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With Selfish Agents
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Abstract— Differentiated service (DiffServ) is a mechanism to
provide the Quality of Service (QoS) with a certain performance
guarantee. In this paper, we study how to design DiffServ
multicast when every relay link is an independent selfish agent.
We assume that each linkei is associated with a (privately known)
cost coefficientci such that the cost ofei to provide a transmission
service with bandwidth demand x is ci · x. Further, we assume
that there is a fixed source nodes and a setR of receivers, each of
which requires from s data with a minimum bandwidth demand.
The DiffServ multicast problem is to compute a link-weighted
tree rooted at s and spanningR such that the receivers’ demands
are met. This generalizes the traditional link weighted Steiner
tree problem. We first show that a previous approximation
algorithm does not directly induce a strategyproof mechanism.
We then give a new polynomial time algorithm to construct a
DiffServ multicast tree whose total cost is no more than8 times
the optimal total cost when the cost coefficient of each link is
known. Based on this tree, we design a truthful mechanism for
DiffServ multicast, i.e., we give a polynomial-time computable
payment scheme to compensate all chosen relay links such that
each link maximizes its profit when it declares its cost coefficient
truthfully.

Index Terms— DiffServ, multicast, selfish agents, algorithmic
mechanism design, approximation algorithms.

I. I NTRODUCTION

The Differentiated Services framework (DiffServ) [1], [2]
has been proposed to provide multiple Quality of Service
(QoS) classes over IP networks. DiffServ is built upon a simple
model of traffic conditioning and policing at the links of the
network in addition to classifying flows into different service
classes. The traffic is forwarded using simple differentiated
treatments, called per-hop behaviors (PHBs), in the core of
the network. This differential treatment results in differential
pricing [3], which is one of the motivating factors for adopting
DiffServ by major network providers and ISPs.

Multicast has been a popular mechanism for supporting
group-based applications, such as video-conference and con-
tent distribution. Although multicast and DiffServ are com-
plementary technologies, there are still some architectural
conflicts between them. The first notable conflict is that
multicast often requires the maintenance of per-group state
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information at all routers, while DiffServ usually relies on
the statelessness of the core. The second notable conflict is
that multicast is often based onreceiver-drivenQoS, while
DiffServ is usually based onsender-drivenQoS. Edge-based
multicast (EBM) approach was proposed recently to address
these possible conflicts. In this paper, we characterize the
different QoS of the links by the amount of bandwidth they
dedicate to the multicast transmission.

In a multicast, different receivers of a multicast group
could request different bandwidth demands, which often reflect
different qualities of services the receivers will get. Each
link of the network may have a different cost of providing
multicast with different bandwidth dedication [4]. Due to
the heterogeneity in receivers’ bandwidth demands, different
links in a multicast tree will carry different amount of traffic
such that the demand requirements of downstream receivers
are satisfied. The cost of a link in a multicast tree is then
the cost needed to dedicate a certain bandwidth for down-
stream receivers; it is typically determined by the maximum
bandwidth required by downstream receivers, as well as the
cost coefficient of the link (which we will define later). The
DiffServ multicast problem is to compute atree and the
bandwidth at each link of the tree such that the receivers’
bandwidth QoS demands are met. Note that the traditional
Steiner tree problem for link weighted graph [5], [6], an NP-
hard problem, is a special case of the problem of computing
a DiffServ multicast tree with the minimum cost.

What introduces an additional degree of complexity to Diff-
Serv multicast is that the relay links may benon-cooperative1,
instead of cooperative as assumed by previous protocols.
This means that the relay links will aim to maximize their
own benefits instead of the whole network’s performance. We
assume that a link will provide the service to receivers only if
it receives a payment large enough to compensate its relay
cost. To do so, each link is first asked to report its relay
cost and then a payment to this link is calculated based on
a certain payment scheme. It is often not in the best interests
of these relay links to report their costs truthfully when
they are paid whatever they ask for. Thus, instead of paying
the links theirdeclared costs, we should design a payment
scheme that can ensure that all links reveal their true costs for
their own interests, a property known asstrategyproofness.
The strategyproof mechanism for traditional multicast has
been previously addressed in [7], [8]. However, unlike the
traditional multicast in which every link has afixed cost in
the multicast transmission, each link may incur different costs

1It could happen when they are individually owned.
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for different bandwidth demands in DiffServ multicast.
In summary, in this paper, we study two different aspects of

the DiffServ multicast: the construction of the multicast tree
that has low cost, and a strategyproof payment scheme. The
main contributions of the paper are as follows. First of all, we
show that a previous approximation algorithm does not directly
induce a strategyproof mechanism. We give an alternative
polynomial time algorithm to construct a DiffServ multicast
tree whose total cost is no more than8 times the optimal
total cost when the cost coefficient of each link is known. We
then characterize the necessary and sufficient conditions for
the multicast tree construction algorithms based on which we
can design a strategyproof payment scheme. Finally, we design
a truthful algorithmic mechanism for DiffServ multicast,i.e.,
we give a polynomial-time computable payment scheme to
compensate all chosen relay links (by our multicast tree
construction method) such that each link maximizes its profit
when it declares its cost coefficient truthfully.

The rest of the paper is organized as follows. In Section II,
we specify the network model, define the problem, and review
the necessary technical preliminaries. We also briefly review
some approximation algorithms to construct multicast trees.
We study how to pay the links in Section IV after presenting
our approximation algorithm for constructing the multicast tree
in Section III. We conclude our paper by pointing out some
possible future work in Section V.

II. PRELIMINARIES AND PREVIOUS WORKS

A. Algorithmic Mechanism Design

In a standard model of algorithmic mechanism design, there
are n agents{1, 2, · · · , n}. Each agenti ∈ {1, · · · , n} has
someprivate information ti, called itstype, (e.g., the cost to
forward a packet for a node/link in a network environment).
The types of all agents define aprofile t = (t1, t2, · · · , tn).
Each agenti declares a valid typeτi, which may be different
from its actual typeti, and the strategies of all agents define
a declared type vectorτ = (τ1, · · · , τn). A mechanismM =
(O,P) is composed of two parts: an output functionO that
maps a declared type vectorτ to an outputo and apayment
functionP that decides the monetary paymentPi(τ) for every
agent i. Each agenti has a valuation functionwi(o) that
expressed its preference over different outcomes. Agenti’s
utility (also calledprofit) is ui(O(τ)) = wi(O(τ)) + Pi(τ),
given the declared vector typeτ . An agent i is said to be
rational if it always chooses its strategyτi that maximizes its
utility ui.

Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the strategies
of all other agents excepti, and let τ |iti = (τ1, τ2, · · · ,
τi−1, ti, τi+1, · · · , τn). A mechanism isstrategyproof if for
every agenti, revealing its true typeti will maximize its
utility regardlessof what other agents do. In this paper, we
are only interested in mechanismsM = (O,P) that satisfy
the following three conditions:

1) Incentive Compatibility (IC) : ∀ agenti, ∀τ ,
wi(O(τ |iti)) + Pi(τ |iti) ≥ wi(O(τ)) + Pi(τ).

