
A Framework for Amazon EC2 Bidding
Strategy under SLA Constraints

Shaojie Tang, Member, IEEE, Jing Yuan, Cheng Wang, and Xiang-Yang Li, Senior Member, IEEE

Abstract—With the recent introduction of Spot Instances in the Amazon Elastic Compute Cloud (EC2), users can bid for resources

and, thus, control the balance of reliability versus monetary costs. Mechanisms and tools that deal with the cost-reliability tradeoffs

under this scheme are of great value for users seeking to reduce their costs while maintaining high reliability. In this paper, we propose

a set of bidding strategies under several service-level agreement (SLA) constraints. In particular, we aim to minimize the monetary cost

and volatility of resource provisioning. Essentially, to derive an optimal bidding strategy, we formulate this problem as a Constrained

Markov Decision Process (CMDP). Based on this model, we are able to obtain an optimal randomized bidding strategy through linear

programming. Using real Instance price traces and workload models, we compare several adaptive checkpointing schemes in terms of

monetary costs and job completion time. We evaluate our model and demonstrate how users should bid optimally on Spot Instances to

reach different objectives with desired levels of confidence.

Index Terms—Cloud computing, bidding strategy, EC2

Ç

1 INTRODUCTION

IN December 2009, Amazon released Spot Instances, which
is a new way to purchase and consume Amazon EC2

Instances [1], [8]. They allow customers to bid on unused
Amazon EC2 capacity and run those Instances for as long as
their bid exceeds the current Spot Price.

Service-level agreement (SLA) is an agreement between
and service provider and customer, specifying the level of
delivered service. In this paper, we assume that the service
level is decided by two metrics: monetary cost and execution
delay. Obviously, there is a tradeoff between those two
metrics. Therefore, we propose a bidding strategy, called
AMAZING, that can minimize the expected monetary costs
within certain delay bound, which is set by the customers.
Based on real price traces, we find that our proposed
strategy achieves the lowest monetary cost under various
delay requirements.

In our study, we observe that typical state pattern of Spot
Instances exists in Amazon EC2. The state pattern informa-
tion, if utilized in an intelligent manner, can improve the
execution efficacy while reducing monetary costs. For
instance, the problem of making proper bid decision is
formulated as a Constrained Markov Decision Process
(CMDP) [7]. After solving the CMDP, AMAZING applies

optimal bid decision to each Instance hour during the
course of the job’s computation. Our state context aware
design tries to intelligently adapt the bid price using
intelligence from detected state patterns.

In this perspective, we have designed an efficient state-
pattern-aware bidding strategy AMAZING. The novelty of
AMAZING lies in the intelligence that it learns and adapts
from the transition of Instance states, to make the bid
decision for each Instance. In our proposed system, an AI
agent is trained to extract Spot Price patterns from the
dynamically changed Spot Price data. The agent provides
Spot Price transition probability matrix (STPM), which
contains information about transition probability of Spot
Prices for a particular Instance type.

It is critical to control the balance of reliability versus
monetary costs. Previous researchers investigate probabil-
istic model [9] and checkpointing mechanisms [20], [21],
[22] to answer the question of how to bid given these
constraints. Given the maximum price that users are willing
to pay per hour, researchers tend to apply probabilistic
model and different checkpointing strategies to meet the
requirements. Nevertheless, previous approaches [20], [21],
[22] were considered under the fixed bid price model, and
only periodically checkpointing schemes were discussed in
their study. In this work, we focus on designing an optimal
bidding strategy that utilizes both the dynamic pricing
model and the state transition intelligence. By formulating
the bidding process as a CMDP, we are the first to provide a
provably optimal bidding strategy. In particular, we are
able to show that by adopting our bidding strategy, the
expected execution delay can be bounded and at the same
time, the monetary costs are minimized. Most importantly,
our strategy is easy to compute and, thus, very effective in
real implementation.

2 SYSTEM MODEL OF SPOT INSTANCE

In this section, we describe the work model adopted by
Spot Instance.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

. S. Tang is with Temple University, Room 312 Wachman Hall, 1805 N
Broad Street, Philadelphia, PA 19122. E-mail: stang7@hawk.iit.edu.

. J. Yuan is with the Department of Computer Science, University of Illinois,
7901 Henry Ave Apt D401, Philadelphia, PA 19128.
E-mail: jyuan5@uic.edu.

. C. Wang is with the Department of Computer Science and Engineering,
Tongji University, Room 1810, Building 13, Lane 630, Quyang Road,
Shanghai, 200092, China. E-mail: 3chengwang@gmail.com.

. X.-Y. Li is with the Department of Computer Science, Illinois Institute of
Technology, Room 229C Stuart Building, 10 West 31st Street, Chicago, IL
60616. E-mail: xli@cs.iit.edu.

Manuscript received 30 May 2012; revised 19 Dec. 2012; accepted 22 Dec.
2012; published online 11 Jan. 2013.
Recommended for acceptance by L.E. Li.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-05-0513.
Digital Object Identifier no. 10.1109/TPDS.2013.15.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

2.1 Characteristics of the Spot Instances

Spot Instances enable users to bid for unused Amazon EC2
capacity. Amazon provides 64 types of Spot Instances that
differ by computing/memory, OS type and geographical
location [17]. We summarized in Table 1 different types of
Spot Instances that possess varied processing capacity. As
expected, to obtain more powerful Spot Instances, users
need to bid higher prices. Fig. 1 illustrates partial price
history for some Spot Instance types. The data we use to
plot this figure are collected from a website [5] that is used
to display interactive charts of Amazon Spot Instance
prices. As shown in the figure, Spot Instances are charged
the Spot Price set by Amazon EC2, which fluctuates
periodically depending on the supply of and demand for
Spot Instance capacity. In specific, Amazon EC2 will change
the Spot Price periodically as new requests are received and
as available Spot capacity changes (e.g., due to Instance
terminations). While the Spot Price may change anytime, in
general the Spot Price will change once per hour, which is
named as Instance hour in this work, and in many cases less
frequently. To use Spot Instances, the users place a Spot
Instance request, specifying the Instance type, the region
desired, the number of Spot Instances they want to run, and
the maximum price they are willing to pay per hour. To
determine how that maximum price compares to past Spot
Prices, the Spot Price history is available via the Amazon
EC2 API and the AWS Management Console. If the
maximum price bid of the user is higher than the current
Spot Price, his/her request is fulfilled and his/her Instances
will run until either you choose to terminate them or the
Spot Price increases above his/her maximum price (which-
ever is sooner).

