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Abstract— Anti-jamming communication without pre-shared
secrets has gained increasing research interest recently and is
commonly tackled by utilizing the technique of uncoordinated
frequency hopping (UFH). Existing researches, however, are
almost all based on ad hoc designs of frequency hopping
strategies, mainly due to lack of theoretical foundations for
scheme performance evaluation. To fill this gap, in this paper
we introduce the online optimization theory into our solution
and, for the first time, make the thorough quantitative per-
formance characterization possible for UFH-based anti-jamming
communications. Specifically, we formulate the UFH-based anti-
jamming communication as a non-stochastic multi-armed bandit
(MAB) problem and propose an online learning-based UFH
algorithm achieving asymptotic optimum. To reduce the time
and space complexity, we further develop an enhanced algorithm
exploiting the internal structure of strategy selection process.
We analytically prove the optimality of the proposed algorithms
under various message coding scenarios. An extensive simulation
study is conducted to validate our theoretical analysis and show
that the learning-based UFH algorithms are resilient against both
oblivious and adaptive jamming attacks.

Index Terms— Anti-jamming, uncoordinated frequency hop-
ping, multi-armed bandit problem, wireless communication.

I. INTRODUCTION

HE BROADCAST nature of wireless links makes wire-

less communication extremely vulnerable to denial-of-
service attacks [2], [3], [4]. By mounting jamming attacks
an adversary can transmit signals to interfere with normal
communications and temporarily disable the network. Jam-
ming attacks can be fatal in applications where time-critical
information (e.g., messages to inform the soldiers an imminent
attack from the enemies) or mission-critical information (e.g.,
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messages that contain the tactical planning) should be trans-
mitted immediately. Many mitigating protocols [5], including
both frequency hopping spread spectrum (FHSS) and direct-
sequence spread spectrum (DSSS), are proposed to cope with
jamming attacks. However, the effects of these anti-jamming
techniques are significantly limited by their inevitable reliance
on the pre-shared secrets (i.e., hopping sequences and/or
spreading codes) between the communicating node pairs prior
to the communication as being widely recognized in the litera-
ture [3], [6], [7]. Such reliance greatly limits their applicability
in scenarios where 1) the wireless network is highly dynamic
with membership changes, and thus the pre-sharing of secrets
among node pairs is impossible; and 2) a sender broadcasts
messages to a large number of potentially unknown receivers

(6], [8].

The problem of anti-jamming communication without pre-
shared secrets was first identified in [7]. The authors pro-
posed an uncoordinated frequency hopping (UFH) scheme
where, in order to achieve jamming resistance, both the
sender and receiver hop on randomly selected channels for
message transmission without coordination. The successful
reception of a packet is achieved when the two nodes reside
at the same frequency (channel) during the same timeslot.
[3] further studied message coding techniques for UFH-based
schemes. Following the same logic of breaking the anti-
Jjamming/key establishment dependency, uncoordinated direct-
sequence spread spectrum (UDSSS) techniques [8], [9], [10]
were proposed suiting for delay-tolerant anti-jamming com-
munication, where a brute-force effort on message decoding
is required at the receiver side. The existing UFH-based anti-
jamming schemes, however, are almost all based on ad hoc
designs of frequency hopping strategies without being able to
provide quantitative performance evaluation. This is mainly
due to the lack of the theoretical foundation for scheme design
and performance characterization of this type. The only work
on the efficiency study of UFH-based communication is [6],
which gave an intuitive optimal result only for the case of
random jamming attacks. In practice, however, the sender and
the receiver do not know the attacker’s strategy in the first
place when facing the jamming attack. Obviously, instead of
hurriedly going to random hopping, learning first will help the
receiver to get most out of the situation. To fill this gap, in
this paper we introduce the online optimization theory into
the solution space, which enables the receiver to perform
online learning and optimization in response to a potentially
adaptive jammer. To the best of our knowledge, we, for the
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first time, develop an almost optimal and adaptive UFH-based
anti-jamming scheme and make the thorough quantitative
performance characterization possible for this type of schemes.
The main contributions of this paper are:

1. We formulate the UFH-based anti-jamming communi-
cation as a non-stochastic MAB problem and propose the
first online adaptive UFH algorithm against both oblivious and
adaptive jammers. We analytically show that the performance
difference between our algorithm and the optimal one, called
regret in this paper, is no more than O(k,vTnlnn) in T
timeslots, where k, is the number of frequencies the receiver
can receive simultaneously and n is the total number of orthog-
onal frequencies. We also show that the proposed algorithm
can be implemented efficiently with time complexity O (k,nT)
and space complexity O(k,n).

2. We present a thorough quantitative performance charac-
terization of UFH-based anti-jamming schemes under various
transmission/jamming strategies of the sender, the receiver
and the jammer. The performance is evaluated by analyzing
the expected time for message delivery with high probability
(w.h.p) in different scenarios (e.g, without message coding,
with (rateless) erasure coding). We also discuss the parameter
selection (the number of transmitting packets [, the total trans-
mission time 7', and the optimal number of orthogonal fre-
quencies n) for achieving performance optimality. We perform
an extensive simulation study of UFH-based communication
to validate our theoretical results. It is shown that the proposed
algorithm is efficient and effective against both oblivious and
adaptive jammers.