2) Individual Rationality (IR) (a.k.a., Voluntary Participa-
tion): Each agent must have a non-negative utility,i.e.,
wi(O(τ |iti)) + Pi(τ |iti) ≥ 0.

3) Polynomial Time Computability (PC): O and P are
computed in polynomial time.

Notice that in a strategyproof mechanism, there is no
budget-balance: the total payment to all selfish agents could
be arbitrarily larger than the total declared truthful cost of
all agents [9], [10]. Recently, there have been some stud-
ies to quantify the worst performances of a strategyproof
mechanism [9], [10], [11], [12], or to design strategyproof
mechanisms with better performances [11], [13]. In addition
to strategyproof algorithm mechanisms, other approaches to
deal with the selfishness of agents include auctions [14] and
reputation-inference [15]. The advantage of having a strate-
gyproof mechanism is its simplicity: it is simple to implement
and it relieves all agent from guessing other’s actions and
possibly declaring a much higher cost. Another advantage of
using a strategyproof mechanism is that, given an algorithm
constructing the multicast tree with approximation ratioα,
the multicast tree used will have areal cost no more than
a certain factorα times of the minimum real cost. This is
often called bounded social efficiency. If the optimal tree
construction method is used, then the tree is the actual optimal
tree. However, when agents declare their costs untruthfully, it
will be difficult, if not impossible, to bound the totalreal cost
of the output compared with the real optimal solution.

B. Problem Statement

DiffServ Multicast Tree Construction: We assume that there
is a connected networkG = (V,E) with vertex setV , edge
set E, where |V | = n and |E| = m. Every edgeei has
a cost functionci · x if x is the bandwidthei dedicates
to a multicast transmission. Hereafterci is called thecost
coefficientof the link ei. All links’ coefficients define a vector
c = (c1, c2, · · · , cm). There is a source nodes and a set of
receiversR ⊂ V that request to receive the multicast service.
Every receiverri ∈ R has a bandwidth demanddi that speci-
fies the minimum bandwidth it needs. The DiffServ multicast
is also called Quality of Service Steiner Tree (QoSST) problem
in [16].

A bandwidth demand ishomogeneousif all receivers require
the same bandwidth. This is the standard Steiner tree problem,
for which several constant approximation algorithms [5], [6]
have been proposed. For DiffServ multicast, different receivers
may require different bandwidths. The DiffServ multicast
problem consists of two parts: 1) a network topology rooted
at the senders that spans all receivers in the receiver set; 2) a
bandwidth for each link for this multicast. The tree topology
and bandwidth assignments should satisfy that for any receiver
ri, each link on the path betweenri and s in the tree has
a bandwidth not smaller thandi. Thus, for a link ei, the
bandwidth should not be smaller than the maximum bandwidth
demand of its downstream receivers. Thecost of a multicast
topologyT with link bandwidth vectorb = {b1, b2, · · · , bm}
is ω(T, b, c) =

∑
ei∈T ci ·bi. Given the cost coefficients vector

c and the bandwidth demandd of all receivers, the DiffServ
multicast problem is to construct a treeT and a bandwidthb
such thatω(T,b, c) is minimized.

The DiffServ multicast problem was studied before in sev-
eral contexts. Maxemchuk [4] proposed a heuristic algorithm



3

for its solution. Some results for the case of few rates were
obtained in [17], [18]. For example, for the case of two non-
zero rates, a43α-approximation algorithm was proposed [18],
where α ' 1.549 is the currently best approximation ratio
[6] for the Steiner tree problem. Recently, Charikaret al. [19]
gave the first constant-factor approximation algorithm for an
unbounded number of rates. They achieved an approximation
ratio of 4α using rounding andeα ' 4.211 using randomized
rounding. Recently, Karpinskiet al. [16] gave algorithms with
improved approximation factors. They achieved an approxima-
tion ratio of 1.960 when there are two non-zero rates and an
approximation ratio of3.802 when there are an unbounded
number of rates. Calinescuet al. [20] gave a Primal-Dual
algorithm with approximation ratio4.311. Xue et al. [21] and
Kim et al. [22] studied the Grade of Service Steiner Tree
Problem (GOSST) in Euclidean planes.
Output and Payment Computation: Throughout this paper,
we assume all the links are selfish and rational. Recall that
a mechanismM consists of two parts: an output methodO
and a payment schemeP. Each edgeei is required to reveal
its cost coefficient and it could declare a valueai that is
different from ci. Thus, we usea = (a1, . . . , am) to denote
the declaredcost coefficient vector. Given receiver setR and
declared cost coefficient vectora, the output method computes
a multicast treeT and a valid bandwidth vectorO(R, a) =
(b1, b2, · · · , bm). Here,bi = Oi(R, a) is the bandwidth on link
ei. After designing the output methodO, we need to design
a payment schemeP for the links such that the mechanism
M = (O,P) is truthful. Given the receiver setR and declared
cost coefficient vectora, we useP(R,a) to denote the total
payment to the links,i.e., P(R,a) =

∑
ei∈E Pi(R,a). Here

Pi(R,a) denotes the payment to a linkei given the cost
coefficient vectora and the receiver setR. Notice that the
widely used VCG mechanism [23], [24], [25] can be used to
design a strategyproof mechanism for the traditional multicast
problem (when all receivers have the same demand) with the
objective to minimize the total cost of the multicast tree when
we can find the minimum-cost multicast tree. However, the
optimum solution is often difficult to obtain: it is well-known
that finding minimum-cost multicast tree is an NP-complete
problem. Therefore, VCG mechanism for traditional multicast
cannot be implemented in polynomial time unlessP=NP. We
thus see the trade-off of efficiency for complexity. Actually,
we will show that VCG mechanism does not work for general
DiffServ multicast problem.

C. Literature Review of Steiner Tree Construction

If all receivers have the same bandwidth QoS demand, the
DiffServ problem becomes the standard link weighted Steiner
tree problem. In link weighted Steiner tree, each link has
a fixed costci for a unit bandwidth and all bandwidth in
the tree can be normalized to unit. Notice thatci equals the
cost coefficient in the DiffServ multicast problem, thus for
notational consistency, we usec to denote the input for the link
weighted Steiner tree problem. The link weighted Steiner tree
problem enjoys several constant approximation algorithms [5],
[6]. In Algorithm 1 we review a2-approximation algorithm

given in [5]. We call the tree constructed by Algorithm 1
a Link Weighted Steiner Tree(LST), denoted asLST (R, c)
wherec is declared cost coefficient vector.