Fig. 2 illustrates how Amazon EC2 charges per-hour price
for using a Spot Instance. It is important to note the
following characteristics of Amazon EC2’s Spot Instances
which are also highlighted in [8].p

When a user’s maximum price bid is higher than the
current Spot Price, he/she is granted the access to
the requested resource. Otherwise, Amazon terminates the
service when a user’s bid is under the current Spot Price.
We call this a failure (or out-of-bid). To ensure the reliability
of task execution, users are suggested to save their
intermediate results periodically by means of checkpointing
[8], [9].p

Spot Instances can be terminated when the user no
longer requests them. If the user terminates his/her
Instance, he/she will pay for any partial hour. However,
if the Spot Price goes above the user’s maximum price and

the Instance is terminated by Amazon EC2, he/she will not
be charged for any partial hour of usage.p

The price of a partial hour is considered the same as a
full hour. Amazon charges each hour by the current Spot
Price. The price of Amazon’s storage service is negligible (at
most 0.15 USD per GB-month) which is much lower than
the price of computation [2].

TANG ET AL.: A FRAMEWORK FOR AMAZON EC2 BIDDING STRATEGY UNDER SLA CONSTRAINTS 3

Fig. 1. Spot Price fluctuations of us-east-1.linux Instance types.

TABLE 1
Instance Types (OS: Linux Class: Hi-CPU¼ HIGH-CPU,

Std¼ STANDARD, Hi-Mem¼ HIGH-MEMORY)

Fig. 2. Examples of pricing for Amazon EC2 Spot Instances:
(a) When a user’s Spot Instance is out-of-bid; (b) when a user stops
using Spot Instance.

Shed light from above characteristics of Spot Instances,
previous researchers proposed a potential exploitation
method to reduce the cost of the last partial hour of work
[9]. In this work, we utilize the same strategy to potentially
prevent a payment in the last partial hour. In this scenario, a
user waits after finished computation almost to the next
hour-boundary for a possible termination due to an out-of-
bid situation.

2.2 Definitions

We assume a user is submitting a parallel, compute-
intensive job that is divisible. Divisible workloads such as
video encoding, advanced graphics, and virtual reality are
an important class of application prevalent in high-
performance parallel computing. This is a common type
of application that could be submitted on EC2 and
amenable to failure-prone Spot Instances [9].

Suppose that the job consists of a total amount of work
W to be executed. W can be divided into Np many
Instances of the same type in parallel, which gives the
workload per Instance as Wp ¼W=Np. Note that Np can be
usually varied up to a certain limit given by the number
Nmax of “atomic” tasks in the job, so Np < Nmax. We
measure W and Wp in hours of computation needed on a
single EC2 Instance with processing capacity of 2.5 EC2
Compute Units, i.e., a single core of the High-CPU medium
Instance type. We refer to the time needed for processing
Wp on a particular Instance type It the task length
T ¼ T ðItÞ. Suppose that the processing capacity of It is
Ct, we have the perfect relationship T ðItÞ ¼Wp=Ct. It is
worth to note that T is the net computation time excluding
any overheads due to out-of-bid, checkpointing, and
recovery. This is different than the actual time needed to
process Wp, which is called execution time. Letting td denote
the deadline of a job to finish (for a fixed Instance type),
and Te the execution time, our objective is to minimize the
total monetary cost while satisfying T � E½Te� � td.
Further, we denote by tc the time for taking a checkpoint,
and tr the time for a restart.

To emulate real applications, we base the input workload
on that collected in real Grids and Desktop Grids. The
majority of workloads in traditional Grids consist of
pleasantly parallel and independent batches of tasks. The
mean job deadline td from the Grid workloads archive [13]
is 1,074 minutes (17.9 hours). The mean task length T is
164 minutes (2.7 hours) on a 2.5-GHz core.

In this work, we denote the maximum Spot Price of a
particular Instance type by pmax (exclude the burst noises).
Further, for a specific Instance type, the Spot Price for the
ith hour is denoted by pi. We define the result of each hour
during the course of the job’s computation as in-bid or out-
of-bid. As discussed in Section 2.1, if the user’s bid exceeds
pi, the result of the ith hour becomes in-bid. Conversely, the
result of the ith hour becomes out-of-bid if the user’s bid is
below pi. We use x�;�pi to denote an integrated state (or simply
state) of the ith hour. By � and �, we denote the result of the
ði� 1Þth hour and the ith hour, respectively. Note that
�; � 2 fi; og, where i is short for in-bid and o is short for out-
of-bid. For instance, xo;ipi means that after out-of-bid in the
ði� 1Þth hour, it becomes in-bid in the ith hour, and the Spot
Price is pi. Integrated the result of the previous hour into the

state of each hour, x�;�pi provides a compact means to define
the execution progress in Section 2.4.