Organization. The rest of the paper is organized as follows:
Section II describes the system model, the attack model, the
multi-armed bandit problem and the optimal UFH problem
addressed in this paper. Section III provides the detailed
description of our proposed adaptive UFH schemes. Section
IV and Section V present the theoretical performance analysis
and simulation results, respectively. Section VI discusses the
related work. Finally, Section VII concludes the paper.

II. NETWORK MODELS AND PROBLEM FORMULATION
A. System Model

We consider two nodes that reside within each other’s
transmission range and share a common time of reference.
The sender wants to transmit messages to the receiver in
the presence of a communication jammer. Let M denote
the message the sender wants to transfer to the receiver.
Due to the use of frequency hopping, message M that does
not fit into a single transmission timeslot is partitioned into
multiple fragments for transmitting in successive timeslots.
The transceivers employed by the nodes enable them to hop
over a set of n available orthogonal channels to send and
receive signals in parallel, with the same data transmission
rate. In the following discussion, we do not differentiate
channels and frequencies. We denote the number of channels
on which a node can send and receive on by k; and k.,
(ks, k. < n), respectively. We assume that the sender and the
receiver do not pre-share any secrets with each other, and there
is no feedback channel from the receiver to the sender (see
Fig. 1). We also assume that none of the three parties, i.e., the

sender, the jammer, and the receiver, has knowledge of each
other’s transmission/jamming strategies before the message
transmission.

We assume that at the receiver side, efficient message
verification schemes (e.g., erasure coding combined with short
signatures) are used for message reassembly purpose [6]. As
in [7], [6], we do not consider message authentication and
privacy in our model. Message authentication is orthogonal
to this work and can be achieved on the application layer.
As for message privacy, the proposed protocol can be used to
transmit messages of a key establishment protocol in order to
generate a secret key.

B. Attack Model

The jammer’s capability has a great impact on the
transceivers’ hopping strategies. Due to different attack
philosophies, different attack models will have different levels
of effectiveness. We assume the jammer is able to jam k;
(k; < m) channels simultaneously in each timeslot. Specifi-
cally, we focus on the following two types of jammers:

1) Oblivious jammer: An oblivious jammer selects the tar-
get jamming channels independent of the past communication
status he may have observed. The behaviors of the jammer
can be categorized into static jamming and random jamming.
A static jammer continuously emits radio signals and keeps
jamming the same set of channels for each timeslot, i.e., it
does not change its target jamming channels over the whole
message transmission process. Note that by randomly hopping
among a common set of frequencies, a successful packet
reception happens when the sender sends and the receiver
listens on the same channel. After a number of transmission
attempts, the sender and the receiver can reconcile themselves
to the unjammed channels. So it is easy to defend against
the static jamming attack by only keeping using the detected
unjammed channels in subsequent transmissions. On the other
hand, a random jammer transmits the jamming signals over
a randomly selected subset of channels in each timeslot. Due
to the use of random jamming strategy, the sender and the
receiver are not able to find the unjammed channels and reside
on them for all timeslots.

2) Adaptive jammer: An adaptive jammer adaptively se-
lects the target jamming channels utilizing his past experiences
and his observation of the previous communication status. By
performing channel scanning, a jammer scans a set of selected
channels in each timeslot in search of the sender’s signals.
When signals are detected, the jammer records the indexes
of the corresponding channels. We assume that the jammer
cannot perform the sensing and jamming operations within the
same timeslot under the appropriately chosen channel hopping
rate. For example, consider a typical sum of channel sensing
time ¢, and switching time ¢,, being 10ms [11], for a channel
with data rate B = 10Mbps, a successful jamming attack on
the transmitted packet within the same timeslot requires the
length of packet is at least 10° bits. However, for the hopping
rate fr, = 500 ~ 1500Hz [6], the length of packets will not
exceed the size B/fy, =7 - 10% ~ 2. 10* bits, which makes
sensing then attacking impossible. Yet, we still assume a very
powerful adaptive jammer in the sense that it not only knows
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Fig. 1. Anti-jamming Communication without Pre-shared Secrets.

the protocol and can perform jamming on k; channels of his
choice during a single timeslot, but also knows whether it
succeeded in jamming the sender’s transmitting channels for
all the past timeslots and can accordingly choose the target
jamming channels for future timeslots.

Discussion. Note that the assumption that sensing and
attacking within the same timeslot is impossible is made by
most of research works in this area [11], [12]. The empirical
data in [11] clearly shows that sensing a channel alone takes
tens of ms and probing a new one also takes at least tens
of ms, and the lower bound is chosen for the purpose of
exposition in the example. However, it does not mean that the
proposed anti-jamming scheme is constrained by this bound.
Actually, even if the adversary has more powerful capability,
e.g., sensing in less than 10ms, such attack can be defended
by reducing the packet length so that the attacker cannot
have enough time to perform “sensing and jamming” in each
timeslot. Also note that, during UFH-based communication,
the jammer may add his own signals to the channels, e.g., he
can insert self-composed or replay fragments to disrupt the
communication. This data pollution attack can be addressed
by using the efficient message verification techniques at the
receiver side [6] and thus is not explicitly considered in this
work.