Algorithm 1 Construct homogeneous multicast tree [H. Taka-
hashi and A. Matsuyama [5]]

Input: A network G = (V, E), the cost coefficient vectorc,
a source nodes and a set of receiversR.
Output: A treeLST (R, c) rooted ats that spans the receiver
setR.

1: Initialize LST (R, c) = ∅.
2: repeat
3: for each receiveri in R do
4: Find the shortest path betweens and ri under link

cost coefficient vectorc, denoted byLCP(s, ri, c).
5: end for
6: Find the receiverrj that is closest to the source.
7: Removerj from R and add the pathLCP(s, rj , c) to

LST (R, c).
8: Set all links’ cost on the pathLCP(s, rj , c) as 0, i.e.,

setci = 0 if and only if ei ∈ LCP(s, rj , c).
9: until R is empty.

10: OutputLST (R, c).

For DiffServ multicast, the algorithm by Charikaret al.
[19] works as follows. Given an instance of the DiffServ
multicast, they first construct the rounded-up instance by
rounding up all demands of receivers to the nearest power
of 2. Then they solve the standard Steiner tree problem for
the receivers of each different demand separately by applying
any of the well-known heuristics such as Algorithm 1. Finally,
they do a “clean-up” process that transforms the graph given
by the union of these Steiner trees into a tree and chooses
the bandwidth of each link to be the maximum bandwidth
demand of its downstream receivers. They proved that this
simple approach yields a4αST approximation of the optimal
cost, whereαST is the approximation factor of the Steiner tree
heuristic used. When Algorithm 1 is used as the Steiner tree
heuristic,αST = 2 and the overall approximation ratio is8.
For notational simplicity, we denote the algorithm as Charikar-
Takahashi algorithm. Our algorithm is similar to Charikar-
Takahashi algorithm at the first glance, but it has some key
differences that will be described later.

III. A N EW APPROXIMATION ALGORITHM

In this section, we present an alternative DiffServ mul-
ticast tree construction algorithm to the algorithm in [19].
Before we present our algorithm, we define some notations
that will be used later. For a setR of k receivers with
bandwidth demand vectord = {d1, d2, · · · , dk}, we denote
the multicast tree with the minimal weight that spansR
as T opt(R,d, c) and the corresponding bandwidth allocation
vector asBopt(R,d, c), wherec is the cost coefficient vector.
If the receivers have homogenous bandwidth demand, then
the minimum link weighted Steiner tree, which is denoted as
Tmin(R, c), does not depend ond. Given a subsetS ⊆ R and
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a treeT that spansR, we useT opt
S to denote the subtree in

T induced byS if no confusion is caused.
Given a receiver setR, a cost coefficient vectorc and

a bandwidth demand vectord, following algorithm shows
how to find a DiffServ multicast treeDMT (R, c) and its
corresponding bandwidth allocationB with low weight. We
also call this algorithmDMT if no confusion is caused.
Basically, Algorithm 2 constructs a DiffServ multicast tree
as follows. It first sorts the demands of all receivers in a
descending order and groups them into several groups such
that the largest demand in each group is at most2 times
the smallest demand in that group. Starting from the group
containing the largest demand, it constructs a multicast tree
to span the receivers in this group using Algorithm 1. It
then marks the cost of links chosen as0 since we will use
them anyway to span these receivers and their bandwidths are
enough to support any future receivers if they are also chosen
later. We then process all groups in the descending order of
their demands. Remember that when process theith group,
the links chosen to span any groupj with j < i will have
cost marked as0.

Algorithm 2 Construct DiffServ Multicast Tree
Input: A network G with coefficient vectorc, a source node
s, a set of receiversR and a bandwidth demand vectord.
Output: A tree DMT (R, c) spanning the receivers and a
bandwidth allocation vectorB.

1: Sort all receivers according to their bandwidth demands
in a descending order, sayR = {r1, r2, · · · , rk}.

2: Initialize the treeT to empty and indext = 1.
3: For each linkei, label it asWHITE and setBi = 0.
4: repeat
5: Let rj be the first receiver in the receiver setR and find

the maximum indexk such thatdk ≥ dj

2 .
6: Set the cost coefficient of eachBLACK link as 0, i.e.,

ci = 0 if ei is BLACK .
7: Let Rt = {rj , · · · , rk} and find the spanning treeTt =

LST (Rt, c) using Algorithm 1.
8: Remove Rt from R and mark all links in tree

LST (Rt, c) as BLACK .
9: SetT = T

⋃
Tt.

10: for each linkei ∈ Tt do
11: SetBi = dj .
12: end for
13: Set t = t + 1.
14: until the receiver setR is empty.
15: OutputDMT (R, c) = T and bandwidth vectorB.

The major difference of this algorithm compared with the
Charikar algorithm is that, instead of computing several trees
independentlyand then combining them to make the final
DiffServ multicast tree, we construct a single tree directly. The
receiver set is divided into subsets, each containing receivers
with demands in a particular range. These subsets are handled
in multiple rounds, in a descending order according to their
bandwidth demand ranges. In each round, all receivers in a
subset are connected to the DiffServ multicast tree being built.

The links picked in earlier rounds will be used in later rounds,
without additional costs involved, to connect receivers with
lower demands.

Notice that, as indicated by Line 11 of Algorithm 2, for each
link ei added intoT in roundt the bandwidth allocation ofei is
set to be the maximum bandwidth demand among all receivers
in Rt. This may be more than necessary; after all,ei will not
be relaying packets for all of them. Indeed, one can design
the following Algorithm 3, which constructs the same tree as
Algorithm 2 does, and yet allocates less bandwidth on each
link ei by setting the bandwidth allocation to be maximum
bandwidth demand ofei’s downstream receivers. In order to
distinguish these two algorithms, we useDMT to denote the
tree constructed by Algorithm 3. As minor (and harmless) as
this modification seems to be, Algorithm 3 does not induce
a truthful payment scheme. In the next section, we will use
this algorithm as an example to show how to use a general
criterion to determine the truthfulness of a payment scheme
induced by a given algorithm.

Algorithm 3 Construct DiffServ multicast Tree with Less
Bandwidth Allocation
Input: A network G with coefficient vectorc, a source node
s, a set of receiversR and a bandwidth demand vectord.
Output: A tree DMT (R, c) spanning the receivers and a
bandwidth allocation vectorB.

1: Compute a multicast treeT using Algorithm 2.
2: for each linkei in treeT do
3: Find the maximal bandwidth demand ofei’s down-

stream receivers, sayrj .
4: ei allocates a bandwidthBi = dj .
5: end for
6: OutputDMT (R, c) and bandwidth vectorB.

We have the following theorem for the approximation bound
of Algorithm 2 and Algorithm 3. Although there are only
subtle differences between these two algorithms presented here
and the one in [19], the proof is not as obvious as that one.

