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Abstract —Bloom filter is effective, space-efficient data structure for concisely representing a data set and supporting approximate
membership queries. Traditionally, researchers often believe that it is possible that a Bloom filter returns a false positive, but it will never
return a false negative under well-behaved operations. By investigating the mainstream variants, however, we observe that a Bloom
filter does return false negatives in many scenarios. In this work, we show that the undetectable incorrect deletion of false positive items
and detectable incorrect deletion of multi-address items are two general causes of false negative in a Bloom filter. We then measure
the potential and exposed false negatives theoretically and practically. Inspired by the fact that the potential false negatives are usually
not fully exposed, we propose a novel Bloom filter scheme which increases the ratio of bits set to a value larger than one without
decreasing the ratio of bits set to zero. Mathematic analysis and comprehensive experiments show that this design can reduce the
number of exposed false negatives as well as decrease the likelihood of false positives. To the best of our knowledge, this is the first
work dealing with both the false positive and false negative problems of Bloom filter systematically when supporting standard usages
of item insertion, query, and deletion operations.

Index Terms —Bloom filter, False negative, multi-choice counting Bloom filter.
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INTRODUCTION to the item were previously set tb by other items in the

1
Bloom filter (BF) [1] is a space-efficient data strucdata set. A possible way to deal with hash collisions is to
A ture for representing a set and supporting membersrqESign perfect hash functions. This is only possible fora#icst

queries. It outperforms other efficient data structureshsufi@ta Set without item insertion and deletion after deplayme
as binary search trees and tries, as the time needed to Hydeality, however, BF and its variants are widely used to
an item or check whether an item belongs to the set represent both static and dynamic data sets. That saidatae d
constant irrespective to the cardinality of the set. FosgheSet IS often unknown in advance, therefore, it is impossible
advantages, BF has been extensively used in database as {Refl€Sign perfect hash functions. Thus, the false posisve i
as networking applications [2], [3], web cache sharing [41nav0|dable in a BF and its variants, and hence many efforts

and routing on overlay networks [5], [6], [7]. Moreover, gpvere made to reduce the probability of false positive during
has great potential to summarize streaming data in the m3j§ Past years [17], [18], [19], [20].
memory [8], store the states of a large number of flows in theFOr @ static data sek’, it is not allowed to perform data
on-chip memory of the routers [9], and speed up the staistic/nsertion or_delet|on operations after we represent it asa B
based Bayesian filters [10]. To make it more effective anghus the bit vector of a filter lalways reflects the data set
efficient, BF has been improved from different aspects for @rrectly. The membership queries based on BF never produce
variety of applications. Some important variations inglutle 2 falsé negative in this scenario. By handling a dynamic data
compressed Bloom filter [11], counting Bloom filter (CBF),[4]S€l @ deletion operation might hash an item to be deleted
distance-sensitive Bloom filter [12], space-code Bloonefilt 2N resets the related bits to 0. It may set a location to 0 to
[13], spectral Bloom filter [14], generalized Bloom filterg}l which is algo hashed by other items in the 3&tin such a
and Bloomier filter [16]. case, t_he filter no Ionge_r reflects the data set correcthys thu
Despite the aforementioned benefits offered by BF, a Bffoducing a false negative. To address the problem, Fan et
may yield afalse positivedue to hash collisions, for which it 8- Propose the CBF [4], in which each entry is not a single

wrongly determines that an item belongs to a data set whiib put ra_ither a small counter consisted of sev.eral bits. Whe
the item is actually not. The cause is that all bits related] it€m is added (or deleted), the corresponding counters ar
incremented (or decremented respectively). By assumiag th
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usage of item insertion, query and deletion operations. ¢e ausually suffices The operation of item insertion is extended
measure the potential and exposed false negative items frimmincrement the value of each respective counter (defined by
the aspects of theory and practice. We propose two prireiple (z)) by one. The operation of item deletion decrements the
to minimize the number of exposed false negative items. Walue of each respective counter by one.
also design a variant of CBF to reduce the number of exposednce a data seX is represented as a BF, user can determine
false negative items. The main contributions of this paper avhether an itemx: belongs toX by querying the filter instead
as follows: of set X. A membership query based on BF produces one of
1) We show that a false positive can trigger a deletion ofthe following results.
false positive item, and result in at least one multi-adsires 1) The judgment always matches the fact. In other words,
item. Both of the two cases cause an incorrect item if z € X, thenVi € {1,2,...,k} we haveh;(z) # 0; and
deletion operation, and lead to potential false negative if x ¢ X then3i € {1,2,...,k} such thath;(z) = 0.
items. 2) Althoughz does not belong td, the judgment returns a
2) We reveal that the resulting false negative items are reversed result, calledfalse positivgudgment. In other
usually not fully exposed in consequent queries. We also words, if z ¢ X thenVi € {1,2,...,k} satisfying that
measure the potential and exposed false negative items h;(x) # 0. Here, the itemz is called afalse positive
caused by an incorrect item deletion operation. item
3) We propose two fundamental principles to make potentiaB) Althoughz belongs taX, the judgment returns a reversed
false negatives unexposed whenever possible. Our design result, called dalse negativgudgment. In other words, if
is able to increase the ratio of bits set to a value larger = € X then3i € {1,2, ..., k} satisfying thath;(z) = 0.
than one in a BF without decreasing the ratio of bits set Here, the itemr is called afalse negative item
to zero. Let n be the number of items in the saf, andp denote
4) We propose an enhanced BF scheme which can redtlee probability that a random bit of the corresponding BB.is
about 50 — 80% of exposed false negative items inBy assuming that all hash functions produce values uniform
BF. Through comprehensive experiments and mathematdomly from[1,m], clearlyp = (1 — 1/m)*" ~ e=nxk/m,
analysis, we show that our design achieves desired pr@s-n x k bits are randomly selected, with probability'm
erties. in the process of adding each item. The probability that a
The rest of this paper is organized as follows. Sectionrandom bit is 1 is thereforeé — (1 — 1/m)¥". Now we test
briefly introduces the BF and related work, and discusses tfgmbership of an item; that is not in theX. Each of the
root cause of false negative items in a CBF. Section 3 messukebits of theBfaddress(x1) is 1 with a probability as above.
the potential and exposed false negatives. Section 4 pgesdrhe probability of all of thek bits being 1, which would cause
a variant of CBF. We discuss our experimental methodologyfalse positive, is then
ﬁ]ngeeg/t?cl)una: this design in Section 5, and conclude the work Flm,kyn) = (1= p)F ~ (1 — e—kxn/myk (1)
These results about the membership query based on BF also
hold for the membership query based on CBF. Recall that the
2 PRELIMINARIES basic component of a CBF is a counter instead of a bit. Unless