C. Multi-armed Bandit Problem

In classic multi-armed (k-armed) bandit (MAB) problems,
a gambler operates exactly one machine at each timeslot;
all other machines remain frozen. Each operated machine
provides a reward drawn from a known distribution associated
with that specific machine. The objective of the gambler is to
maximize the sum of rewards earned through a sequence of
machine operations. Gittins et al. [13] proved that an optimal
solution for the this problem is of index rype. When m(m < k)
machines are operated each time and each machine evolves
over time even not being operated, the problem becomes a
restless multi-armed bandit problem (RMBP). Whittle [14]
showed that an optimal solution of the index type can also
be established in some cases. In this version of the bandit
problem, the generation of rewards is assumed to be subject
to certain distributions that are known to the gambler. Non-
stochastic multi-armed bandit problems are another important
version of MAB problems that incorporate an ‘“exploration
vs. exploitation” trade-off over an online learning process
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[15], [16]. The non-stochastic MAB is widely used in solving
online shortest path problems, where the decision makers has
to choose a path in each round such that the weight of the
chosen path is as small as possible [17], [18], [19], [20].

In this paper, we formulate the anti-jamming spectrum
sensing and access problem as a non-stochastic MAB problem
and analyze it under partial monitoring model, where only the
rewards (gains) of the chosen arms are revealed to the decision
maker.

D. Optimal Uncoordinated Frequency Hopping: The Problem
Formulation

To achieve the full potential of the UFH-based communica-
tion, we consider a frequency hopping game among a sender,
a receiver and a jammer. We assume that the sender wants to
send a message (partitioned into multiple fragments/packets)
to the receiver under different jamming attacks. However, the
sender and the receiver do not pre-share any secrets with
each other, so they cannot rely on coordinated anti-jamming
techniques such as FHSS and DSSS. During each timeslot, the
sender chooses k, sending channels, and the receiver chooses
k, receiving channels; the jammer chooses to jam k; channels
at his will. Now, the receiver’s challenge of selecting frequency
hopping strategy for minimized message reception delay lies
in 1) the receiver does not know the sender’s and the jammer’s
strategies before message transmission, thus he has no best
strategy to begin with!; 2) the receiver’s strategy is desired
to be adaptive optimal regardless of which sending/jamming
strategies the sender and the jammer adopt.

Therefore, in order to achieve the optimal solution, we
consider the above UFH problem as a sequential decision
problem [21] in which the choice of receiving channels at
each timeslot is a decision. To further formalize the problem,
we consider a vector space {0,1}" and number the available
transmitting channels from 1 to n. The strategy space for
the sender is set as Sy C {0,1}"™ of size (,:), and the
receiver’s is set as S, C {0,1}" of size (;'). If the f-
th channel is chosen for sending or receiving, the value of
the f-th (f € {1,...,n}) entry of a vector (or strategy) is
1; O otherwise. The strategy space for the jammer is set as

'Otherwise, the solution is straightforward. For example, if the receiver
knows that the sender and the jammer both choose the channels randomly,
then his best strategy would be randomly choosing channels to jam as proved
in [6].
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S; € {0,1}" of size (;f) For technical convenience, in this
case, the value 0 in the f -th entry denotes that the f-th channel
is jammed; the value 1 in the f-th entry denotes that the f-th
channel is unjammed.

During each timeslot, the three parties choose their own
respective strategies s, s,-, and s;. On the sender side, to adap-
tively adjust the sending channels based on the encountered
jamming requires the feedback information from the receiver,
which is not practical. Providing the sender with the required
feedback message without being exploited by the jammer is
actually the same problem as the original one to be solved [6].
From the perspective of the receiver, successful receptions are
determined by both its choice of strategy and the sender’s and
the jammer’s choices of strategies. We can look s, e s; as a
joint decision made by the sender and the jammer, where o
denotes the multiplication of corresponding entries in s and
5; (not a dot product). We say that at timeslot ¢ the sender and
jammer jointly introduce a gain gf; = 1 to channel f if the
value of the f-th entry of s;es; is 1. Whether the receiver can
obtain the reward or not depends on the state of the channel
f it has chosen for packet reception:

1) No packet is received on f, g+ = 0;

2) A packet is received on f. If the packet fails to pass the
verification (i.e., jamming based DoS attack), no gain is
obtained, gy ; = 0. For packet verification and message
reassembly purpose, we use efficient message verifica-
tion schemes in [6] (e.g., erasure coding combined with
short signatures);

3) A packet is received on f. If jamming/collision is
detected on the received packet, no gain is obtained,
gr,t = 0. As for jamming detection, real experiments
have shown in [22] that accurate differentiation of packet
errors due to jamming and errors due to weak links can
be realized by looking at the received signal strength
during bit reception. Here, we do not differentiate packet
jamming and collision as they both cause interference to
the legitimate packets. For simplicity, we do not consider
packet coding, so the jammed or collided packets are
discarded, resulting in no reward;

4) A packet is received on f. If no jamming is detected, a
gain 1 is obtained, g¢; = 1.