2.3 Execution Scenario

Fig. 3 illustrates an exemplary execution scenario. A user
submits a job with a total amount of work W of 12 unit-
hours with Np ¼ 2, which translates to a Wp ¼ 6 unit-hours
and the task time (per Instance) T of 6 hours (assuming
EC2’s small Instance server). User’s bid price ub is 0.30 USD,
and during the course of the job’s computation, the job
encounters an out-of-bid situation (i.e., failure) between time
2 and 4. The total availability time was 7 hours, from which
the job has ð1:5þ 4:5Þ ¼ 6 hours of real execution progress
(i.e., useful computation), and uses 0.5 hour for checkpoint-
ing and 0.5 hour for restart. Obviously, these overheads are
unrealistic, but defined here for simplicity of the example.
The execution time Te needed until finishing was 9 hours.
During the job’s active execution, the Spot Price fluctuates.
There are 1 hour at 0.10 USD per time unit, 5 hours at 0.20
USD per time unit, and 1 hour at 0.30 USD per time unit,
giving a total cost of 1.4 USD. Thus, the expected price is
1:4=7 ¼ 0:2 USD per hour. The expected progress
E½f � ¼ T=Te ¼ 6=9 ¼: 0:67.

2.4 Validation of the Dual-Option Strategy

To explore an optimal bidding strategy, we first need to
investigate how to make a reasonable bid decision for each
hour. Theorem 1 implies that we can obtain an optimal
bidding sequence by making a choice from exactly two
options for each hour: bidding the maximum Spot Price or
bidding zero dollars (give up).

Theorem 1. Given the Spot Price history of a particular type of
Spot Instance, the budgetary constraint and deadline require-
ment td, an optimal bidding sequence that minimizes monetary
cost while meeting the deadline can be obtained by making a
choice from exactly two options for each hour: bidding the
maximum Spot Price or bidding zero dollars (give up).

Proof. Detailed proof can be found in Appendix, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2013.15. tu

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 3. Probability density function fðt; pÞ of failure occurrences, where t
is the time since the last checkpoint at bid price p.

In this work, our Spot Price context aware strategy tries
to intelligently adapt the bid price using intelligence from
detected pricing patterns. During each Instance hour, our
dual-option AMAZING algorithm precomputes the desired
probability of each bid option for the next Instance hour (bid
or give up) based on the current Instance state information.
Let A denote the set of the options that we consider each
time. Implied by Theorem 1, A is composed of only two
elements, i.e., A ¼ fB;Gg. Here, B is short for bid the
maximum Spot Price and G is short for give up. We denote the
bid decision made in the ith hour by ai where ai 2 A.

Since we always make our bid decision ahead of time,
we can make a checkpoint in the current hour whenever
we decide to give up (i.e., bid 0 USD) in the next hour. We
define the execution progress for the ith Instance hour, i.e.,
fðxi; aiÞ in following equation (xi denotes the integrated
state of the ith hour):

fðxi; aiÞ ¼

1� tc; if xi ¼ xi;ipi ; ai ¼ G
1� tr; if xi ¼ xo;ipi ; ai ¼ B
1� tc � tr; if xi ¼ xo;ipi ; ai ¼ G
1; if xi ¼ xi;ipi ; ai ¼ B
0; otherwise:

8>>>><
>>>>:

3 BIDDING STRATEGIES

3.1 Always Bidding On-Demand Price

The first strategy, namely always bidding on-demand price
(AO), is very simple and effective. As its name implies, we
always bid at the maximum price.

The motivation of this strategy can be summarized as
follows: If current Spot Price is lower than the bid price, we
will be charged the current price regardless of our bid.
Notice that we are making an assumption that the Spot
Price will never go above the on-demand price. This is
simply because no one will ever bid equal to or more than
the on-demand price because then they can simply
provision an on-demand Instance.

Lemma 2. For any job Instance, AO strategy guarantees
1) minimum completion time and 2) at most 10 percent more
than the minimum cost.

Proof. Detailed proof can be found in Appendix, available
in the online supplemental material. tu

3.2 Adaptively Setting Backup Point—Valley
Bidding

We next propose a backup point-based method to reduce
the cost while minimizing the job completion time. Here,
checkpoints are taken periodically at hour boundaries. It is
the most intuitive one for the Spot Instances because an
hour is the lowest granularity of Spot Instance pricing. It
also provides a guarantee of paying for the actual progress
of computation. A variation of this policy is the fine-grained
checkpointing, which evaluates whether to take a check-
point periodically every 10 or 30 minutes.

Valley bidding, as its name says, is a bidding strategy for
which a user bid a maximum price only when the Spot Price
decreases. In the best case, the Spot Price drops to the
bottom of the valley, the user will be charged at the lowest
price for the Instance hours she obtained. Conversely, once
the Spot Price increases, the user will give up bidding.

During the Instance hour that right before the giving up, a
checkpoint will be taken to preserve the intermediate
computation results. In this way, valley bidding facilitates
the decision making by means of avoiding potential
high prices.

3.3 CMDP-Based Bidding Strategy

The goal of AMAZING is first reinstated with formulation.
Recall that we defined td as the execution time constraint
(i.e., deadline), which is the maximum expected clock time
allowed. We study the following constrained optimization
problem: considering a long state evolving process, given an
execution time constraint td and STPM, what is the optimal bid
strategy �, such that the expected monetary cost to finish the
entire task E½M� is minimized, and the expected execution time is
maintained under the constraint, i.e., E½Te� � td?