! . , explicitly stated, we use the notations defined for BF to aixpl
We first review some related concepts of Bloom filers ar‘ﬁfe same concept in CBF in the rest of this paper

then discuss why false negative items can happen in counting
Bloom filers. Some related work are also briefly reviewed.
2.2 Related work
) . ] It is well known that false negative items do not arise at all
2.1 Bloom filter and counting Bloom filter in a BF if the BF always correctly reflects the membership

A set X of n items is represented by a BF using a vector d¢fformation of a data set represented by it. Unfortunateig,

m bits which are initially set td). A BF usesk independent essenyal condition is often destroyed by many non-stahdar
random hash functionis;, ha, - - - , hy, with a range{1, ...,m}. behaviors. _ _ N
When inserting an itenx: to X, all bits of a Bloom filter A BF is replicated by multiple nodes to support efficient
addresBfaddress(z) (consisted ok addresses; (z) for 1 < protocols in distributed systems. The replicas might beg:om
i < k) will be set tol. To answer a membership query for an§tale bgcause the changes of a BF cannot_ be spread quickly to
item z, users check whether all bits(z) are set td. If not, z all replicated BFs. Hence, false negative items are pratluce
is not a member ok . If yes, we assume thatis a member of The false negative and false positive in the stale repli¢as o
X, although we might be wrong in some cases. Hence, a BE are analyzed in [22]. _

may yield afalse positivedue to hash collisions, in which all BF is widely used to represent stream data since the
bits of Bfaddress(z) were set tal by other items in seX [1]. allocated space is rather small .compare.d to the size of. Fhe
In BF, no item deletions are allowed. CBF [4] provides a wa§tréam. When a large number of items arrive, the false pesiti
to implement a delete operation on a BF without regeneratinq' Whenk is chosen as optimdh2- ™ . I — 4 suffices since the average
the filter afresh. In a CBF each item of its bit vector is ex@hd j5aq of a counter isn 2 and the probabillty that a counter has Ideid= 24— 1

from being a single bit to being &-bits counter, and.=4 s around6.8 x 10~17.
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rate increases to an unreasonable value quickly. To addreame number of concurrent flows such that the needed on-
this issue, the stable BF [8] attempts to drop the older data bhip memory can be reduced by a factor of 5 to 20 Mbits in
randomly evicting some information from it even they do nd®]. Here, it is unnecessary and impractical for a netwagkin
know which part is stale. device to store states of flows together with a corresponding

Based on the following two assumptions, the retouched BEBF. In such scenarios, the CBF cannot ensure that only an
[21] removes entire false positives or partial seriousefalstem, which has been inserted into it, can be deleted from it.
positives by resetting individually chosen bits €0 First, That is, the CBF also decrements the value of each respective
all false positives and those serious ones can be identifisalinter by one when it receives a deletion instruction for a
after the BF has been constructed. Second, the applicatfalse positive itemnand thus produces possilfiE#se negative
can tolerate false negative items. The retouched BF dezsedtems
or avoids false positives, but actively produces many false Throughout this paper, we call this type of item deletion as
negative items. Note that it is uncommon for applications iacorrect deletion of a false positive itefm reality, several in-
satisfy these two assumptions, especially the second one. tentional or unintentional behaviors might trigger an imeot

In summary, the stable BF and retouched BF adopt spgtem deletion. For example, adversaries can issue an atiinu
cific bit cleaning operations to deal with application-dfiec to delete an item: after detecting that is a false positive
problems, yet introduce many false negative items. These dem, and intentionally produce potential false negatfeens.
essentially non-standard usage of BF. If those applicatime For another example, thel of a flow is inserted into a CBF
CBF instead of BF, the non-standard behaviors will produgéhen its first packet arrives, subsequent packets checkwehet
similar results. In this work, we find that a CBF might producthe flow has been recorded, and the flow is deleted when the
false negative items even in standard usages of item inogertilast packet is processed. In some cases, a network devite mig
guery, and deletion operations. Specifically, we disculsefareceive a subset of packets without the first packet of a flow.
negative items caused by an incorrect item deletion omeratif the id of this flow is a false positive item, the last packet
triggered by once false positive in a CBF. can result in false negative items unintentionally.

After discussing the incorrect deletion of a false positive
item, we find that an item deletion in a CBF might be incorrect
due to the multi-address problem even when the item has been
It is well-known that CBF supports item deletion operatidn anserted into the CBF. This kind of item deletion might cause
the cost of consuming more spaces than BF. Many researchgstential false negative items, and is referred asitigerrect
have studied the scenario where item deletions occur and degetion of a multi-address itenn reality, we are aware of at
always correct. A common precondition is that a data set lisast the following representative scenarios about thig kif
stored together with a corresponding CBF to ensure that omhorrect deletion.
the deletion instructions of items in the data set are sefté¢o t First, a CBF may respond multipléfaddress(x) for a query
CBF. That is, an item can be deleted from a CBF only if it hagith an itemz € X as input. For example, Bonomi et al. use
been inserted into it. This precondition, however, gemgial a CBF to store and track the states of many flows associated
not satisfied because it deviates from the objective to cea with unique flow-id at network devices [9]. They append the
data set with a CBF, especially in some network applicatioggate value of a flow to thé¢low-id as an item, and then add
as follows. These applications just maintain a CBF withoittin a CBF. When the state of a flow is retrieved or updated,
keeping the data set. one must perform a membership query for each combination

As mentioned in [9], routers and networking devices amf the flow-id and possible state value. In such a situation,
likely to evolve to be more application-aware. Many exigtina flow may appear to have multiple states because of one or
routers and switches begin to monitor traffic flows by keepingore false positives in the CBF. It is difficult for the CBF
state about TCP connections for security violations and to determine which is the right one. Thus, a state update
steer traffic based on packet content. Specifically, thesitn operation may cause a wrong item deletion operation, and the
detection devices and packaged firewalls keep state for eaebults in false negative items. In reality, each flow traitsm
TCP connection in order to detect security violations. Thes state frequently during its life cycle, and the number of
application level QoS devices track the state of each flow fiews tracked by a network device could be huge. Thus, the
provide more discriminating QoS to applications by stegrimumber of cumulative false negative items is no trivial, and
traffic based on packet content, such as video congestibeir impact cannot be omitted.
control [23] and identifying Peer-to-Peer traffic [24]. Fogh- Second, it seems that multiple CBFs represent a same
speed networking devices, tbhallengeto track state for each item even if only one CBF does so in several variants of
flow on-chip without resorting to slow off-chip memories iSCBF, such as the dynamic CBF and scalable CBF [17], [20].
the limited on-chip memory. For example, consider a routér dynamic CBF uses a CBF to represent a dynamic data
keeping track of 1 million (a number found in many studieset. If the cardinality of the dynamic data set reaches a
[25]) TCP connections. If 100 bits are used to track eagredefined threshold, it will allocate another CBF to repnés
connection, it costs 100 Mbits memory, which is impracticahe following data items, and so on. An itembelonging to
using on-chip memory. the dynamic data set may appear in multiple CBFs due to