Therefore, after choosing a strategy s,, the value of the gain
gt is revealed to the receiver if and only if f is chosen as
a receiving channel. The above dynamic frequency hopping
problem can be formulated as multi-armed bandit problem
(MAB) [15], where only the states of the chosen arms are
revealed.

In each timeslot (round) ¢t (¢ € {1,...,T}), the receiver
selects a strategy I; from S,.. The gain g7, € {0, 1} is assigned
to each channel f € {1,...,n}. We write f € ¢ if channel f
is chosen in strategy i € S, i.e., the value of the f-th entry of
1 is 1. Note I; denotes a particular strategy chosen at timeslot
t from the receiver’s strategy set S,, and ¢ denotes a strategy
in S,. The total gain of a strategy ¢ during timeslot ¢ is

it = Z 9f.t

fei

TABLE 1
A SUMMARY OF IMPORTANT NOTATION.

Symbol Definition
n # of orthogonal channels
ks # of channels for sending at each timeslot
k., # of channels for receiving at each timeslot
k; # of jamming channels at each timeslot
l # of packets for transmission
N # of strategies at the receiver side
I chosen strategy at timeslot ¢
7 a strategy in the strategy set
f channel entry (index) in a strategy vector
gf.t gain for channel f at timeslot ¢
Git gain for strategy 4 at timeslot ¢
Git gain for strategy 4 up to timeslot ¢
Gy total gain over chosen strategies up to timeslot ¢
T # of timeslots (rounds)
C covering set

and the cumulative gain up to timeslot ¢ of each strategy 7 is

t t
Gi,t = Zgi,s = Zzgfs
s=1

feis=1

The total gain over all chosen strategies up to timeslot ¢ is

t t
Cr = D 9ns=2_ 3 91
s=1

s=1 fel,

where the strategy I, is chosen randomly according to some
distribution over S,. To quantify the performance, we study
the regret over T' timeslots of the game

max G, v — Gr,

€S,
where the maximum is taken over all strategies available to
the receiver. The regret is defined as the accumulated gain
difference over T' timeslots between our strategy and the static
optimal one in which the receiver chooses the best fixed set
of channels for message reception. In other words, the regret
is the difference between the number of successfully received
packets using our proposed algorithm and that using the best
fixed solution.

In this work, we introduce online optimization tech-
niques [16], [18], [20] into the design of frequency hopping
algorithm against both oblivious and adaptive jammers. We
evaluate the efficiency of the proposed algorithm by analyzing
the expected time to achieve message delivery with high
probability (w.h.p) and analytically prove its optimality under
different message coding scenarios. The important notation
used in this paper is summarized in Table I.

III. THE PROPOSED APPROACH: OPTIMAL ADAPTIVE
UNCOORDINATED FREQUENCY HOPPING

A. Solution Overview

In this section, we focus on developing the frequency
hopping algorithm for the receiver. Obviously, the efficiency
of such frequency hopping algorithm depends on the following
factors: the message size | M|, the message and packet coding
approaches, the frequency hopping rate fj, and the sender’s
and the jammer’s strategies. For simplicity, we do not consider
packet coding as it can be easily realized using error-correcting
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codes. We follow the same message coding technique as in [6],
which provides online message fragment/packet verification as
elaborated below.

Message coding and verification: The message M is first
partitioned into multiple fragments for transmission. Let [
denote the number of fragments (potentially after coding).
Given a desired probability of message delivery, the sender
can determine the number of timeslots/rounds 7' for mes-
sage transmission (Parameter selection will be discussed
in Section IV). For each message M, the sender gener-
ates a new public/private key pair (kpyp,kpri). Then, the
sender encapsulates each fragment M; into a packet, denoted
by pi = kpusllil | T 1M Sig,, . (kpus |1 TI[AL). As in
[6], we use short signatures [23] to generate the signature
Sigk,,. (kpu||2]|1]|T'||M;) (The reason to use short signatures
instead of conventional signatures is to reduce the signature
length and the public key length). Upon receiving a packet,
the receiver uses the received public key to verify the integrity
of the packet. If verification fails, the packet is dropped and
the receiver concludes that the channel on which this packet
is received is jammed. Note that since the public and private
key pair is updated for each message, packets signed with the
same private key belong to the same message. In our protocol,
since the receiver will not send an ACK for each received
packet, the sender does not know whether an individual packet
is received. However, after message M is reconstructed, the
receiver will transmit an acknowledgment to notify the sender
that the whole message is delivered.

Discussion. Before the transmission of messages, the sender
and receiver will first authenticate each other to prevent the
insertion of fake messages generated by the jammer. Specifi-
cally, in our protocol, the sender and receiver can exchange of
public key certificates issued by the CA using the proposed
adaptive UFH protocol. Since the sender may generate dif-
ferent public/private key pairs for different messages, these
public key certificates can be pre-loaded by the CA prior to
the protocol execution to reduce the involvement of CA in
signing public keys.