It is a critical challenge to control the balance of reliability
versus monetary costs. Previous researchers investigate
probabilistic model and checkpointing mechanisms to
answer the question of how to bid given these constraints.
Given the maximum price that users are willing to pay per
hour, researchers tend to apply probabilistic model [9] and
different checkpointing strategies [20] to meet the require-
ments. Nevertheless, previous approaches were considered
merely under the fixed-bid price model, and only empirical
results were given in their study. In this work, we try to
design an optimal bidding strategy that utilizes both the
dynamic pricing model and the state transition intelligence.
For each Instance hour, a bid decision is made based on
STPM for the next Instance hour. In this way, the
appropriate time for checkpointing can be known ahead
of time. By preserving the intermediate computing results
in time, we are able to improve the execution efficacy.

The program running AMAZING just needs to be
informed of the integrated state of each Instance hour.
Based on the collected intelligence about state transitions in
STPM, a back-end system runs a linear programming (LP)
routine to select the bid option (make a desirable decision
for the next Instance hour). After learning phase, AMAZING
reduces the total monetary cost for running a submitted
task in a long period.

The STPM for a particular Spot Instance type can be
learned from Spot Price history released on Amazon EC2
website. For a particular Instance type, Spot Prices
fluctuate within a small range through a relatively long
period. With E different Spot Prices for a particular
Instance type, we can build an E � E matrix STPM to
represent the transition probability between each Spot
Price pair si and sj (for 1 � i; j � E). Fig. 4 shows the
transition probability of partial Spot Price pairs (si, sj). The
results shown in the figure are computed from the trace
price history for various Instance types in June 2011. For
instance, as shown in Fig. 4b, the difference between
the highest and the lowest Spot Price for us-east-1.linux.c1.-
medium Instance type is within 0.006 USD per hour
through last month (exclude burst noises). In this example,
we have 0:057 � si; sj � 0:063 (for 1 � i; j � 7). For ease of
illustration, we use (�, �) in the figure to denote the price
pairs. Given a particular value of � in an Instance hour, we
compute the probability that the Spot Price transit to � in
the following Instance hour.

Our approach builds the matrix based on collected
history trace data from Amazon. In this way, we can

TANG ET AL.: A FRAMEWORK FOR AMAZON EC2 BIDDING STRATEGY UNDER SLA CONSTRAINTS 5

estimate the probability of transition between two Spot
Prices si and sj based on the relative frequency. This
probability of transition would be represented by an entry
in the matrix. We denote each entry in STPM by �ðsi; sjÞ,
which is estimated using the formula in

�ðsi; sjÞ ¼
jsi followed by sj in adjacent hoursj

jSpot Price equals to sij
: ð1Þ

Clearly, an entry �ðsi; sjÞ of a higher value indicates a
higher transition probability from Spot Price si to sj. Also
note that �ðsi; sjÞ 6¼ �ðsj; siÞ may hold for most Spot Price
pairs. We further observe that �ðsi; siÞ � 50% tends to be
satisfied in the STPM of different Instance types. In our
proposed approach, an AI agent is trained to extract Spot
Price patterns from the dynamically changed Spot Price data.

In each Instance hour, based on the state of current
Instance, the algorithm computes the desired probability of
different bid options for the next Instance hour. The detailed
selection of a proper bid option is explained in the next
section based on the decision making strategy �. Then,
corresponding checkpoint should be taken if we decide to
give up in the next Instance hour. It is worth noting that
when our algorithm computes the desired probability of
each bid option, it has considered all the overhead (e.g.,
checkpoint) that would be generated. By making a
checkpoint during the end of current Instance hour, we
are able to preclude the loss of intermediate results.

In Algorithm 1, � specifies the desired probability of each
bid option for the next Instance hour. We model the
computation of optimal bid strategy problem as a CMDP.
By solving the corresponding LP in polynomial time [7], we
obtain an optimal strategy � for each state. For each state,
the selection of different bid option is randomized under
fixed distribution.

Algorithm 1. Pseudocode for AMAZING Policy.

Input: Optimal bidding strategy � (computed from

Algorithm 2) and current state information

Output: The bidding decision for the next hour

1: Randomly choose a bid decision based on bidding

strategy � calculated from Algorithm 2 for the next

Instance hour;
2: if the bid decision is to give up in the next Instance

hour then

3: make a checkpoint at the end of current Instance hour;

4: Perform bidding decision correspondingly in the next

hour.

3.3.1 Constrained Markov Decision Process

Markov decision processes (MDP), also known as con-
trolled Markov chains, constitute a basic framework for
dynamically controlling systems that evolve in a stochastic
way. We focus on discrete time models: we observe the
system at stages t ¼ 0; 1; 2; . . . ; n, where n is called horizon,
and may be either finite or infinite. A controller has an
influence on both the costs and the evolution of the system,
by choosing at each time unit some parameters, called
actions. As is often the case in control theory, we assume
that the behavior of the system at each time unit is
described by a state, as well as the action. The system
moves sequentially between different states in a random
way, current state fully determines the probability to move
to any given state in the next time period unit. In a standard
MDP, current action may also affect the transition prob-
ability for the next time unit, but this is not the case in this
paper where the transition matrix does not depend on
current decision making algorithm. MDP is, thus, a
generalization of (noncontrolled) Markov chains, and many
useful properties of Markov chains carry over to controlled
Markov chains. The model that we consider in this paper is
special in the sense that more than one objective cost exists,
and the controller minimizes one of the objectives subject to
constraint the other.

To make the above framework fit our problem setting,
we define a tuple fO;X;A; P ;M;Dg, where: 1) O ¼ ft j t ¼
1; 2; . . .g denotes the set of decision epochs. Decisions are
made at the beginning of each Instance hour. 2) X ¼
fx1; x2; . . . ; xng is a countable state space. Although we limit
the study in this work to discrete Instance state transitions,
the continuous case can also be handled by dividing it to
discrete space. Recall that we gave a preliminary definition
of xi in Section 2.2. We have xi ¼ x�;�pi for xi 2 X. 3) A is a
metric set of actions. We defined A ¼ fB;Gg as the compact
option set under consideration in Section 2.4. Each element
ai 2 A defines a bid option, i.e., either bid or give up for the
next Instance hour. Note that ai, the bid decision made in
the ith Instance hour, will directly affect the state of the
ðiþ 1Þth Instance hour.