To deal with such challenging issues in many networkintpe false positives, and a CBF might wrongly delete the item
applications, Bonomi et. al use a CBF to track the state of the leading to false negative items. A scalable CBF adopts a

2.3 False negative items in counting Bloom filters
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similar concept and suffers the same problem. address overlaps with those affected counters and all emnt
In summary, the incorrect deletion of a false positive itengf its CBF address are larger than 0, from the CBF ahd

or a multi-address item are the root causes of false negatbmrectly. Second, we perform a round of set membership

items in a CBF and its variants. They affect the CBF amglueries for each remaining item in s&t based on the CBF.

its variants in the same way by decrementing the value 8bme false negative items will be found. Those false negativ

respective counters, and are equivalent in nature. The oitgms are called th@otential false negative itentue to an

difference is that the incorrect deletion of a false posiitem incorrect item deletion operation.

is undetectablgwhile the incorrect deletion of a multi-address In the following discussions, we measure the number of

item is detectablen advance. In this work, we only focus onpotential false negative items due to an incorrect itemtitele

the false negative problem in the CBF, and leave the studyarid then due to multiple incorrect item deletions respebtiv

the same issue in variants of the CBF as a future work. Lemma 1: The number of potential false negative items due
to an incorrect item deletion (no incorrect item deletioaséh
3 MEASUREMENT OF FALSE NEGATIVE ITEMS  been performed before) is a discrete random variable, ddnot

In this work, we only discuss the incorrect deletion of adalsSY - Its possible values are the integers ranging froto k.
positive item since it is equivalent to the incorrect deletof a Proof: Given anyz; ¢ X, its CBF address consists of
multi-address item. Specifically, we first measure the etguec countersh,(zq)forl < ¢ < k, denoted asBfaddress(z1).
value of the number of false negative items caused by hat us define a subseX; C X for each counter;(x1),
incorrect deletion of a false positive item. We observe thathereX; contains the itemr € X such that the CBF address
the potential false negative items may be not exposed to tB&ddress(z) involves the counteh;(z). If the CBF occurs
upcoming membership queries immediately. Inspired by tke incorrect deletion for the itemy , the value of each counter
observation, we also measure how many false negative itemér:), 1 < i < k, is larger than0 before the deletion
will be exposed in theory and practice. We finally proposeperation, and is decreased byfter the deletion operation.
two principles to reduce the number of exposed false negativ To expose the potential false negative items caused by the
items, even make all potential false negative items becor@se deletion, let's delete an item of any sub&gtfor 1 <
unexposed. 1 < k if each counter in its CBF address:is0. We will thus
Before measuring the false negative items, let us considtacrease respective counters by one. Note that if the item is
the four rules to delete an itemfrom a respective CBF of a also in other subsets, it should be removed from those stibset
setX. The CBF repeats the deletion operation until all counters of
1) If a membership query for an item € X responses h;(z1) for 1 < ¢ < k are 0. By now, each subsek; for
a right judgment, the CBF performs the item deletioh < 7 < k still contains one item (they may overlap). The
operation by decrementing respective counters by oneteason is that, for the surviving itemof the subsefX; where
2) If a membership query for an item € X responses a1l < i < k, at least one counter of thBfaddress(z) has
false negative, the CBF rejects the item deletion operaeen destroyed by the deletion of itesp. Thus the deletion
tion. It shows that the CBF does not reflect the et operation of the survivinge was taken over by the second
correctly. item deletion rule, not the first one.
3) If a membership query forr ¢ X responses a right The cardinality of the union of thé subsets is indeed the
judgment, the CBF omits the item deletion operation. number of false negative items caused by the incorrectidalet
4) If a membership query far ¢ X responses a false pos-of ;. It is a discrete random variable, and the possible values
itive judgment, the CBF still performs the item deletiorcan been shown as follows. If the intersection of thgubsets
operation. Consequently, the CBF does not represent iRenot empty initially, and the deletion operations of aleth
set X correctly after the operation. common items among subsets have been taken over by the
The event mentioned in the fourth rule is the root cause tifst kind of item deletion rule, the value df is k. If the
subsequent false negative judgments, and furthermorenit ckeletion of one common item was taken over by the second
bring in the event illustrated in the second rule. Accordinkind of item deletion rule, then the value &f is 1. Assume
to Formula 1, the false positive probability of a CBF shoulthat the intersection of the subsets is an empty set, but the
decrease in theory if it performs an item deletion operatioimtersection of —1 subsets is not an empty set. If the deletion
Thus, the second rule may increase the false positive pilebabf one common item amonig— 1 subsets was taken over by
ity of a CBF as an item is not deleted, although it should Bbe second kind of item deletion rule, then the valu&’at 2.
deleted. In summary, the fourth rule not only produces fal$ed so on and so forth, the value bf can be3,4,...,k—1.

negative items directly but also may increase the prolighiliThus, Lemma 1 holds. O
of false positive judgments indirectly. Theorem 1:Let i denote the possible values of the discrete
random variablé’”. The probability mass function df is
3.1 Potential false negative items in theory i .
. . : . DI (k)(kfztl ar)
Given a setX and its CBF, an incorrect deletion of a false ALY aj
positive item causes the affected counters decrease ableas P(Y =i) = . 7 — 2
one. The resulting false negative items will be found thfoug S, IT (F) (i)
h aj aj

the following steps. First, we delete each item, whose CBF i=1 j=1
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Proof: Assumei represents the possible value¥sf and simultaneously to future queries for remaining items in set
all a; for 1 < j <1 are integers satisfying th@?zl a; = k. X.The reason is that only one incorrect item deletion might
Let Y; denote the event that=:, and means thatitems are not cause all affected counters reaching 0. The exposesl fals
deleted due to the second item deletion rule and appearechagative items show more realistic effect of an incorresmnit
1 false negative items. We need know the number of mutualiieletion than the potential ones. We thus measure this new
exclusive outcomes which can produce the euént metric in theory in this section. Before in-depth analysis,