Theorem 1:Both Algorithm 2 and Algorithm 3 construct a
tree whose cost is at most8 times the cost of the minimal cost
DiffServ multicast tree.
PROOF. The proofs for both algorithms are similar. Since the
cost of the tree constructed by Algorithm 2 is not smaller
than the cost of the tree constructed by Algorithm 3, in
the following we only prove the case for Algorithm 2. For
notational convenience, we useT and B to denote the tree
and bandwidth allocation vector computed by Algorithm 2.
Remember thatTi is the tree found in theith iteration by
applying Algorithm 1. Without loss of generality, we assume
that there arè iterations in Algorithm 3. LetR1, R2, · · · , R`

be a partition of receiver setR, and let Rmax
i (respectively

Rmin
i ) be the maximum (respectively minimal) bandwidth

demand in the receiver setRi. For notational simplicity, we
useT opt

Ri
andBopt to denoteT opt

Ri
(R,d, c) andBopt(R,d, c)

respectively.
Recall that each link in treeT opt

R1
should be able to supply
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a bandwidth larger thanRmin
1 . Thus,

ω(T1, B, c) ≤ ω(T1, 〈Rmax
1 〉, c)

= Rmax
1 ω(T1, 〈1〉, c)

≤ 2Rmax
1 · ω(Tmin(R1, c), 〈1〉, c)

≤ 2Rmax
1 · ω(T opt

R1
, 〈1〉, c)

= 2Rmax
1 ·

∑

ei∈T opt
R1

ci

≤ 4Rmin
1 ·

∑

ei∈T opt
R1

ci

= 4ω(T opt(R1), 〈Rmin
1 〉, c)

≤ 4ω(T opt
R1

, Bopt, c)

For setR2, we have

ω(T2, B, c) ≤ ω(T2, 〈Rmax
2 〉, c) = Rmax

2 ω(T2, 〈1〉, c)

≤ 2Rmax
2 · ω(Tmin(R2, a), 〈1〉, c)

≤ 2Rmax
2 · ω(T opt

R2
, 〈1〉, c)

≤ 2Rmax
2 · ω(T opt

R1∪R2
, 〈1〉)

≤ 2Rmax
2 · [ω(T opt

R1
, 〈1〉, c) + ω(T opt

R2
− T opt

R1
, 〈1〉, c)]

= 2Rmax
2 ·

X
ei∈T

opt
R1

ci + 4
X

ei∈T
opt
R2

−T
opt
R1

ci ·Rmin
2

≤ 2Rmin
1 ·

X
ei∈T

opt
R1

ci + 4
X

ei∈T
opt
R2

−T
opt
R1

ci ·Rmin
2

= 2ω(T opt
R1

, 〈Rmin
1 〉, c) + 4ω(T opt

R2
− T opt

R1
, 〈Rmin

2 〉, c)

≤ 2ω(T opt
R1

, Bopt, c) + 4ω(T opt
R2

− T opt
R1

, Bopt, c)

Similarly, for any setRi (1 ≤ i ≤ l) we have

ω(Ti, B, c) ≤ 4

iX
j=1

1

2i−j
ω(T opt

Rj
−

j−1[
k=1

T opt
Rk

, Bopt, c)

Summing the inequalities fori from 1 to `, we obtain

ω(DMT (R, c), B, c)

= ω(
[̀
i=1

Ti, B, c) ≤
X̀
i=1

ω(Ti, B, c)

≤ 4 ·
X̀
i=1

iX
j=1

1

2i−j
· ω
 

T opt(Rj)−
j−1[
k=1

T opt
Rk

, Bopt, c

!
= 4 ·

X̀
i=1

"
ω

 
T opt

Ri
−

i−1[
j=1

T opt
Rj

, Bopt, c

!
·

l−iX
k=0

2−k

#
≤ 8 ·

X̀
i=1

"
ω

 
T opt

Ri
−

i−1[
j=1

T opt
Rj

, Bopt, c

!#
= 8 · ω

 
T opt(

l[
i=1

Ri), B
opt, c

!
= 8 · ω(T opt

R , Bopt, c)

This finishes our proof.

IV. PAYMENT FOR SELFISH L INKS

In this section, we first show that VCG mechanism does not
work for any algorithms that we proposed before. In light of
the failure of the VCG mechanism, some truthful mechanisms
that are not based on VCG are needed. Instead of simply
presenting a truthful payment scheme for a specific DiffServ
multicast tree construction algorithm, such as Algorithm 2,
we study a general framework to design a truthful payment
scheme for any given tree construction algorithm. In Subsec-
tion IV-B, we fist give a necessary and sufficient condition
for the existence of a truthful payment scheme for a given
tree construction algorithm. In the meanwhile, we also present
a truthful payment scheme if it exists. We then apply this
general framework to the DiffServ multicast tree constructed
by Algorithm 2 and design a truthful payment scheme. In
this section, we need to distinguish between the declared cost
coefficient vectora and actual cost coefficient vectorc.

A. Failure of VCG mechanism

Arguably the most positive result in mechanism design
is what is usually called the generalized Vickrey-Clarke-
Groves (VCG) mechanism by Vickrey [23], Clarke [24], and
Groves [25]. Although the family of VCG mechanisms is
powerful, but it has its limitations. To use VCG mechanism,
we have to compute the exact output that maximizes the total
valuation of all agents. In our case, we need to find the tree
with the minimum cost that is computationally intractable.
Most often, replacing the optimal algorithm with non-optimal
approximation usually leads to untruthful mechanisms if VCG
mechanism is used [26].

Unfortunately, if we insist on using VCG mechanism for
those algorithms we proposed above, none of the resulting
mechanisms is truthful. Moreover, even for the special case
when bandwidth on each link and for each receiver are
homogeneous, VCG mechanism still fails. Recall that when
bandwidths are homogenous, Algorithm 3, Algorithm 2 and
Charikar-Takahashi Algorithm are exactly Algorithm 1. Thus,
in the following we focus on Algorithm 1.

Given a receiver setR and declared vectora, if we apply
VCG mechanism to Algorithm 1, the payment to an edgeei ∈
LST (R,a) is

Pi(d) = ω(LST (R,a|i∞), 〈1〉,a)− ω(LST (R,a), 〈1〉,a) + ci.

Next we show that this mechanism doesnot satisfy IR prop-
erty, i.e., it is possible that some edges have negative utility if
each link reveals its actual cost coefficient. Figure 1 illustrates

1+ε

v

q1 qi
qk2 2 2 2 2 2

1+ε 1+ε1+ε

k+1

s
2

Fig. 1. Hereqi, 1 ≤ i ≤ k are receivers; the cost coefficient of each link
vk+1qi and vk+1s is 1 + ε, whereε is a small positive real number. The
cost coefficient of each linkqiqi+1 andsq1 is 2.
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the example with terminals being the source terminal. In
this example, each link reveals its actual cost coefficient,i.e.,
ai = ci. It is not difficult to show that, in the first round, link
sq1 is selected to connect terminalss and q1 with cost 2; in
roundr, we will select linkqr−1qr to connect toqr with cost
2. Thus, the treeLST (R, c) is pathsq1q2 · · · qk, whose cost
is 2k. When link e1 = sq1 is not used, it is easy to see that
the treeLST (R,a|i∞) only uses terminalvk+1 to connect all
receivers with total cost(k + 1)(1 + ε). Thus, the utility of
link e1 = sq1 is (k + 1)(1 + ε)− 2k = kε− k + 2, which is
negative whenε < k−2

k . Thus, the VCG based mechanism is
not truthful.