Theoretically, each Instance hour has 4 � E possible states.
As defined previously in Section 3.3, E is the number of
different Spot Prices that presented in the price history of a
particular Instance type. Since �; � 2 fi; og, the number of
different combinations of �; � is 4. Thus, we have 4 � E
possible states for each Instance hour. To reduce the
searching space, we leverage underlying transition matrix
to facilitate our study.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 4. Transition probability of (pi, pj) which represents the probability that Spot Price pi is immediately followed by Spot Price pj for different types of
Spot Instances.

We use the previous example in Fig. 4a for illustration.

In this example, a possible bid option ai could be give up,

i.e., ai ¼ G. Since xi ¼ xi;ipi and ai directly determines the

state of the next Instance hour to be xiþ1 ¼ xi;opiþ1
, the size of

searching space is reduced to E. As illustrated in Fig. 5,

different bid decisions made in the ith Instance hour will

lead to different possible state space of the ðiþ 1Þth
Instance hour.

Now, 4) Let �ðxi; aiÞ denote the occupation measure of state

xi and bid option ai, i.e., the probability that such state-

option pair ever exists in the decision process. E½f� denotes

the expected execution progress in an Instance hour, which is

expressed as in (2). Notice that the occupation measure �ðÞ is

decided by corresponding decision making strategy. 5) P

represents the state transition probability matrix (different

from STPM). Define Pi;jðaiÞ as the probability of moving

from Instance state xi to xj, when bid option ai is taken.

Here, xj denotes any possible state of the ðiþ 1Þth Instance

hour. If xj is a valid state given xi and ai, then Pi;jðaiÞ > 0.

Otherwise, Pi;jðaiÞ ¼ 0.
Take Fig. 5 as an example. As illustrated in Fig. 5a,

possible states of the ðiþ 1Þth Instance hour include all 4 � E
states on the right-hand side of the arrows. Among them,

only E states of the ðiþ 1Þth Instance hour is valid. More

specifically, only xiþ1 ¼ xi;opiþ1
can be reached given xi ¼ xi;ipi

and ai ¼ G. Similarly, given xi ¼ xi;ipi and ai ¼ B, we have

another set of E valid states for the ðiþ 1Þth Instance hour.

More specifically, only xiþ1 ¼ xi;ipiþ1
can be reached in this

scenario. In Fig. 5, all valid states of the ðiþ 1Þth Instance

hour under different ai are labeled on the right-hand side of

the blue arrows.
Now, 6) M is the immediate cost. In this paper, we define

E½M� as the expected total monetary cost during the course

of the job’s computation, which can be computed as in (2).

7) D is the maximum clock time allowed to complete the

job, i.e., deadline. In this paper, we have D ¼ td. Recall that

fðxi; aiÞ denotes the execution progress for the ith Instance

hour. Please refer to Section 2.4 for detailed calculation of f

under different Instance states. Therefore, we have the

expected execution progress for each Instance hour

E½f � � 1
td

:

E½f � ¼
X
xi2X

X
ai2A

�ðxi; aiÞ � fðxi; aiÞ;

E½M� ¼
X
xi2X

X
ai2A

�ðxi; aiÞ � pi � td:
ð2Þ

3.3.2 Optimal Bidding Strategy �

To compute the optimal strategy of the CMDP with

expected monetary cost criteria, we can formulate it as a
linear programming. After solving the corresponding LP,

we can obtain the optimal strategy through normalization
([7, Chapter 4]). We next write the bid optimization

problem defined above as the following LP. The
constraints (1) and (3) ensure that �ðxi; aiÞ is a feasible
probability measure. The deadline requirement can be

respected under constraint (2) by setting the expected
execution time less than 1

td
. In inequality (4), �xjðxiÞ is the

delta function of xi concentrated on xj, which is defined
in following equation:

�xjðxiÞ ¼
1; if i ¼ j
0; otherwise:

�

This constraint describes that the outgoing rate and
incoming rate for a state must be the same. At the same

time, it emphasizes the property for ergodic processes.
After solving the linear programming, we get an optimal

occupation measure �ðÞ in terms of monetary cost mini-
mization for each state/bid-option pair. However, sinceP

ai2A �ðxi; aiÞ � 1, we cannot directly use �ðxi; aiÞ as the
probability of taking action ai at state xi.

Theorem 3. The optimal bid strategy � can be determined from

�ðxi; aiÞ as follows:

�ðai j xiÞ ¼
�ðxi; aiÞP
ai2A �ðxi; aiÞ

:

Here, � describes the probability that taking bid option ai at
state xi.

It is easy to verify that
P

ai2A �ðai j xiÞ ¼ 1. Please refer to

[7, Theorem 4.3] for the proof of the correctness of
Theorem 3. For any number of input state, Algorithm 2

can return an optimal strategy � in polynomial time. As
input of Algorithm 1, �ðai j xiÞ for all i will be performed in
the next Instance hour.

Algorithm 2. Computation of Optimal Bidding Strategy �:

Input: Execution deadline td, transition matrix P

Output: Optimal bidding strategy �.
1: Solve corresponding CMDP linear programming to get

the occupation measure �ðxi; aiÞ, 8xi 2 X; 8ai 2 A;

2: Calculate optimal bidding strategy � from �ðxi; aiÞ as

�ðai j xiÞ ¼
�ðxi; aiÞP
ai2A �ðxi; aiÞ

TANG ET AL.: A FRAMEWORK FOR AMAZON EC2 BIDDING STRATEGY UNDER SLA CONSTRAINTS 7

Fig. 5. Different bid decisions made in the current Instance hour will lead
to different possible state spaces of the next Instance hour.