Note that the receiver cannot be overwhelmed by Denial
of Service (DoS) jamming attacks for the following reasons.
First, since the scheme is itself a UFH-based communication,
the receiver will not be able to receive all the packets (either
from the jammer or the sender) in the continuous timeslots
anyways. Second, the public key and private key pair is up-
dated for each message. When the sender transmits a message
(which is divided into multiple packets), the receiver will keep
the verified packets (belong to the same message) until all
packets of this message are received. After this, the packets
of this message are deleted. Third, when the jammer replays
a legitimate packet, 1) if it interferences with the sender’s
packet in this timeslot, the receiver will quickly detect this
jamming using techniques in [22] and discard it; 2) even if the
receiver receives a legitimated packet from the jammer (in this
case the sender does not transmit in this timeslot, otherwise
jamming is detected [22]), the verification of this packet will
not overwhelm the receiver in this timeslot. This is because we
can use timestamps to preclude replay attacks and this packet
is kept for future message reconstruction only if the public
key of this packet is the same as the other received ones and

the packet has never been received before; otherwise, it will
be discarded immediately.

Frequency hopping: As stated in the system model, none
of the three parties, i.e., the sender, jammer and receiver, has
knowledge of each other’s transmission/jamming strategies.
The receiver, however, learns the states (or gains) of its
previously chosen channels. Accordingly, it can dynamically
adjust the receiving channels for the coming timeslot. On
the jammer side, an oblivious jammer, which does not see
the receiver’s past decisions, chooses the target jamming
channels upfront; an adaptive jammer may carefully choose
the target jamming channels to outwit the receiver’s strategy
by utilizing his past experiences. Our algorithm design takes
into consideration both types of jammers.

The main difficulty in designing any channel hopping
algorithm for optimized efficiency is to appropriately balance
between exploitation and exploration. Such an algorithm needs
to keep exploring the best set of channels for transmission as
jammer may dynamically adjust his strategy. The performance
under any static strategy will be inevitably degraded by an
adaptive jammer. At the same time, the algorithm also needs
to exploit the previously chosen best strategies as too much
exploration will potentially underutilize them. To meet this
challenge, we propose an efficient and effective online learning
algorithm that achieves a proper balance between exploitation
and exploration and consequently ensures the performance
optimality.

B. An MAB-based Algorithm for UFH

In this section, we describe our MAB-based algorithm
for UFH as shown in Algorithm 1, whose performance is
asymptotically optimal. In our algorithm, each strategy is
assigned a strategy weight, and each channel is assigned a
channel weight. During each timeslot, the channel weight is
dynamically adjusted based on the channel gains revealed to
the receiver. The weight of a strategy is determined by the
product of weights of all channels of that strategy and some
random factor used for exploration. The reason to estimate
gain for each channel first instead of estimating gains for
each strategy directly is that the gains of each channel can
provide useful information about the other unchosen strategies
containing the same channels.

Let N denote the total number of strategies at the receiver
side. The parameter [ is to control the bias in estimating
the channel gain g}7t. The introduction of ~y is to ensure
that p; ; > %‘ so that a mixture of exponentially weighted
average distribution and uniform distribution can be used [15].
A set C of covering strategy is defined to ensure that each
channel/frequency is sampled sufficiently often. It has the
property that for each channel f, there is a strategy ¢ € C such
that f € 4. Since there are totally n channels and each strategy
includes &, channels, we have [C| = [*]. Note that we use
gains instead of losses in both our notations and analysis, as
we are interested in the number of successful packet reception
attempts instead of delay loss in the shortest path problem.
The following theorem is based on that of [20] with necessary
modifications and simplifications required to accommodate for
the optimal UFH problem.
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Algorithm 1 An MAB-based algorithm for UFH

Input: n, k., 6 € (0,1), T, g € (0,1], v € (0,1/2], n > 0.

Initialization: Set initial channel weight wso = 1V f € [1,n],

initial hopping strategy weight w; o = 1 Vi € [1, N], and

initial total strategy weight Wo = N = ().

For timeslot t =1,2,...,T

1: The receiver selects a hopping strategy I; at random

according to the strategy’s probability distribution p; ¢,
Vi € [1, N], with p; + computed as follows:

D “Nwio tg ifiec
wt (1 =) 5= ifi ¢ C

2: The receiver computes the probability gr: Vf € [1,n], as

Zz—;f@-wm—lﬂl{i €C: feill
Wi, C|

qrt = Z pit = (1=7)
iifed

3: The receiver calculates the channel gain gy, 1 Vf € I;

based on the outcomes of jamming detection and integrity

verification. Based on the revealed gains gy ;_1, it com-

putes the virtual channel gains g}, Vf € [1,n] as follows:

gf,t+ﬁ
=i 2

qf.,t

if channel f € I;
oththerwise.

4: The receéver updates all the weights as wpy =
wri—1€"0t, wiy = Hycwpy = wi—1e™ot, Wy =
> i—1 Wi, Where g; , = Zfeig}ﬂ,

End

Theorem 1: No matter how the status of the channels
change (potentially in an adversarial manner), with probability
at least 1 — 4, the regret of our algorithm is at most

6k,.vVTnlnn,

Inn

while 8 = /22 In2, v = 2pn and p = /B2 and T >
max{% In 2, 4nlnn}.
Proof: See Appendix A. [ |

Theorem 1 shows that in 7" timeslots, the difference between
the number of successfully received packets using Algo-
rithm 1 and that using the optimal solution is bounded by
6k,vTnlnn. It is easy to see that the normalized regret of
Algorithm 1 converges to zero at an O(1/v/T) rate as T
goes to infinity. In Section IV, we will analyze the delay
performance between our strategy and the optimal ones.