B. General Framework

From the definition of the truthfulness, we can fix the
graphG, the receiver setR and bandwidth demandd. Thus,
for our notational convenience, we useOA(a) to denote the
bandwidth vector computed by an algorithmA for links, where
bi = OAi (a) is the bandwidth on linkei.

Here, we assume thatOAi (a) is piecewise continuouswith
respect to any variableaj , i.e., a finite number of piece-wise
linear functions. The only possible types of discontinuities
for a piecewise continuous function are removable and step
discontinuities. In the following we give a definition that is
critical to the presentation of our general framework.

Definition 1 (Monotone Non-increasing Property (MNP)):
An algorithmA is said to satisfy themonotone non-increasing
property if for every link ei and any two of its possible
coefficientsai1 < ai2 , OAi (a|iai1) ≥ OAi (a|iai2).

Now we are ready to present the necessary and sufficient
condition for the existence of truthful mechanism given an
algorithm A that computes the bandwidth. This theorem is
similar to the forklore for the binary demand games.

Theorem 2:For a given algorithmA, there exists a payment
schemeP such that the mechanismM = (A,P) is truthful if
and only ifA satisfies MNP.
PROOF. First, we prove that if there exists a strategyproof
mechanismM = (A,P) thenA satisfies MNP. We consider
two coefficients profilea|iai1 anda|iai2 whereai1 ≤ ai2 .

Consider the case when linkei has coefficientai1 . Remem-
berP is strategyproof, thus if linkei lies its coefficient toai2 ,
its utility should not increase. Thus, we have

Pi(A, a|iai1)− ai1 · OAi (a|iai1)
≥ Pi(A, a|iai2)− ai1 · OAi (a|iai2).

Now consider the case when linkei actually has cost coeffi-
cient ai2 . Similarly, we have

Pi(A, a|iai2)− ai2 · OAi (a|iai2)
≥ Pi(A, a|iai1)− ai2 · OAi (a|iai1)

Combining the above two inequalities, we obtain

ai2 · [OAi (a|iai1)−OAi (a|iai2)] (1)

≥ Pi(A, a|iai1)− Pi(A, a|iai2)
≥ ai1 · [OAi (a|iai1)−OAi (a|iai2)]

Thus, we haveOAi (a|iai1) ≥ OAi (a|iai2) as ai1 ≤ ai2 . This
proves thatA satisfies MNP.

To prove that if A satisfies MNP then there exists a
strategyproof paymentP, we prove it by construction. For
a link ei, we first fix a−i and usex to denote cost vectora|ix
if no confusion is caused. From the assumption thatA satisfies
MNP, functionOAi (x) is non-increasing. Recall thatOAi (x) is
a piecewise continuous function. We letx1 < x2 · · · < xm be
the points at whichOAi (x) is not continuous, and introduce
a dummy pointxm+1 = ∞. We define a functionκi(x) such
that, for xp < x ≤ xp+1,

κi(x) = x·OAi (x)+
∫ xp+1

x

OAi (y)dy+
m∑

j=p+1

∫ xj+1

xj

OAi (y)dy.

i x i xm

R
max
i 1

R
max
i j

R
max
i m

ib (DMT,a   x)i|

a x

Fig. 2. Bandwidth allocation functionODMT
i (a|ix).

In Figure 2,κi(x) corresponds to the area of the shaded
region. Given an algorithmA and a coefficient vectora,
Algorithm 4 defines the payment based on algorithmA.

Algorithm 4 Payment Scheme based onA
Input: Algorithm A and declared coefficient vectora.
Output: The payment schemeP.

1: for each linki do
2: Fix a−i. The payment toi is Pi(A, a) = κi(ai).
3: end for

Thus, we only need to prove the payment scheme computed
by Algorithm 4 is truthful. See Lemma 7 in the appendix
for the proof of this statement. This finishes the proof of the
theorem.

We note that the above theorem applies to any problem
(e.g., job scheduling) when the cost of an agent is of format
ci · bi, whereci is a privately known cost-coefficient andbi

is its load computed by output method. Actually, Archer and
Tardos [27] proved a similar result for job scheduling. If we
require that a linkei that has0 bandwidth should receive0
payment (which is callednormalizedpayment scheme), then
we have the following theorem.

Theorem 3:Given an algorithmA satisfying MNP, the pay-
ment scheme defined by Algorithm 4 is theonly normalized
truthful payment scheme.
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PROOF. In inequality 1, substitutex for ai1 andx+ δ for ai2

we obtain(x+δ)(OAi (x)−OAi (x+δ)) ≥ Pi(x)−Pi(x+δ) ≥
x(OAi (x)−OAi (x+ δ)). WhenOAi (x) is continuous atx, we
can setδ → 0 and obtain

(x + δ) · d(−OAi (x)) ≥ d(−Pi(x)) ≥ x · d(−OAi (x)) (2)

From equation 2, ifx is continuous in(l, u), then we obtain

−pi(x)|ul = pi(l)− pi(u)

=
∫ u

l

xd(−OAi (x))

= −
∫ u

l

xd(OAi (x))

= −[xOAi (x)|ul −
∫ u

l

OAi (x)dx]

= l · OAi (l)− u · OAi (u) +
∫ u

l

OAi (x)dx

Set l = xj andu = xj+1 (1 ≤ j ≤ q), we obtain

Pi(xj)− Pi(xj+1)

= xj · OAi (xj)− xj+1 · OAi (xj+1) +
∫ xj+1

xj

OAi (x)dx

Assumexp ≤ ai < xp+1, then summingj from p + 1 to q
we have

Pi(xp+1) = Pi(xp+1)− Pi(xq+1)

=
q∑

j=p+1

pi(xj)− pi(xj+1)

=
q∑

j=p+1

[xj · OAi (xj)− xj+1 · OAi (xj+1)]

+
q∑

j=p+1

∫ xj+1

xj

OAi (x)dx

= xp+1 · OAi (xp+1) +
q∑

j=p+1

∫ xj+1

xj

OAi (x)dx

Let l = ai and u = xp+1, we havePi(ai) − Pi(xp+1) =
ai ·OAi (ai)−xp+1 ·OAi (xp+1)+

∫ xp+1

ci
OAi (y)dy. Combining

the above two equations we get

Pi(ai)

= xp+1 · OAi (xp+1) +

qX
j=p+1

Z xj+1

xj

OAi (x)dx + ai · OAi (ai)

−xp+1 · OAi (xp+1) +

Z xp+1

ai

OAi (x)dx

= ai · OAi (ai) +

Z xp+1

ai

OAi (y)dy +

qX
j=p+1

Z xj+1

xj

OAi (x)dx

This finishes our proof.