4 PERFORMANCE EVALUATION

In our study, we considered prices of Instance types that
run under Linux/UNIX OS and are deployed in the zone
us-east-1. Table 1 shows the symbols, class (High-CPU,
Standard, High-Memory), API names, RAM memory (in
GB), total processing capacity in EC2 Compute Units,
number of cores, and processing capacity per core.
Interested readers please refer to [1] for details. We
simulated the bid optimization algorithms based on the
real price traces in terms of the task completion time, total
price, and the time overhead of checkpointing and restart.

4.1 Evaluation Settings

Table 2 shows our simulation setup in detail. The data set
we used in our experiments is collected from a website [5]
that interactively display charts of Amazon Spot Instance
prices. The time to analyze price history is set to be
3 seconds. And default task restart time is set to be
10 minutes. We collect price history of Instance type D for
52 days to train the STPM. For testing, we collect price
history of the same type of Instance for 29 days to evaluate
the performance of the proposed bidding model. We
assume that the checkpointing cost of running programs
is known. We used the constant value for the tc but using a
variable checkpointing cost is also possible in our system
model. The minimum price granularity for bidding option
is set to be 0.001 USD. If not stated otherwise, we use the
Instance type D with task length T of 164 minutes (2.7
hours) in our experiments. Furthermore, our models
assume that a job is executed on a single Instance only, as
running several Instances of same type in parallel yields the
identical time and proportional cost behavior.

4.2 Impact of Constraint Parameters

In this part, we study how the constraint factors such as
budgetary constraint affect the distributions of the execu-
tion time and monetary cost per Instance. We also
investigate the overhead of the checkpoint/restart during
the course of the job’s computation.

4.2.1 Execution Time and Monetary Cost

Fig. 6a shows execution time for various values of budget-
ary constraints and desired confidence in meeting the job’s
deadline cT . Instead of assuming a fixed deadline, we study
here the execution time which can be achieved with
confidence cT . As shown in Fig. 6a, low budgets in

conjunction with high values of confidence lead to
extremely long execution times, which can be up to factor
15 compared to the task length T . For sufficiently high
budget (�0:18 USD), the execution time drops to half of the
peak value. Only in the top range of the budgetary
constraints, the execution time is on the order of T .

Fig. 6b shows the monetary cost under varied budgetary
constraints and desired confidence in meeting the budget
cM . Differently from the execution time, monetary cost
increases only slightly with the budget constraint, and is
relatively indifferent to the confidence. We explain this by
the fact that a long execution time comes primarily from
out-of-bid (give up) time. In this scenario, the user is not
charged. Even during an execution time of 35 hours there
might be only small in-bid time on the order of execution
time T that is charged. In conclusion, a user does not save
much by bidding low (within 10 percent) but risks very
high execution times.

We also find that a slight change of the budgetary
confidence cM has significant impact on the execution time.
If the user assumes 0.01 USD more for the budget, she will
benefit from a significant reduction of execution time at the
same confidence value.

4.2.2 Overhead of Checkpoint/Restart

Fig. 7a shows the overhead of checkpoint/restart during the
task execution, where both the budgetary constraint and
the confidence of availability (in-bid) time cI . We denote
availability time by AT . We study the time overhead due to
checkpointing and restart. We observe that our approach
outperforms previous work in terms of low execution time
and overhead while meeting the budgetary constraint. This
will be discussed in detail later in Section 4.3. Clearly, low

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

TABLE 2
Values of Parameters Used in This Paper

Fig. 6. Impact of budget constraint and desired confidence in meeting the job’s deadline cT .

budgets lead to more frequent out-of-bid situations, which
increases the checkpointing overhead.

4.2.3 Impact of Task Length

Fig. 7b illustrates how the distributions of the availability
ratio (AR) depends on the task length T . Availability ratio is
another importance feature utilized in cloud computing to
evaluate the efficacy of bidding algorithms. We first give a
T -free definition of AR: the ratio of the total time in-bid to
execution time, i.e., AR ¼ AT=Te. Fig. 7b shows ARð0:9Þ,
i.e., value v � (90 percent of values assumed by AR) as a
function of the budgetary constraint and T . Here, the
impact of T is strongly visible, especially for low budgets.
As a consequence, distribution of AR depend on T , and
cannot be stored only as functions of T -free factors.

4.3 Evaluation of Execution Time

In this section, we study performance of AMAZING in
terms of the execution time compared to previous work [9],
[20]. In previous work, bid price for each Instance hour is
fixed and various checkpointing strategies are proposed to
balance the reliability and monetary cost during the course
of job’s computation. The HOUR strategy proposed in [20]
is the hourly strategy, where a checkpoint is taken at a
boundary of each paid hour (measured from the start of
current availability interval). They evaluate the perfor-
mance of this hourly checkpointing strategy HOUR with the
OPT strategy (an unrealistic base-case) for various values of
bid price and desired confidence. We conduct extensive
experiments to compare our bidding strategy AMAZING
with the HOUR strategy, where both the bid price (HOUR)
and task length T are varied.