C. An Enhanced Algorithm

It is obvious that the implementation of Algorithm 1 has
time and space complexity O(n*"). As the number of channels
increases, the strategy space will become exponentially large,
which will result in low efficiency. To address this problem,
we propose an enhanced algorithm utilizing dynamic program-
ming techniques, as shown in Algorithm 2. The basic idea of
the enhanced algorithm is to choose the receiving channels
one by one until k, channels are chosen, instead of choosing
strategy from the large strategy space in each round (timeslot).

Let S(f,k) denote the strategy set in which each strategy
chooses k channels from channel f,f + 1,---,n. We also
use S(f, k) to denote the strategy set in which each strategy
chooses k channels from channel 1,2, -- , f. We define

Wt(?ag) = Z waﬂf

i€S(F k) f€

>, IMwne

i€S(f.k) f€

=

<

\?_r/l
[

and they have the following properties:
Wi(f. k) = Wi(f+ 1K) +wp Wi(f +1,k—1) (1)

Wt(fﬂ k) = Wt(f - 17k) + w?,tWt(f -1k- 1)(2)
By letting W;(f,0) = 1, Wi(n + 1,k) = W(0, k) = 0, both
Wi (f,k) and W(f, k) can be computed in time O(k,n) by
using dynamic programming for all 1 < f <nand 1 < k <
ky.

Instead of drawing a strategy as in Algorithm 1, we now
choose channel one by one until a strategy is found. Assume
we make decision on each channel one by one in increasing
order of their indices, i.e., we first decide whether channel
1 should be chosen or not, and then channel 2, and so on.
For any channel f, if £ < k, channels have been chosen in
channel 1,---, f — 1, we choose channel f with probability

Wi Wi (f+ 1L, kr —k—1)
Wei(f, kr — k) '

Correctness: Let w(f) = wy 1 if channel f is chosen in the
strategy ¢; O otherwise. w(f) is the weight of f in the total
weight of the strategy. In our algorithm, w; ;1 = H?:l w(f).
Let ¢(f) = 1 if channel f is chosen in the strategy i; O

3)

otherwise. 2;21 ¢(f) denotes the number of channels chosen
among channels 1,2, --- , f in strategy 4. In this implementa-
tion, the probability that a strategy 7 is chosen is

e w(FWier (F + Lk — S e(f)) I, w(f)

11 _ el

2 W (Foke = I elr) W1 (1, k)
- W

The probability is exactly same as that in Algorithm 1, which
implies the correctness of this implementation.

In Algorithm 2, we do not maintain the total weight of each
strategy w; +. Thus, different from Algorithm 1, the probability
gf,+ can be computed within O(nk,) as in Eq. (4) for each
round. It is easy to see that the time and space complexity of
Algorithm 2 are O(k,nT') and O(k,n), respectively.

IV. PERFORMANCE ANALYSIS

In this section, we analyze our algorithm in different cases.
As we discussed above, the size of data packet for transmission
cannot be too large. Therefore, the message for transmission
should be divided into small fragments or packets. However,
since the transmission process is not reliable, e.g., data packets
may be jammed, no algorithm can guarantee that the message
will be delivered in certain time with probability 100%. So we
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Algorithm 2 An enhanced algorithm for UFH

Input: n, k., 6 € (0,1), T, g € (0,1], v € (0,1/2], n > 0.
Initialization: Set initial channel weight wso = 1V f € [1,n],
Let W;(f,0) = 1 and W(n + 1,k) = W(0,k) = 0 and
compute Wy (f, k) and Wo(f, k) following Egs. (1) and (2),
respectively.

For timeslot ¢t =1,2,...,T

1: The receiver selects channel f Vf € [1,n] one by
one according to the channel’s probability distribution
computed following Eq. (3) until a strategy with k,. chosen
channels is selected.

2: The receiver computes the probability g¢, Vf € [1,n]
following Eq. (4).

3: The receiver calculates the channel gain gy, 1 Vf € I;
based on the outcomes of jamming detection and integrity
verification. Based on the revealed gains gy ;_1, it com-
putes the virtual channel gains g, , Vf € [1,n] as follows:

gf,t+ﬁ
gre =9 4

qf.,t

if channel f € I,
oththerwise.

4: The receiver updates the channel weight as wy; =
ﬂc,t_le"gﬁt Vf € [1,n], and computes W;(f, k) and
Wi(f, k) following Egs. (1) and (2), respectively.

End

consider the expected time usage such that a message could be
delivered with high probability. Here high probability means
the probability tends to 1 when total number of packets tends
to infinite.

Definition 1: The static optimal solution is the best fixed
strategy, i.e., the best fixed k, receiving channels over T’
timeslots. The adaptive optimal solution is a sequence of
strategies that always maximize the gains at each timeslot, i.e.,
a sequence of k, receiving channels that adaptively change. An
algorithm A is a-static (adaptive, respectively) approximation
if and only if

(1) The Static (adaptive, respectively) optimal solution can
transmit a message successfully with high probability (w.h.p)
1 — & in time 7', where constant € > 0.

