introduced in [39] for spec-
trum auction, where the spatial reuse is considered. Maximiz-
ing the revenue for auctioneers are studied in [1] and [17]. A
combinatorial auction model for the heterogeneous channel
redistribution is proposed in [38], achieving both strategy-
proofness and approximately efficient social welfare. Trade-off
between fairness and maximizing social welfare is investigated
in [11] with a truthful spectrum auction model. Zhou et al.
[40] first takes the extended McAfee double auction model
into spectrum allocation to achieve the economic robustness.

On the other hand, spectrum is a local resource. It is usually
traded within its license region through a secondary market.
Thus, District mechanism [28] first takes the spectrum locality
into consideration and proposes an economically robust double
auction method. Feng et al. [9] proposes a truthful double
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auction model for heterogeneous spectrum trading with the
consideration of spectrum reusability and spectrum locality.
As another line of spectrum reuse, [6], [26], [32]–[35] study
the spectrum allocation with an online model. The temporal
reuse is adopted in these online-model studies. In addition,
Xu et al. [34] propose SALSA for online spectrum admission,
which can achieve a constant approximation compared to the
offline VCG auction in both social efficiency and revenue effi-
ciency. A truthful online double spectrum auction mechanism
TODA is presented by Wang et al. [26] to achieve economic-
robustness.

However, the combination of spectrum locality and temporal
reuse has not been considered in these previous studies. Al-
though Dong et al. [8] tackles spectrum auction by introducing
a combinatorial auction model, which achieves time-frequency
flexibility, they do not consider spatial reuse and spectrum
locality property in their work. In comparison, this paper
generalizes all of the above challenges in the auction design.

9 CONCLUSION

In this paper, we have studied the problem of spectrum auction
where channels can be reused both spatially and temporally.
We have designed a general truthful spectrum auction frame-
work which can maximize social efficiency or revenue. While
the optimal channel allocation is NP-hard under our model,
we have developed a series of near-optimal spectrum auction
mechanisms with (1− 1/e) performance guarantee.

Some interesting questions are left for future research. First,
we plan to relax the request model from fixed time intervals
studied in this paper to a more general one by allowing the
time duration ti to be smaller than the difference between
the beginning time ai and the ending time di of each request.
Second, we plan to further allow each request to have multiple
time intervals. Third, we plan to design truthful mechanisms
with good performance guarantee for online auctions, where
requests are processed as they arrive.
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