Fig. 8 shows the cumulative distribution function (CDF)
of the execution time Te according to different bidding
strategies and task lengths T . The budget constraint for our
proposed approach is set to be 0.18 USD per Instance. We
used the same settings of the remaining parameters, such
as checkpointing cost, rollback cost (restart cost), and
processing capacity of the Instance type as in [20], [9].
Obviously, under the same task length T , the AMAZING
strategy has much lower time overhead. We explain this by
the fact that our bid decision for each Instance hour is
computed from the Instance state transition probability
matrix (STPM). AMAZING exploits the predicted Spot
Price transition to solve the bid optimization problem; thus,
it is more likely to help customers skip unnecessary
checkpoints/restart when the Spot Price is relatively
smooth. Consequently, more clock time is utilized to
perform effective computation, and a higher utilization
ratio (UR) is achieved, where UR ¼ T=Te. On the other
hand, the HOUR strategy asks customers to take a
checkpoint at a boundary of each paid hour without
looking ahead even if with high probability the Spot Price
could be even lower in the next Instance hour. As a result,
more than 20 percent of the availability time is taken for
hourly checkpointing/recovery, less time is utilized for real
program processing. In summary, achieving a higher UR
during the course of task computation is the main reason
that the proposed AMAZING strategy outperforms the
HOUR strategy. We also observed that the advantage of
AMAZING is even more obvious when the task length T
increases. As shown in Fig. 8, the HOUR strategy with
various bid prices rarely meets the confidence cT ¼ 90%
under the budget constraint of 0.18 USD. In contrast,

TANG ET AL.: A FRAMEWORK FOR AMAZON EC2 BIDDING STRATEGY UNDER SLA CONSTRAINTS 9

Fig. 7. (a) Overhead of the checkpoint/restart for various budget constraints; (b) Availability ratio depending on the budget constraint and task length T .

Fig. 8. CDF of execution time for different task length T on Instance type D, where (a) T ¼ 144 mins, (b) T ¼ 164 mins, (c) T ¼ 184 mins.

AMAZING reaches 100 percent confidence of meeting the
deadline requirement at less than 4 hours.

4.4 Evaluation of Monetary Cost

In this section, we study performance of AMAZING in
terms of the monetary cost compared to previous work
[9], [20]. We used the same settings of parameter as in
previous section. In Fig. 9, we illustrated the CDF of the
monetary costs per Instance according to different bidding
strategies and task length T . Under the same task length
T , the monetary cost followed the AMAZING bid strategy
is much lower (10 percent) than that conducted by the
HOUR strategy for various bid prices. The main reason is
that in the proposed AMAZING strategy, STPM facilitates
the decision making by means of predicting the transition
among various Instance states and optimizing the balance
of reliability versus monetary costs. With intelligence
about the Instance state transition, AMAZING has more
chance to obtain the Spot Instances charged at lower
prices by EC2, while keeping a high utilization ratio to
complete submitted jobs before deadline.

We also observed that the advantage of AMAZING is
even more obvious as the task length T increases. As shown
in Fig. 9c, the HOUR strategy with various bid prices cannot
meet the budget constraint of 0.18 USD. In contrast,
AMAZING reaches budgetary confidence cM > 15% even
under harsh monetary cost constraint.

In the results of Fig. 9b, the HOUR checkpointing
strategy with two highest bid prices cannot meet the
user’s budgetary constraints (0.18 USD), while the three
lowest bid prices cannot meet the given deadline con-
straint (17.6 hours). As we can observe from Figs. 8 and 9,
some bid prices followed the HOUR strategy are not
feasible. The proposed AMAZING approach outperforms
the HOUR strategy in terms of both execution reliability
and monetary cost.

5 RELATED WORK

Branches of related work include cloud computing
economics and resource management services. Several
previous works focus on the economics of cloud comput-
ing, i.e., the performance and monetary benefits of cloud
computing compared to other traditional computing plat-
forms such as Clusters, Grids, and ISPs [8], [11], [12], [14],
[16], [19]. These economic studies are important for
understanding the performance tradeoffs among those
computing platforms. However, these works assume a
static pricing model for EC2’s dedicated on-demand

instances and do not address the specific and concrete
decisions an application scientist must make to balance bid
price and resource allocation when using a market-based
cloud computing platform, such as Spot Instances. Several
systems for monitoring and managing cloud applications
exist [3], [4], [6], but these systems currently do not
consider cloud prices that vary dynamically over time.
Several middleware currently deployed over clouds have
fault-tolerance mechanisms [10], [15], but these mechan-
isms currently are not cost-aware either.

It is a critical challenge to control the balance of reliability

versus monetary costs in the context of unreliable resources
such as Spot Instances. Probabilistic model [9] and
checkpointing mechanisms [20], [21], [22] to answer the

question of how to bid given these constraints. Given the
maximum price that users are willing to pay per hour,

researchers tend to apply probabilistic model and different
checkpointing strategies to meet the requirements. Never-

theless, these approaches were considered merely under the
fixed-bid price model, and only periodically checkpointing
schemes were given in their study. In this work, we try to

design an optimal bidding strategy that utilizes both the
dynamic pricing model and the state transition intelligence

that meets the SLA requirements.

6 CONCLUSION

In this work, we propose an effective bid decision making
strategy to balance the reliability versus monetary costs in
the context of unreliable resources such as Spot Instances.
Different from previous works on cloud applications,
AMAZING exploits the intelligence about state transition
among various Spot Instances to facilitate decision making
during the course of job’s computation. Our state context
aware design tries to intelligently adapt the bid using
intelligence from detected state patterns. In this paper, the
decision making optimization problem is formulated as a
CMDP. After solving the CMDP, AMAZING applies
optimal bid decision to each Instance hour until the job’s
computation is completed. Our experimental results verify
that AMAZING outperforms previous works in terms of
both execution time and monetary cost.

ACKNOWLEDGMENTS

Part of the work was published at IEEE Cloud 2012

Conference [18].

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 9. CDF of monetary cost for different task length T on Instance type D, where (a) T ¼ 144 mins, (b) T ¼ 164 mins, (c) T ¼ 184 mins.