We then summarize the general framework to design a
truthful payment schemeP, such thatM = (OA,P) is
truthful, for a given output algorithmOA that constructs a
DiffServ multicast tree and outputs the bandwidth allocation
for DiffServ multicast.

1) Check whether the bandwidth function of algorithmOA
satisfies MNP. If not then return, else continue.

2) Compute the bandwidth functionOA(a).
3) Design the payment according to Algorithm 4.

C. Design Truthful Mechanism

We first show that, there is no truthful payment scheme
based on Algorithm 3 and Algorithm by Charikaret al. [19].

Theorem 4:There is no truthful mechanism that uses either
Algorithm 3 or Charikar-Takahashi algorithm as its output
method.

According to Theorem 2, it suffices to prove the following
Lemma.

Lemma 5:Neither Algorithm 3 nor Charikar-Takahashi al-
gorithm satisfies MNP.
PROOF. We prove it by presenting a counter example illus-
trated by Figure 3. A networkG has three receiversr1, r2, r3

with bandwidth demandd1 = d2 = 1 and d3 = 1.5. Under
this bandwidth demand vector, all receivers’ demand will be
rounded to the same value and only one iteration of Algorithm
1 is needed. Thus, Both Algorithm 3 and Charikar-Takahashi
algorithm output the same tree and bandwidth vector. The
coefficient of the link is described in Figure 3 (a). Now we
apply Algorithm 3 to networkG. In the first iteration, path
sv1r1 is chosen (with cost9); in the second iteration, pathv1r2

is chosen (with cost8); and in the last iteration, pathsv2v3r3

is chosen (with cost12.1). The final tree shown in Figure 3
(b). The bandwidth allocation of linkv2v3 is 1.5. Consider the
scenario when the coefficient of linkv2v3 changes from1.1
to 0.9 while other coefficients remain the same. When apply
Algorithm 3 to networkG, in the first iteration, pathsv2v3r1

is chosen (with cost8.9); in the second iteration, pathsv4r2

is chosen (with cost9.9); and in the last iteration, pathv4r3 is
chosen (with cost9). The new spanning tree topology is shown
in Figure 3 (c). The bandwidth onv2v3 becomes1, which is
decreased compared with the former case when the coefficient
is 1.1. This contradicts the MNP property and finishes our
proof.

The above example also shows that there is no strategyproof
mechanism for the DiffServ multicast tree construction method
presented in [19] when the bandwidth on any link is taken as
the maximum bandwidth demand of its downstream receivers.
Meanwhile, we can show that there exists a truthful payment
scheme for Algorithm 2 with the following theorem.

Theorem 6:Algorithm 2 satisfies MNP.
PROOF. Given a link ei, if it does not appear in the tree
DMT (R,a) thenODMT

i (a) = 0. Otherwise, ifei ∈ Tj −⋃j−1
k=1 Tk, i.e., in iterationj, the linkei is added to the spanning

treeDMT (R, a) for the first time, thenODMT
i (a) = Rmax

j .
When ei declares a smaller coefficientai, we show by cases
that its bandwidth does not become smaller.

Case 1:ei is added to the spanning treeDMT (R, a) before
the jth iteration of REPEAT loop in iterationj. Without loss
of generality, we assume thatei is added toDMT (R,a) in
iteration j′ ≤ j. Remember that the partition ofR does not
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Fig. 3. The spanning tree constructed by Algorithm 3.

depend on coefficient vectora, thusODMT
i (a|iai) = Rmax

j′ ≥
Rmax

j = ODMT
i (a).

Case 2:ei is not added to the spanning treeDMT (R,a)
before thejth iteration of REPEAT loop in Algorithm 2. In
this case, each link’s label does not change in the beginning
of iteration j. Following we show that the linkei must in
the treeLST (Rj ,a|iai). From our assumption,ei is in the
tree LST (Rj ,a) and without loss of generality, we assume
that ei is in path LCP(s, rk, c) that is selected in thèth

iteration of Algorithm 1. Ifei is selected beforèth iteration
of Algorithm 1 when we constructing treeLST (Rj ,a|iai),
then the argument is proven. Otherwise, we can assume that
ei is not selected before iteratioǹ. Notice that if ei is not
selected beforè th iteration, each path selected before`th

iteration should be the same. In other words, in the beginning
of iteration ` of Algorithm 1, (1) the receiver setR is the
same; (2) the cost of each link exceptei is the same. Thus, if
c is the cost vector in the beginning of iteration` when input
is a, thenc|iai is the cost vector in the beginning of iteration
` when input isa|iai. It is not difficult to observe that the
pathLCP(s, rk, c) is decreases byai − ai if c|iai is the cost
vector. On the other hand, the cost of any path is decreased at
mostai−ai if c|iai is the cost vector instead ofc. Thus, path
LCP(s, rk, c) is also selected under cost vectorc|iai. Thus,
ei is selected by Algorithm 2 before iterationj, which means
thatODMT

i (a|iai) ≥ Rmax
j .

This proves thatODMT
i (a) does not decrease whenai

decreases. Thus, Algorithm 2 satisfies MNP.

In order to find the truthful payment for Algorithm 2,
we should find the bandwidth output functionODMT

i (a|ix)
for every link ei first. Recall that for every linkei, the
bandwidth could only be a real value that is equal toRmax

j

for some indexj. Let xi
1 < xi

2 < · · · < xi
q be the points at

whichOi(DMT,a|ix) is not continuous, then the bandwidth
allocation functionOi(DMT,a|ix) should be a constant,
say yi

j in (xi
j , x

i
j+1) as shown in the Figure 2. In order to

find the values of these discontinuous points, we first need
to compute the truthful payment for standard Steiner tree
problem. Following we brief review the algorithm to compute
the payment for Algorithm 1. Please refer for [8] for more
details.

For clarity of the notation, we useκi(R,a) to denote the
payment computed for a linkei by Algorithm 5 and study

Algorithm 5 Payment based on Algorithm 1
Input: A network G with link cost coefficient vectora, a
source nodes and a receiver setR.
Output: A truthful payment based on Algorithm 1.

1: ComputeLST (R,a) using Algorithm 1.
2: for each linkei ∈ LCP(R, a) do
3: Set tempi = ai for each linkei.
4: Setai = ∞, andpi = 0.
5: repeat
6: Find the shortest pathLCP(s, ri,a) betweens and

ri for each receiveri in R.
7: Find the receiverrj that is closest to the source.
8: Set ai = 0 and find the shortest pathLCP(s, ri,a)

betweens andri for each receiveri in R.
9: Find the receiverr′j that is closest to the source and

let |P′j | be the cost of the shortest path path between
s andrj ’.