Consider an experiment clustering thebits to form ¢ first introduce several definitions that will be used by later
clusters, denoted as. The integerk can be decomposed asmeasurements.

the sum ofi integers, and usually exists multiple different pefinition 1: Given a setX of n items and a random

decomposition results. For each possible result, counter in a CBF, the eventd”,, A", and A", denote that
. . . ! 27 K2 =1
1) The nukmbej[l()f possible outcomes of the experiment ishe value of the related counter is larger thiatess thari, and
Hz-zl ( 72,;.:1 ‘”)- equal to: respectively. The combination of the three events

2) Consider an experiment that establishes a bijective mamn produce new event$?, and A”,.
ping between the number afitems and the clusters. o e
The number of possible outcomesils

3) Based on the former steps, for a clusteand its related P(A%y) = (1 —1/m)k™.
item x, let us consider an experiment that establishes a bi-
jective mapping between the CBF addr&fsddress(x)
and thea; bits of the cluster. The number of possible P(A™,) = (kn> (1 —1/m)kn—1
outcomes is( ). =1 1 m '

We then can calculate the numb(_e_r of possible ou_tc_omes ofrhe probability of the eventi, can be calculated by

the experiment for each decomposition result, and it is =
P T P(AL)) =1 P(AL,).
il H <a ) ( az.:1 l)- We first study the probability that the potential false negat

j=1 N J items, due to one and only one incorrect item deletion, are
Let us calculate such value for other decomposition resilts€xposed or not. We then examine the expectation of the
integerk using the same method. Then, the number of possildmber of exposed false negative items caused by the imtorre
outcomes of the experiment to decomposingsi clusters is deletion of one or multiple items.

Theorem 2:For an event that all potential false negative

The probability of the evend” ; can be calculated by

The probability of the eventi”, can be calculated by

% j—1
il Z H (k) (k =i al)_ items, caused by an incorrect deletion of an ite¢ X, are
s ki aj aj not exposed to queries for all items in the 3&tits probability
g=1 447 is
, k) n_1\k
Let z denote that) ' ,a; = k. According to the same (1—(1=1/m)**=%))" = (P(AZ")". 3)

method, we can calculate the number of possible outcomes

for differenti. Then the probability of; is given by Formula Proof: If the CBF covers up all the potential false negative
2 0 items after the incorrect deletion of an item, all counters

corresponding tdfaddress(z;) must be larger than 1 before
Corollary 1: The expectation ofy” can be calculated by deleting the itemx;. It is obvious that the construction process
EY] =" ix P(Y =1). of the CBF is equivalent to throwingn balls in m bins
Corollary 1 shows the expectation of the number of potentiggndomly. The event can be explained as follows. The bins
false negative items caused by an incorrect item deletion Iifaddress(z1) are putk balls such that each bin holds one
theory. We find that some (or even all) potential false negatiball. Otherkn—k balls are thrown in then bins including
items are not exposed if respective counters in a CBF ate sifle binsBfaddress(z1) randomly. The probability that each
larger than O after the incorrect item deletion. On the othBin in Bfaddress(z1) is hit at least once by the subsequent
hand, the number of potential/exposed false negative itefig: — 1) balls is given by Formula 3. This finishes the proof.

increases as the number of incorrect item deletion perfdrme u
by the CBF increases. Theorem 3:For an event that a query for any item in the
Similar to the proof of Theorem 1, we have set X discovers one of potential false negative items caused

Corollary 2: The number of cumulative potential false negby an incorrect deletion of an itemy ¢ X, its probability is
atives caused byv undetectable incorrect item deletions is &
a discrete random variable. Its possible values are im;egg ( _)P(A’_lal)ZP(Agzl)k—z(l —(1-
ranging froma to a x k. Its expectation is given by x E[Y]. =1

1 k
m x P(Agl)) )
4
o . Proof: According to the definition of this event, at least
3.2 Exposed false negative items in theory one counter amon@faddress(z1) is set to one and others
In reality, we find that the potential false negative itemare set to an integer larger than one. The event defined
caused by an incorrect item deletion often are not exposedthis theorem can be explained as follows. First, I&gt
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denote an event that exactlycounters among the counters  Proof: It is straightforward that the expectation of ex-
Bfaddress(z;) are set to one and other counters are set pmsed false negative items due to one incorrect item deletio
some integers larger than one foxK i < k. That is, each bin is given by Formula 6. Since the incorrect item deletions
among the bins defined Wyfaddress(x;) is put a ball firstly, are independent to each other, the cumulative value of expos
and: bins among the binBfaddress(x;) are not hit (other false negative items is x E[Z]. 0

k — i bins in Bfaddress(z1) are hit by balls) during throwing

k(n — 1) balls in them bins. Its probability is ) o )
3.3 Potential and exposed false negative items in

<k> P(A™S ) P(ADTY )R, practice

! - The hash functions are the fundamental factors which influ-
Second, on the base & let us consider another evelt  ence the distribution of the number of exposed false negativ

that j hash functions hash the itemto the i counters that jtems. The ideal CBF makes the natural assumption that the

were set to one among théfaddress(z1), and otherk — j  hash functions can map each item in the unknown universe

hash functions map the itemto other counters set to nonzerao a random number over the rande,...m} uniformly.

among them bits. We can infer that < j < k, and the |n reality, this assumption is too strict to achieve, thussit

probability of the event, is very difficult to implement a CBF which can achieve the
L ; i ; s measurement results accurately mentioned above. Theréfor
Z < > (771) (1 — 771) J is necessary to study the potential and exposed false wegati
o\JJ Amx P(AY) m x P(A%,) items triggered by an incorrect item deletion from a pratic
i k aspect.
= 1-(1- m) ‘ In the previous two subsections, the probability that any bi

. . _.in a CBF is set to zero, one and an integer larger than one
Based on the conditional probability and total probablllt}éje studied analytically, just as many papers did. In ealit

formulas_, the probability that a_supsequent set membersip o464 does not work well if thehash functions can not
query will d|sc9vgr a false negative item can be calculated lgatisfy the assumption of uniform random distribution. licls
Formula 4. This finishes the proof. o scenario, we us@g, p1 andp, to denote the fraction of bits
Theorem 4:The number of false negative items, caused bt to zero, one and an integer larger than one in the CBF, and
an incorrect deletion and exposed to queries for all itentsén yse them as the probability that any one bit is set to zero, one
setX, is a discrete random variable, denotedZasts possible and an integer larger than one. The new method is reasonable
values are integers ranging fromto k. Its probability mass from a viewpoint of the classic definition of probability, cn
function is also practical because it is easy to collectphep, andp,. In
) k i 1N i this subsection, we reconsider the problems mentioneden th
P(Z =)= (i)P(A—O ) P(AZ ) ®) previous subsection from a practical aspect, and alsoeaevis

_ o ~ the results along the following steps.
Proof: We assume that a false positive item ¢ X is 1) First of all, let us perform the following modifica-
deleted incorrectly from a CBF representing the Xewith n tions that P(A™,)=po, P(A™,)=p1, P(AZ,)=p> and

items. LetF; denote an event that exactlycounters among P(AZ)=p1 + pa.

the Bfaddress(z1) are set to one and other counters are set ') The formulas using th@(A™,), P(A™,), P(AZ,) and

some integers larger than one. That is, each bin among tke bin P(A2,) should perform the related modifications, such
Bfaddress(z) is put a ball firstly, and bins among the bins as Formula 3. 4. 5. and 6.