REFERENCES

[1] Amazon EC2 Spot Instances, http://aws.amazon.com/ec2/
#instance, 2013.

[2] Amazon Simple Storage Service FAQs, http://aws.amazon.com/s3/
faqs/, 2013.

[3] CloudKick: Simple, Powerful Tools to Manage and Monitor Cloud
Servers, http://www.cloudkick.com/, 2013.

[4] CloudStatus, http://www.cloudstatus.com/, 2013.
[5] http://www.cloudexchange.org/, 2013.
[6] RightScale: Cloud Computing Management Platform, http://

www.rightscale.com/, 2013.
[7] E. Altman, Constrained Markov Decision Processes, vol. 7. CRC Press,

1999.
[8] A. Andrzejak, D. Kondo, and D. Anderson, “Exploiting Non-

Dedicated Resources for Cloud Computing,” Proc. IEEE Network
Operations and Management Symp. (NOMS ’10), 2010.

[9] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud
Computing under SLA Constraints,” Proc. 18th Ann. IEEE/ACM
Int’l Symp. Modeling, Analysis and Simulation of Computer and
Telecomm. Systems, pp. 257-266, 2010.

[10] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Proces-
sing on Large Clusters,” Comm. ACM, vol. 51, pp. 107-113, 2008.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
Cost of Doing Science on the Cloud: The Montage Example,” Proc.
ACM/IEEE Conf. Supercomputing, p. 50, 2008.

[12] S. Garfinkel, Commodity Grid Computing with Amazon’s s3 and ec2,
Defense Technical Information Center, 2007.

[13] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The Performance
of Bags-of-Tasks in Large-Scale Distributed Systems,” Proc. 17th
ACM Int’l Symp. High Performance Distributed Computing, pp. 97-
108, 2008.

[14] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. Anderson,
“Cost-Benefit Analysis of Cloud Computing versus Desktop
Grids,” Proc. IEEE Int’l Symp. Parallel and Distributed Processing
(IPDPS ’09), 2009.

[15] M. Litzkow, M. Livny, and M. Mutka, “Condor-a Hunter of Idle
Workstations,” Proc. IEEE Eighth Int’l Conf. Distributed Computing
Systems, pp. 104-111, 1988.

[16] M. Plankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for Science Grids: A Viable Solution,” Proc. Int’l Workshop Data-
Aware Distributed Computing (DADC ’08), 2008.

[17] M. Stokely, J. Winget, C. Keyes, and B. Yolken, “Using a Market
Economy to Provision Compute Resources across Planet-Wide
Clusters,” Proc. IEEE Int’l Symp. Parallel and Distributed Processing
Symp., 2009.

[18] S. Tang, J. Yuan, and X. Li, “Towards Optimal Bidding Strategy
for Amazon Ec2 Cloud Spot Instance,” Proc. IEEE Fifth Int’l Conf.
Cloud Computing, 2012.

[19] W. Wang, B. Li, and B. Liang, “Towards Optimal Capacity
Segmentation with Hybrid Cloud Pricing,” technical report, Univ.
of Toronto, 2011.

[20] S. Yi, J. Heo, Y. Cho, and J. Hong, “Adaptive Page-Level
Incremental Checkpointing Based on Expected Recovery Time,”
Proc. ACM Symp. Applied Computing, pp. 1472-1476, 2006.

[21] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking Point Decision
Mechanism for Page-Level Incremental Checkpointing Based on
Cost Analysis of Process Execution Time,” J. Information Science
and Eng., vol. 23, pp. 1325-1337, 2007.

[22] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot
Instances via Checkpointing in the Amazon Elastic Compute
Cloud,” Proc. IEEE Third Int’l Conf. Cloud Computing, pp. 236-243,
2010.

Shaojie Tang received the BS degree in radio
engineering from Southeast University, P.R.
China in 2006. He received the PhD degree
from the Department of Computer Science at
Illinois Institute of Technology in 2012. He is an
assistant professor in the Department of Com-
puter and Information Science (Research) at
Temple University. He has recently served as a
guest editor of Journal of Tsinghua Science and
Technology. His main research interests include

wireless networks (including sensor networks and cognitive radio
networks), social networks, pervasive computing, mobile cloud comput-
ing, and algorithm analysis and design. He also served as a TPC
member of a number of conferences such as IEEE ICPP, IEEE IPCCC,
MSN. He is a member of the IEEE.

Jing Yuan received the BS degree in computer
science from Nanjing University in 2008. She is
a graduate student in the Department of
Computer Science at University of Illinois,
Chicago. Her current research interests include
cyber physical systems, online social networks,
and cloud computing.

Cheng Wang received the PhD degree from
the Department of Computer Science at Tongji
University in 2011. Currently, he is with the
Department of Computer Science and Engi-
neering, Tongji University. His research inter-
ests include wireless communications and
networking, mobile social networks, and mobile
cloud computing.

Xiang-Yang Li (M’99-SM’08) received the
bachelor’s degrees from the Department of
Computer Science and the Department of
Business Management from Tsinghua Univer-
sity, China, both in 1995. He received the MS
and PhD degrees from the Department of
Computer Science, University of Illinois at
Urbana-Champaign in 2000 and 2001, respec-
tively. He is an associate professor of computer
science at the Illinois Institute of Technology.

He is an editor of several journals, including “IEEE TPDS” and
“Networks.” He also with the Advisory Board of Ad Hoc & Sensor
Wireless Networks from 2005, and “IEEE CN” from 2011. He is a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TANG ET AL.: A FRAMEWORK FOR AMAZON EC2 BIDDING STRATEGY UNDER SLA CONSTRAINTS 11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