10: Setai = ∞.
11: Removerj from R and add the pathLCP(s, ri,a)

to LST (R, a).
12: Set all links’ cost on the pathLCP(s, rj ,a) as0, i.e.,

setai = 0 if and only if ei ∈ LCP(s, rj ,a).
13: Setpi = max{pi, |LCP(s, rj , c)‖ − |P′j |}.
14: until R is empty.
15: Setai = tempi for each linkei.
16: end for
17: SetPi(R, a) = pi and outputP.

how to find the bandwidth allocation function for Algorithm 2.
Algorithm 6 shows how we can find the bandwidth-allocation
function.

With the bandwidth allocation functionODMT
i (·), we give

our truthful payment scheme, as illustrated by Algorithm 7,
by using the general framework. The proof of the correctness
of these algorithms are either straightforward or omitted here
due to space limit. Notice that since Algorithm 3 often
constructs a multicast tree with less cost than the multicast
tree constructed by Algorithm 2, the multicast “principal”
may jump to Algorithm 3 after all links declared their cost
coefficients. This will be prevented from the untruthfulness of
Algorithm 3 when links knew that the “principal” will jump
to Algorithm 3, i.e., links could lie to gain more benefits.
When links are unaware of this jump, we need a trusted third-
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Algorithm 6 Bandwidth Output Function for Algorithm 2
Input: A networkG with declared link cost vectora, a source
nodes and a receiver setR with demand vectord.
Output: The bandwidth output function for Algorithm 2.

1: ComputeDMT (R,a) and bandwidth vectorB.
2: for each linkei in DMT (R, a) do
3: Label each link it asWHITE.
4: Set tempi = ai for each linkei.
5: Setai = ∞ and indext = 1.
6: Initialize the listXi = ∅, Y i = ∅, up = 0, andq = 0.
7: repeat
8: Let rj be the first receiver in the receiver setR and

find the maximum indexk such thatdk ≥ dj

2 .
9: Set the cost coefficient of eachBLACK link as0, i.e.,

ai = 0 if ei is BLACK .
10: Let Rt = {rj , · · · , rk} and find the spanning tree

LST (Rt, c) using Algorithm 1.
11: RemoveLST (Rt,a) from R and mark all links in

treeLST (Rt,a) as BLACK .
12: SetT = T

⋃
Tt and computeκi(Rt,a) using Algo-

rithm 5.
13: if κi(Rt,a) > up then
14: Setq = q + 1 andup = κi(Rt,a).
15: Setxi

q = κi(Rt,a) andyi
q = Rmax

t .
16: Add xi

q to setXi andyi
q to Y i.

17: end if
18: Set t = t + 1.
19: until R is empty
20: Setxi

0=0 andxq+1 = ∞.
21: for i = 1 to q + 1 do
22: SetODMT

i (R,a|ix) = yi
j for xi

j−1 ≤ x < xi
j .

23: end for
24: Setai = tempi for each linkei.
25: end for

party to prevent the principal from changing the multicast-tree
construction algorithm.

D. Performance Improvement and Special Case

In essence, Algorithm 2 converts the original instance of
the DiffServ multicast problem to a “rounded-up” one, with
bandwidth demand vector forming a geometric sequence of
ratio 2. According to the result of Charikaret al. [19], the
approximation ratio of8 of Algorithm 2 can be improved
(while still using Algorithm 1 for computing approximately
optimal Steiner trees) if the “randomized bucketing” technique
is used. Specifically, a numbery is picked randomly with a
uniform distribution in the range[0, 1], and the (non-zero)
bandwidth demands of all receivers are rounded up to the
nearestey+i. (Note that the ratio of the geometric sequence ise
instead of2.) Theexpectedapproximation ratio ise·2 ' 5.437.

Here we argue that we can also convert the mechanism
described above for DiffServ multicast to a randomized one
with an expected approximation ratio of5.437, while maintain-
ing strategyproofness. First of all, in Algorithm 2, we group
the receivers according to their bandwidths: a receiver with

Algorithm 7 Payment Scheme for Algorithm 2
Input: A network G with cost coefficient vectora, a source
nodes and a receiver setR with demand vectord.
Output: A truthful paymentPDMT for Algorithm 2.

1: Compute the multicast treeDMT (R,a) by applying
Algorithm 2.

2: Compute the bandwidth allocation function for tree
DMT (R,a) by applying Algorithm 6.

3: for each linkei do
4: if ei is in treeDMT (R,a) then
5: Find an indexj such thatxi

j < ai ≤ xi
j+1. Then the

payment isPDMT
i (R, a) =

∑|Xi|−1
k=j+1 yi

k · (xi
k+1 −

xi
k) + (xi

j+1 − ai) · yi
j .

6: else
7: PDMT

i (R, a) = 0.
8: end if
9: end for

minimum bandwidth (the minimum bandwidth is called ”start
point” in literatures) that is not grouped yet is chosen and each
receiver whose bandwidth is at most2 times the minimum
bandwidth is fallen into the same group. On the other hand,
if we useey as the start point for some fixedy and replacing
the ratio of 2 by e for the geometric sequence (of rounded
up bandwidth demands) should not affect strategyproofness.
Furthermore, the randomized process also does not encourage
untruthfulness of the links: if for any fixed start pointey, the
links find no incentive to lie, nor will they find incentives to
lie when such start point is randomly selected.

Charikaret al. [19] also proposed a de-randomized process
to replace the above random selection of start pointey, with
the cost of an increased time complexity. For each distinct
bandwidth demanddi, the same algorithm is invoked with
yi = ln di − bln dic. It is claimed that there is at least
one yi such that the solution fory = yi has a cost no
more than the expected cost of the solution for a randomly
picked y. Therefore, we can simply pick the best solution
(with the minimum cost) among all solutions computed using
differenty. A similar technique is used for the case with only
two non-zero rates for bandwidth demands [18], improving
the approximation bound to43 · 2 ' 2.667. The common
characteristic of the two algorithms is to compute multiple
DiffServ multicast trees using different methods (or same
method but with different parameters), and pick the one with
the smallest cost. Although this approach (i.e., taking the best
output of several outcomes and using a certain combination of
the payments for these separated games as its final payment)
works for binary selection problems under certain conditions
[28], [29], a problem arises when it comes to determining the
payments to the links for DiffServ multicast.