Bfaddress(z1) are not hit (othek — i bins in Bfaddress(z:) We further conduct experiments to verify theoretical resul
are hit) during throwing(n — 1) balls in them bins. Thus, o notential and exposed false negative items caused byone o
i counters among thBfaddress(x; ) will become zero after iiple incorrect item deletions. Specifically, we will rify
deleting the iteme, incorrectly from the CBF. According 0 e probability distribution of random variablés and Z, the
the proof of Theorem 1, thé counters are mapped fofalse  o,myjative potential false negative items, and the curivalat
negative items with high probability. On the other hand, th@xposed false negative items. We adopt the experimental
values ofi range froml to k. , methodology in Section 5.2 to design and implement experi-
The probability of the event); is ments, where: — 1.
(k) P(AP=1)i p(An 1) Figures 1(a) and 1(b) plot the theoretical and experimen-
i =0 21 ' tal results about the probability distribution &f and the
cumulative potential false negative items, respectivélye

Thus, Formula 5 defines the probability mass functiorZof _ ) .
figures show that the experimental results match well with

Theorem 4 'S_ proved. . . - the theoretical results proved in Theorem 1 and Corollary 2.
Corollary 3: The expectation of is On the other hand, Figures 2(a) and 2(b) plot the theoretical
L ; and experimental results about the probability distrimutf 2
EZ) = P(Z =1). 6
1] Zz‘zl ix B ) © and the cumulative exposed false negative items, respéctiv

The expectation of exposed false negative items due toThe figures show that the experimental results match well wit
incorrect item deletions is x E[Z]. the theoretical results proved in Theorem 4 and Corollary 3.
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false negative items in theory as well as experiment,
where m=1600, n=100, and k=11.

Thus, the experimental results verify the correctness @éeh power of more choices [26], and validate the two principles
theoretical results. mentioned above.

By comparing Figure 1(a) with Figure 2(a), we can find that Lumetta et al. combine the power of two choices with
one incorrect item deletion can causpotential false negative Bloom filter to reduce the false positive probability [18héy
items with high probability, however, only abokif2 exposed use two groups of hash functions for mapping items and
false negative items with high probability. This motivates checking membership at the cost of additional computations
to study the exposed false negative items besides the fitertheir experiments show that the solution does not decrease
ones. the false positive probability undemy configuration of the
parametersn, n, and k in the online model, but achieves
some improvement in the offline model. Recently, Jimeno et

: : _propose a Best-of-N Bloom filter replacing two groups of
According to the measurement results and observations m blsh functions withV groups [19]. They show the idea works

tioned above, we find two useful and important principles I und ; f. i in th i del d th
improve counting Bloom filter. well under major configurations in the online model, and the

1) The improved CBF should not increase the probabilif'fgease ofV always decreases the probability of false positive

of false positive. Thus, at least it should not decrease t me_nt. S
ratio of bits set to zerop,. The idea of our solution is similar to that of [18], [19],

2) The improved CBF should decrease the exposed faglét the objective and related methods are different. We try

negative items caused by an incorrect item deletidfl decrea_se the exposed false negative items triggered by an
operation. Thus, at least it should increase the ratio gcorrect item deletion, but the authors of [18], [19] ainted
bits set to a value larger than one control the false positive probability and did not mentiary a

To increasep,, more bits of the CBF address of an iten{ssue about the false negative judgment. We propose a more

21 ¢ X need to be set to an integer larger than one. Tﬁéntable item insertion method to realize our objectivejclh

activity will decrease the number of exposed false negati%creases the fraction of bits set Fo an mt_eger larger th}'gn 0
items, caused by the incorrect item deletion operatiogérigd and does not decrease the fraction of bits set to zero in the

by 1. The two principles motivate us to consider a possibfgter' The idea of using more choices to improve CBF should

improvement of CBF to increase, but do not decreasg. _also support the item deletion operation, however, thiblero

In the next section, we propose a new mechanism to imprdye °t discussed in [18], [19]. We propose a reasonableisalut
CBF and achieve the desired objectives. Although the soiuti®© handle this issue, and analyze its impact on the falséipesi

may not be the best one, it is useful to reduce the exposezl feﬁ?dh faflsi nggat.ive judgments. 'fl'he averagde time complexitie
negative items. of the following item operations for CBF and MCBF atkk)

and O(c x k), respectively. The space complexities for CBF
an MCBF are the samd, x m.

3.4 Principles to improve counting Bloom filter

4 MULTI-CHOICE COUNTING BLOOM FILTER

The CBF assigns each item € X just one CBF address
Bfaddress(z). The addresses of different items are indeper“}-'1
dent each other, and the value distribution of all bits in &CBGiven a dynamic data seX with n items and a CBF with

is uncontrollable. Therefore, it is very difficult to inces a vector of m bits, let us consider the following variation
po by the traditional mechanisms widely used to contran the CBF. Instead of using a group of hash functions
the probability of false positive, for example the parametéo assign a CBF address for any iteme X, we usec
optimization. If we introduce some choices about the CB§roups of hash functions to produee CBF addresses as
address, it is possible to incregsewith the help of a suitable candidates where > 2. The ith group consists ok hash
greedy algorithm. In this paper, we will combine the CBRunctionshi, hb,--- , hi for 1 <i < ¢, and produces théh
with a mechanism often applied to improve load balancing, ttCBF address for the item, denoted aBBfaddress’(z). We