(2) Algorithm A can transmit the message successfully in
time o7 with the same probability 1 — li

Theorems derived in the following sections clearly identify
the approximation ratio of the proposed adaptive UFH algo-
rithm under different coding scenarios.

A. Without Message Coding

We first analyze the performance of our algorithm in the
case where no message coding methods are used. Each mes-
sage M is divided into ! fregaments/packets M1, My, --- , M;
with the same size, i.e., |M;| = |M|/l for all 1 <14 <. All
packets of message M must be received before the message M

can be reassembled. Since the sender cannot get any feedback
from the receiver, he has no idea about what kinds of packets
have been received. Therefore, in our protocol, every time the
sender wants to send a packet, he will pick up a packet with
the same probability 1/1.

Lemma 2: Receiving (1 + €)llnl packets, the probability
to reconstruct the original message is at least 1 — lle, for any
constant € > 0.

Proof: When receiving (14¢)l In [ packets, the probability
that at least one kind of packet is not received is p < (i) (1-—
$)afatint < ((LyA+enl — L "So the probability that all {
kinds of packets have been received is at least 1 — ll [ ]

Lemma 3: Receiving [ Inl packets, with probability at least
1 — e~ /4, the original message cannot be reconstructed.

Proof: Here we use the result of Lemma 6 in [24].
Receiving [ In ! packets, with probability at least 1 —e~/%, at
least one kind of packet is not received. ]

Theorem 4: When | > 36(1 + ce)k.n/(c — 1)%€2, our
algorithm is (1 + ce)-static approximation for any constant
c> 1.

Proof: According to Lemma 3, to reconstruct a message
with [ packets with high probability in time 7', the static opti-
mal solution needs to collect at least [Inl packets. Therefore,
our algorithm receives (1 + ce)lInl — 6k,+/(1 + ce)Tnlnn
packets in (1+4-ce)T time. When [ > 36(1+ce)k,n/(c—1)2€2,
the number of packets is no less than (1 + €)l1nl. According
to Lemma 2, the probability to reconstruct the message is at
least 1 — £. |

Theorem 5: When the sender and jammer are using the
uniformly random strategy, the static optimal solution achieves
the same expected gain as the adaptive optimal solution.

Proof: When the sender and jammer are using uni-
formly random strategy, the expected gain on each channel

is % ”;kj per round/timeslot. Therefore, both the static and
adaptive optimal solutions achieve expected gain kr%"_Tkj
per round/timeslot. n

Theorems 4 and 5 imply that our algorithm is also (1 + ce)

adaptive approximation for any constant ¢ > 1, when [

is sufficiently large, and the sender/jammer are using the

uniformly random strategy.

13 min{ks,k,,n—k;}(14-ce)
ks(n—k;)(c—1)2e?

(1 + ce)-adaptive approximation

Theorem 6: When [ > 36

. . n?min{ks,k.,n—k;}
gorlthm 1S W

for any constant ¢ > 1.

Proof: The adaptive optimal solution get KT packets in
T time in expectation where K = min{k,,ks,n — k;}. We
know that it is necessary to collect at least [In! packets to
reconstruct the message with high probability, which implies
KT > [llnl. On the other hand, the static optimal solution
collect kr%"_Tkj packets in expectation each round. There-

, our al-

fore, in time Wj_k])K (14 ce)T, our algorithm collects at
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least K(l—!—ce)T—GkT\/m

When [ > 36 m,in({Si’,l:f)’?C__ﬁj)}ﬁ;“), the above formula is
no less than (1+¢€)l1Inl. So the probability to reconstruct the

message is at least 1 — 7. [ ]

K (14 ce)T'nlnn packets.

B. With Erasure Codes

We also consider the case where erasure codes are used in
the transmission. Erasure codes allow for schemes where a
message can be reconstructed if only a subset of all packets
is available. Near optimal erasure codes encode a message M
into ¢l packets of size |M|/(l — €) such that any subset of
! packets can be used to reconstruct M. Example of (near)
optimal erasure codes are: Reed Solomon [25] and Tornado
[26] codes. In our protocol with erasure codes, every time the
sender want to send a packet, he will pick up a packet with
the same probability 1/cl.

Lemma 7: Receive (¢ + €)l packets, the probability of
reconstructing the original message is at least 1 — l%, for any
constant € > 0.

Proof: When receiving (c+ €)l packets, the probability p
that at least (¢ — 1)! + 1 kinds of packets are not received
is around p < (,%))(52)9L According to Stirling’s
approximation we have e(2)" < n! < e(2H)" 1 we get

€
p < cl+1(CTcl)(c71)l+lcl71 L_ < ¢ when e > ot

= €2 . clete)l ” CInc
Therefore, the probability that at least [ different kinds of
packets have been received is at least 1 — li [ ]

Set ¢ = 1+ § where § is a small constant satisfying el >

%, we can reconstruct a message with probability at
least 1 — 7 after receiving (1 + & + €)l packets.
It is also obvious that to reconstruct a message, it is

necessary to collect at least [ packets.