In the network shown in Figure 4 (a), receiverr1 has
bandwidth demandd1 = 1 unit and each of receiversr2, r3, r4

has bandwidth demandd2 = 4. Let R1 = {r1} and R2 =
{r2, r3, r4}, and let c be the cost vector shown in Figure
4 (a). Let c′ be the cost vector we get by changing the
cost of edgesv1 from 1.5 + ε to 1.5 − ε while keeping
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all other links’ costs unchanged. Figure 4 shows that the
tree LST (R, c) and treeLST (R, c′) are the same. We have
ω(LST (R, c), b) = ω(LST (R, c′), b′) = 5.5 ·d2 = 22. Figure
4 (c) shows the treeLST (R1, c)∪LST (R2, c) and its weight
is 1.5 · d1 + (5 + ε) · d2 = 21.5 + 4ε < ω(LST (R, c), b) for
small ε. Thus, whensv1 has cost1.5 + ε, it has bandwidth
d2 = 4. Now consider the cost vectorc′. Figure 4 (c)
shows the treeLST (R1, c′) ∪ LST (R2, c′) and its weight is
1.5·d1+(6+3ε)·d2 = 25.5−12ε > ω(LST (R, c′), b) for small
ε. Thus, whensv1 has cost1.5 − ε, its bandwidth is0. This
shows that the tree output by the algorithm in [18] violates the
MNP property, which implies that there is no truthful payment.

V. CONCLUSION

In this paper, we studied the DiffServ multicast problem in a
game theoretic context, where network links are selfish agents
who would demand payments to at least cover their costs when
relaying data packets, and may lie about their actual costs in
order to maximize their gains. We show that a naive conversion
of the previously known 8-approximation algorithm does not
work. We then propose an alternative approximation algorithm
for DiffServ multicast with the same approximation bound.
We also introduced a general method to convert any DiffServ
multicast algorithm satisfying the Monotone non-increasing
Property to a strategyproof mechanism, and applied it to the
algorithm we proposed.

The strategyproof payment scheme is not the end story for
designing protocols for DiffServ multicast. The very natural
question to ask is how these payments can be split among the
receivers, which is known as themulticast payment sharing
problem [7]. Several criteria [30], [7] for thefairnessof shar-
ing have been proposed in previous work, and we would like to
design payment sharing schemes that are considered to be fair
according to these criteria. Another important work is to design
distributed implementations of our proposed strategyproof
mechanism, which could be based on some results in [31],
[32]. Last, but not the least, since strategyproof mechanisms
will often pay more than what the agents declared, it is an
interesting future work to design scheme that could result in
a less total payment by the multicast principal at some certain
equilibrium of the agents’ declaration. Some initial work has
been done in this direction for unicast [14], [33], [34].
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APPENDIX

Lemma 7:Algorithm 4 defines a truthful payment scheme.
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Fig. 4. An example to show that simply choosing the best solution may not work. Here (a) denotes the original networkG, (b) is the tree
LST (R, c)(LST (R, c′)), (c) is the treeLST (R1, c) ∪ LST (R1, c) and (d) is the treeLST (R1, c′) ∪ LST (R1, c′).

PROOF. Hereafter, we always fixa−i, i.e., we are interested
only in ai. Notice that whenei reveals its true coefficientai, its
utility is ui(ai) = Pi(ai)−ai ·OAi (ai) = κi(ai)−ai ·OAi (ai)
=

∫ xp+1

ai
OAi (y)dy+

∑m
j=p+1

∫ xj+1

xj
OAi (y)dy. Remember that

OAi (y) is non-negative. Thusui(ai) ≥ 0, which implies that
payment scheme 4 satisfies IR. To prove that payment scheme
4 satisfies IC, we prove it by cases.

Case 1:Node i lies its cost upward toai. In this case, we
assumexp′ < ai ≤ xp′+1. Sinceai < ai, p ≤ p′. The utility
of nodei becomes

ui(ai) = pi(ai)− ai · OAi (ai) = ξ(ai)− ai · OAi (ai)

=

Z xp′+1

ai

OAi (y)dy +

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

+ai · OAi (ai)− ai · OAi (ai)

There are two subcases here. Ifp < p′ then

ui(ai)

=

Z xp+1

ai

OAi (y)dy +

mX
j=p+1

Z xj+1

xj

OAi (y)dy

=

Z xp+1

ai

OAi (y)dy +

p′−1X
j=p+1

Z xj+1

xj

OAi (y)dy

+

Z ai

xp′
OAi (y)dy +

Z xp′+1

ai

OAi (y)dy +

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

≥ OAi (ai) · [(xp+1 − ai) + (

p′−1X
j=p+1

(xj+1 − xj)) + (ai − xp′)]

+

Z xp′+1

ai

OAi (y)dy +

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

= bi(ai) · (ai − ai) +

Z xp+1

ai

OAi (y)dy +

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

= ui(ai)

If p = p′ then

ui(ai) =

Z xp+1

ai

OAi (y)dy +

mX
j=p+1

Z xj+1

xj

OAi (y)dy

=

Z xp′+1

ai

OAi (y)dy +

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

= ui(ai)− (ai − ai) · OAi (ai) +

Z ai

ai

OAi (y)dy

≥ ui(ai)− (ai − ai) · OAi (ai) + (ai − ai) · OAi (ai)

= ui(ai)

Thus, link ei have no incentive to lie its coefficient upward.
Case 2:Link ei lies its coefficient downward toai. In this

case, we assumexp′ < ai ≤ xp′+1. Sinceai > ai, p ≥ p′.
The utility of nodei becomesui(ai) = OAi (ai) · (ai − ai) +∫ xp′+1

ai
OAi (y)dy +

∑m
j=p′+1

∫ xj+1

xj
OAi (y)dy.

There are two subcases here also. Ifp > p′ then

ui(ai)

= OAi (ai) · (ai − ai) +

Z xp′+1

ai

OAi (y)dy

+

p−1X
j=p′+1

Z xj+1

xj

OAi (y)dy +

Z ai

xp

OAi (y)dy

+

Z xp+1

ai

OAi (y)dy +

mX
j=p+1

Z xj+1

xj

OAi (y)dy

≤ OAi (ai) · (ai − ai) +

Z xp′+1

ai

OAi (ai)dy

+

p−1X
j=p′+1

Z xj+1

xj

OAi (ai)dy +

Z ai

xp

OAi (ai)dy + ui(ai)

= OAi (ai) · (ai − ai) +OAi (ai) · (ai − ai) + ui(ai)

= ui(ai)

If p = p′ then

ui(ai)

= OAi (ai) · (ai − ai) +

Z xp′+1

ai

OAi (y)dy

+

mX
j=p′+1

Z xj+1

xj

OAi (y)dy

= OAi (ai) · (ai − ai) +

Z ai

ai

OAi (y)dy + ui(ai)

≤ OAi (ai) · (ai − ai) +

Z ai

ai

OAi (ai)dy + ui(ai)

= ui(ai)

This proves that nodei does not have incentive to lie down-
ward. Thus, the payment scheme 4 satisfies IC. Therefore, the
payment scheme 4 is truthful.