Insertion operation
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require that hash functions are perfectly independent,aand4.2 Query operation

rando_m as possib_le. We call the improved CBF as multi-choiggnhen we query an item, we will compute théBfaddress’ (z)
counting Bloom filter, abbreviated as MCBF. for the ith group of hash functions, for € [1,¢], and test
After receiving an insertion request for an iteme X, whether all bits ofBfaddress’(z) are non-zero. If it is, then
the MCBF will first calculatec CBF addresses far as the we sayxz passes the test éth group. The query for: returns
candidates, then choose one as the final CBF address aagortijes” if it passes the test adny groupi € [1, ¢].
to different approaches, finally increase the value of ceunt Both the greedy approach and the improved greedy ap-
by one for each bit in the final CBF address. A natural greeglyoach can increase the ratio of bits set zero, and seem to
approach is proposed in literature [18], [19]. The basiaidalecrease the chances of a false positive. But, usiggpoups
is to calculate how many additional bits would have to bef hash functions would seem to increase the chances of a
set to one for each candidate and select the candidate wilse positive, in that there are nawways for a false positive
the least additional bits to be set to one. The greedy approda occur. Specifically, recall that, is the fraction of bits set
produces less number of bits set to nonzero than that prddute zero in the filter, the probability of a false positive is
by the CBF. It is well known that decreasing the number of L= (1= (1 pa)k)e 7
bits set to nonzero in a filter will increase the number of bits (1= (1 =po)")" (7)
set to an integer larger than one in the same filter. Thus, thet is very difficult to determine whether the greedy and
greedy approach also has positive impact on implementing amproved approaches always decrease the false positibapro
fundamental objective although its original goal is to @ase bility in the online model, although some preliminary arsidy
the false positive probability. have been done in literatures [18], [19]. Lumetta and Mitzen

In this paper, we propose an improved greedy approachmﬂCher did not provide clear comments about the problem.
still increases the ratio of the bits whose value is zero at tdimeno and Christensen believed that the greedy approach al
similar extent, just as the greedy approach does. At the sawys decreases the false positive probability as the istrga
time, it can increase the ratio of the bits whose value isdlarg0f ¢. Recall that the strict assumptions about hash functions
than one and decrease the ratio of the bits set to one than &g very difficult to reach, thus the analysis based on such
of the greedy approach. Thus, our new approach can decreaggmptions can not reflect the reality. In this paper, wéepre
the exposed false negative items, caused by an incorreat i€ use the experiments rather than the theoretical analysis
deletion, more than what the greedy approach does. Algorittaddress the problem. The results of our experiments shdw tha

1 explains the improved greedy approach in detail. the greedy and improved greedy approaches decrease tee fals
positive probability as the increasing ofvhen the ration/n
exceeds a threshold, but increase it as the increasiagder
Algorithm 1 Improved Greedy Approach For Selecting a CBlther configurations.
Address for an itemx

1. Define and calculate a metric for each candidate to meg:

o . 3 Deletion operation
sure the number of additional bits needed to be set to P

one in order to cover. Then select the minimum value.Puring the process of item deletion, an iteme X' may find
If there is only one candidate whose metric value equdidultiple possible CBF addresses. It is clear that only on& CB
to the minimum value, then that candidate is the ﬁngddress is assigned to the itenduring the insertion process,

CBF address of. Otherwise, go to the next step with theand others are_fals_e positive _judgme_nts. In suph situatfo_n,
candidates whose metric equals to the minimum value %% MCBF persists in performing the item deletion operation
the input parameters. the related counters of a wrong CBF address may be decreased

2: Define and calculate a metric for each candidate containg{jone with some probability. As discussed in Section 2.8, th
in the input parameters to measure the number of bits dagorrect deletion of a multi-address iteatways destroys the

to one currently. Then pick up the maximum value. |BF, and produces at moktpotential false negative items.

there is only one candidate whose metric value equals™ftér the representation of seX, let £,.;;; denote the
to the maximum value, then that candidate is the fin§V€nt that an itemz € X meets multiple possible CBF
CBF address of. Otherwise, go to the next step with the2ddresses when performing the membership query of item
candidates whose metric equals to the maximum value H&€ €vent means that at least an additional group of hash
input parameters. functions map the item: to the bits set to an integer larger

3: Define and calculate a metric for each candidate contain@tgn zero besides the group of hash functions related to the
in the input parameters to measure the maximum vallgal CBF address of item. The probability of the event is

among thek counters. Then pick up the minimum value. P(Epari) =1 — (1= (1= po)*)et. (8)

If there is only one candidate whose metric value equals . _.

to the minimum value, then it is the final CBF addressormula 8 yields an upper bound on the probability that
of z. Otherwise, randomly select one from the candidat@¥ent Er.i;; happens, and an upper bound on the number

whose metric equals to the minimum value as the fin@f multi-address items i&, x P(Eput:), wheren, denotes
CBF address of. the cardinality of setX. Our experimental results show that

the real number of such items is much less than the upper
boundn, x P(E,..i). On the other hand, the deletion of a
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such item is not always performed incorrectly in related CBRwulti-address item. On the other hand, it's better to doteela
That is, the deletion of a multi-address item also has chemcemodifications to the filter. Recall that even keep all multi-
be performed correctly without causing false negative #emaddress items in a MCBF, the negative impact on the false
Theorem 5 analyzes the problem from the probability theormyositive probability can be controlled at a low and accelgtab
According to the definition of event,,.;;, the number of level. We therefore recommend to keep multi-address items i
false positives among the possible CBF addresses of itenfilter because the harm of false negative items is serious for
is a discrete random variable, which is denoted/as major applications.
Theorem 5:For an itemz which meets an evenk,,, s,
the probability that the deletion of the itemproduces false © PERFORMANCE EVALUATIONS
negative items is We first describe the implementation issues of related CBF
E[U] 9 and the configurations of our experiments, and then compare
1+ E[U) © the analytical model with the experiment results in terms of
exposed false negatives. We also evaluate the false positiv
probability, the greedy and improved greedy insertionefis,
and the impact of item deletion methods.

PU = i) = c ((1 )’“)i(l (1 )k)cfi 5.1 Implementation
U=\ po bo ' In this work, we extend the BF and CBF delivered by Guo et

1. _ al. in [17] to implement the multi-choice counting Blooméilt
Furthermore E[U] = >_,_, i x P(U = i) denotes the expec- one critical factor of the multi-choice counting Bloom filte
tation of U. Therefore, the number of possible CBF addressgsSyg create: groups of hash functions. In our experiments, a
of z is 1+ E[U], and the probability that the deletion ofwill group ofk hash functions are generated by
cause false negative items@%. This finishes the proof. ,
0 hi(x) = (g1(x) + i x g2(x)) modm, (10)
According to Theorem 5 and the method to measure thgere g1(xz) and go(x) are two independent and random
number of potential and exposed false negative items, Wgegers in the universe with randd, 2,...,m}. The value
estimate an upper bound on the number of potential agl; ranges fromD to k£ — 1. We propose the following three
exposed false negative items if the CBF deletes one of suglethods to generate two random integers for any item
kind of items. We can also calculate upper bounds on the) The SDBM BUZhash method. We choose the SDBM and
number of potential false negative items and that of exposed BUZ hash functions to produce the valuesgefx) and
false negative items caused by all multi-address items. In  g,(z), respectively.
reality, the number of potential and exposed false negativg) The SDBM MersenneTwister method. The output of
items are much less than the related upper bounds, because SDBM Hash function acts as the seed of a random
the number of such items is much less than its upper bound. number generator (RNG) MersenneTwister. The Mersen-
Traditionally, a MCBF decrements the values of the respec- neTwister produces two desired random integers.
tive counters when it receives a deletion instruct of a multi 3) The BUZ MersenneTwister method. The output of BUZ
address item. As a new policy, a MCBF can simply omit  hash function acts as the seed of MersenneTwister. The
the deletion instruct of a multi-address item. The objects/ MersenneTwister produces two desired random integers.
to prevent the MCBF from producing potential and exposed The mechanism requires two hash functions or one hash
false negative items. Thus, the MCBF still keeps memberstfymction and one random number generator to kurounds
information for at mosk,. x P(E,,.i+;) items even it receives of Formula 10 in order to generateBdaddress(z) for an item
the deletion instructions for all items of the s&t If other z. For otherc — 1 Bloom filter addresses, we use the results
items join the sefX during the process of deleting the originabf appendingc — 1 predefined strings om as the inputs for
items, the MCBF reflects not only current items of the Zet producingc—1 pairs of two random numbers, and then achieve
but also at most,. x P(E,,.;:;) retained items. It is reasonableotherc—1 CBF addresses by the Formula 10. The mechanism
that the false positive probability of the MCBF is alwaysgjer can bring in a considerable reduction in processing overhea
than the theoretical value. But, the difference betweerreéé compared to using x k hashes, and does not increase the
value and theoretical value is small, and the negative ilpdalse positive probability [27].
of the new policy can be controlled at an acceptable level. AsThe quality of the hash functions and one random number
direct results of the new policy, queries of such items abvagenerator has significant impact on the experiment results.
response false positive, and the filter does not need to do &he SDBM hash function has a good overall distribution
change when such items rejoin the sét for different data sets, and works well even if the MSBs of
In summary, if a MCBF deletes multi-address items, it magems in a data set exhibit high variation. BUZ hash function
result in false negative items, otherwise it increases #teef is fast and employed widely. It produces near-perfect tesul
positive probability. In reality, it needs to make a tradeoktven with extremely skewed input data. The Mersenne twister
between these two policies. For applications in which thenha provides for fast generation of very high quality pseudo-
of false negative is more serious than that of false positige random numbers, and is designed to rectify many flaws found
better to keep the MCBF after receiving a deletion requesi foin older algorithms.

Proof: The set of possible values of variakle are the
integers ranging from 1 to— 1. Its probability mass function
is
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Fig. 4. The ratio of the bits set to zero in multi-choice counting Bloom filters with different configurations.
5.2 Experiment methodology The experiments are divided 8sx 2 x 5 = 30 instances.

, Each instance selects one hash algorithm from three candi-
Note that CBF and MCBF are designed to represent afyiies one item insertion algorithm from two candidates, an

possible sets, query sequences, and item deletion/iserthe \a1ye ofyn/n from five candidates. Other parameters are
sequences. In addition, there are no benchmark sets ard tr e same among different instances. Each instance euns
in the field of Bloom filters. Since we could not obtain traffig ,nds with one round for each integer in the rarige]

traces [28] in the field ,Of real-time identification of P2Pffic The 30 instances are conducted on a cluster with Linux and

b_ased on CBF, we _S|mply use a set from the DI_SLP._ Th§o|aris OS and more than 30 CPUs.

size of the data set is near 300M. We retrieve partial history

information of papers published in the major conferences .

from the DBLP records. We then use the name of authorsig® EXPeriment results

initialize a data seft to be represented by our Bloom filter,5.3.1 False positive judgment

and another data sgt to be used by the tests of false positivgFigures 3 and 4 plot the experiment results about the false

judgments. Our experiments do not seek particular seqsengesitive probability under several different configuragpand

of item query/correct deletion/incorrect deletion/inger but we report results under the improved greedy algorithm only.

simply use a synthetic random sequence. The limitation The results under the greedy algorithm are similar, and are

that we did not use the actual traces. We plan to work @mitted due to the space limit. Thehange factorof false

the real traces once we obtain them. While the extensiongésitive is the ratio of false positive probability of MCBB t

necessary in a deeper, trace-drive study, the initial tesuk that of CBF. Figure 4 shows that MCBF always increases the

independent to the type of set and the sequence of those bagiid of the bits set to zero as the increasingepfand the

item operations facing MCBF. number of bits set zero in a MCBF wit#50 increases about
For each instance of experiment, we initialize the follogvin40% of that in a CBF wherm/n=8 or 12. The gain is about

parameters before testing data. The first parameter is the B0% whenm/n=16 or 20. The results demonstrate that when

per itemratio = m/n, and can be set as 8, 12, 16, 20 anMCBF satisfies the first policy we proposed in section 3.4, the

24. The second parametéris |(m/n)In2| [1]. The third ratio of bits set to zero increases significantly and theefals

parameten is set to 10000. The fourth parameter is the upp@ositive probability might be decreased.

bound ofc, and is set to 50. The fifth parametBris the size  For the cases thatn/n = 8 or 12, the false positive

of data set used by the tests of false positive judgments, gdbability of MCBF is always larger than that of CBF as

is set to8 x n. The hash algorithms are the three candidatése increasing ofc. For the case thatn/n = 20, MCBF

mentioned above. The item insertion algorithms are thedyreendeed decreases the false positive probability as thedser

together with its improved algorithms. ing of ¢. The experiment results under the three different
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Fig. 6. The ratio of the bits set to a value larger than one to the bits set to one.

hash algorithms have the similar trend for the four caséiseoretical result in each instance. The incorrect iteratomis
of m/n. There may exist a threshold of the value ef/n triggered by different false positives have different irseon
such that the false positive probability of MCBF alwayshe exposed false negative items. Due to the huge number of
decreases as the increasing:afly if m/n exceeds it. When possible false positives in a given MCBF, here we only show
m/n = 16, the hash algorithm is SDBMVersenneTwister two representative categories.
or BUZ_MersenneTwister, the false positive probability of In the first category, we emulate an incorrect deletion of an
MCBF is less than or similar to that of CBF as the increasiritem by decreasing the counters bfbits by one, where the
of c. If the hash algorithm is the SDBMBUZhash, the false & bits are randomly selected from those bits set to nonzero in
positive probability of MCBF is always larger than that othe MCBF. After multiple rounds of each instance, the averag
CBF as the increasing af The experiment results show thatvalue of the number of exposed false negative items due to an
the SDBM MersenneTwister and BUZersenneTwister are incorrect item deletion is shown in Figure 5. As the analysis
more suitable to the multi-choice counting Bloom filtersrthain theory, the improved greedy algorithm indeed decreases
the SDBM BUZhash. the exposed false negatives more than the traditional greed

In summary, the results show that MCBF satisfies the firatgorithm under different configurations ofi/n and hash
policy used to improve CBF, however, it cannot always dedgorithms. We use the experiment results shown in Figure
crease the false positive probability in the online modelam 6 to explain the reason of such conclusion. In Figure 6, a
any configurations. The reason is that the positive corttdhu curve of our improved greedy algorithm is always above a
by increasing the ratio of the bits set to zero does not alwagsrresponding curve of the traditional greedy algorithreach
go beyond the negative influence of the more chance of a fabsgeriment instance. This means that our improved greedy
positive resulting from the possible Bloom filter addresses.algorithm updates more bits set to one with a value larger tha
Thus, it is very important to tune the parameters of MCBBne than the traditional greedy algorithm. Thus, more p@en
carefully in order to always decrease the false positivébprofalse negative items can be covered and are not exposed under
ability. The result recommends that the valuenefn should the improved greedy algorithm. In summary, the improved
not less than 16 and prefers the SDBWersenneTwister and greedy algorithm outperforms the traditional one in theamy
BUZ_MersenneTwister hash algorithms. practice.

In the second category, we emulate an incorrect deletion

5.3.2 False negative judgment of an item by decreasing any counters set to one and
Theoretically, we show that MCBF can reduce the expos@dcounters set to an integer larger than one by one in the
false negatives caused by incorrect deletion of items. IRecslCBF, wherek = o + § and & = g—;. This method
that the experiment are divided in®0 instances. Now we can reflect an incorrect deletion of an item more accurate
examine whether the experiment result is consistent withan the method used in the first category. We then measure
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Fig. 7. The exposed false negative items due to multiple incorrect item deletions triggered by multiple false positives.
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Fig. 9. The ratio of items with multiple addresses and the false positive probability.

the exposed false negative items due to one incorrect itemin summary, the results indicate that MCBF satisfies the
deletion as well as the cumulative exposed false negaéwesit second policy to improve CBF mentioned in subsection 3.4
due to multiple incorrect item deletions. Indeed, this skt @and makes abowi) —80% of exposed false negative items in a
experiments covers the scope of the experiments in the fiéBF become unexposed with the help of careful configuration.
category. The experiment results under the improved gredtly however, does not mean that should be as large as
algorithm is shown in Figure 7. We find that the number gfossible because of the additional computation costs. ©n th
exposed false negative items increases more as the inggeasther hand, the contributions of decreasing the false igesit
of number of incorrect item deletions in related CBF, angrobability and reducing the number of exposed false negati
at least50% of the exposed false negative items becomtems turns to be trivial after exceeds a certain threshold in
unexposed if we introduce a MCBF with at masgroups of MCBF.
hash functions wheratio=8. Whenratio=12 andratio=16, a
MCBF needs 10 and 20 groups of hash functions, respectively3.3 The maximum load
to achieve the similar re_suI'F. The_MCBF also malsest of Recall that each array position of a CBF is allocafedits,
the exposed false negative items in a CBF become unexposed , _ : . : .
e and L=4 suffices if thek hash functions can map each item
by assigning a moderate value to the parametdhe results . :
. . ) over the rangel, ..., uniformly and independently. Under
show that our improved greedy algorithm still do better thatn : . . . .
o R : .the context of multi-choice counting Bloom filter, obvioysl
the traditional one in this scenario. We do not show the tetai _, . L et .
. e this assumption is not true. Hence, it is necessary to régdens
results due to the page limit. The similar results hold when L . . .
. . ; ' whetherL=4 still suffices. We conduct 9 experiment instances
ratio=20 andratio=24 in both first as well as second category, . ; o
and are omitted fo achieve the maximum load among the array positions

under different configurations. Each instance selects asé h
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real value ofr increase smoothly, and remain at a low level.
In practice, the frequency of deleting all items from a data
set and its MCBF is very low. If we insert otheritems to

the data set and related MCBF once this event happens, the

2 2/ false positive probability of resulting MCBF is often large
| e et | [T et e o i | than that of the original one, but is still at a lower and stabl
10 20 30 40 50 40 20 30 40 50 level. Figure 10 shows that it is appropriate to the original
The number of the groups of hash functions, ¢ The number of the groups of hash functions, ¢ . . .
value whene > 10. In summary, the item deletion operation
x10° Rato 20 15x10° Reto can avoid producing false negative items at the cost of @triv

urrent false positive probabilit ‘ ‘

urrent false positive probabilit
riginal false positive probabilit

riginal false positive probabilit

influence on the false positive judgment if the size of ffie
changes at a stable level without immediately decreasimg.mo

6 CONCLUSIONS

ol We show that the false negative items can indeed occur in a
The numter of the groups of hash funcions. o The number of tha roups o hash functions, o CBF and related variants. We also reveal that two types of
) . - - incorrect item deletion operations triggered by a falsatves
Fig. 10. The original false positive probability and the 4re the root causes of false negative items, and the pdtentia
_resulting false positive probability due to keep additional » ¢4/ negative items usually are not fully exposed at the
items. same time. We then measure the potential and exposed false
function algorithm from three candidates, and the raticotlesh negative items from aspects of theory and practice. Finaty
the value ofm/n from 8,12, and 16. Other parameters are thatroduce two fundamental principles to make more poténtia
same among different instances. false negative items become unexposed whenever possible,
The experimental results shown in Figure 8 indicates tland propose an improved CBF to validate our principles.
maximum load is less than 16 in 8 instances except ofair analytical and experimental results demonstrate tieat t
instance using th&€ DBM _BU Zhash algorithm. This shows proposed CBF decreases the number of exposed false negative
that other two hash algorithms are more suitable to the MCBfems without increasing the probability of false positive
than theSDBM _BU Zhash. Recall that the same conclusion
has been proposed in subsection 5.3.1. The experimedatKNOWLEDGMENTS
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