Theorem 8: When | > 36(1 + 0 + ce)k,nlnn/(c — 1)%€?,
our algorithm is (1 4+ ¢ + ce)-static approximation for any
constant ¢ > 1.

Proof: The proof is similar to that of Theorem 4. To
reconstruct the message with high probability, it is necessary
to collect at least [ packets in time 7. When [ > 36(1 + § +
ce)k.nlnn/(c—1)%€2, in time (1 + & + ce)T, our algorithm
will collect at least (1+8+ce)l —6k,\/(1 + & + ce)Tnlnn >
(1 + 6 + €)l. Therefore, the probability that the message can
be reconstructed successfully is at least 1 — li which finishes
the proof. [ ]

Similarly, Theorems 5 and 8 imply that our algorithm is also
(1 + 0 + ce)-adaptive approximation for any constant ¢ >
1 if [ is sufficiently large, and sender/jammer are using the
uniformly random strategy. We also have following theorem.
The proof is similar to that of Theorem 6.
n% Inn min{ks,k,,n—k;} (14+54ce)
ks(n—k;)(c—1)%€? ’

. . n2min{ks,kr,n—k;} .
our algorithm is W(l + d + ce)-adaptive ap-
proximation for any constant ¢ > 1.

Proof: The adaptive optimal solution get KT packets in
T time in expectation where K = min{k,,ks,n — k;}. We
know that it is necessary to collect at least [ packets to recon-
struct the message with high probability, which implies K7 >
l. On the other hand, since the static optimal solution collect

Theorem 9: When | > 36

ks n—kj
k=

— packets in expectation each round. Therefore, in

time W:_MK (1464 ce)T, our algorithm collects at least
K(1+5+CE)T—6/€T\/W§_,€J_)K(1 + 0 4 ce)Tnlnn pack-

ets. When [ > 36"3 lnnn;cm(if_sk]’?)(z:gz}g 1949 the above
formula is no less than (1 + & + €)l. So the probability to

reconstruct the message is at least 1 — li [ ]

C. With Fountain Codes

We also consider the case where fountain codes are used in
the transmission. Fountain codes (also called rateless erasure
codes) do not generate a finite set of packets but a potentially
infinite packet sequence. When the fregament/packet size of
a message M is |M|/(l — €), the encoded message can be
reconstructed from any set of [ different packets. ¢ = 0 for
optimal fountain codes. Example of efficient near optimal
fountain codes are: Online [27], LT [28], and Raptor [29]
codes.

Similar to previous subsection, we can obtain following
theorems. Briefly speaking, compared with erasure codes, the
approximation ratios are reduced by a factor 13_46:& when
fountain codes are used in our protocol. Notice that the
improvement could be big when [ is not sufficiently large for
a small 6.

Theorem 10: When [ > 36(1 + ce)k,nInn/(c—1)%€2, our
algorithm is (1 4 ce)-static approximation for any constant
c> 1.

Proof: To reconstruct the message with high proba-
bility, it is necessary to collect at least [ packets in time
T. In time (1 + ce)T, our algorithm will collect at least
(1 + ce)l — 6k,+/(1 + ce)Tnlnn packets. When [ > 36(1 +
ce)k,nlnn/(c— 1)%€2, the number of packets is no less than
(¢ + €)l. Therefore, the probability that the message can be
reconstructed successfully is at least 1 — li which finishes the
proof. ]

Theorem 11: When | > 36 n’ Innmin{ks ke n—ki}(tce) o0

ks(n—k;)(c—1)2€?
2 B L. . . .
algorithm is % (1+ce)-adaptive approximation

for any constant ¢ > 1.

Proof: We know that it is necessary to collect at
least | packets to reconstruct the message with high
probability, which implies K7 > [. On the other
hand, since the static optimal solution collect kr%"_Tkj
packegs in expectation each round. Therefore, in time
mlf (1 + ce)T, our algorithm collects at least K (1 +
ce)T — 6kr\/ e K (1 + ce)TnInn packets. When | >
3671 nkr?éz{f,zfl;(rc’ﬁbﬁ}z(1+C€), the above formula is no less
than (c+ ¢€)l. So the probability to reconstruct the message is
at least 1 — . |

D. Parameter Analysis

1) Impact of Number of Total Channels n: Previous analy-
sis implies that a large n does not achieve a good performance.
Essentially, if n is too large, even there is no jammer, it
will be very difficult for sender and receiver to meet in a
common channel without preknowledge. So here we discuss
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how to choose the number of total channels n. According to
Theorem 5, we know that the expected number of packets
received per round is kr%% To maximize the number of
packets received, we can set n = 2k;. Based on this setting,
our algorithm is constant adaptive approximation for various
cases since the values of k, k., k; are generally not very large.
For example, when ks = k, = k;, with erasure coding, our
algorithm is 4(1 + ¢ + ce)-adaptive approximation for any
constant ¢ > 1.

2) Impact of Number of Total packets |: Next we discuss
how to choose a good [ from the perspective of the sender.
We know that the size of each packet cannot be too large,
otherwise, the jammer can sense then jam the transmission in
the same timeslot. This introduces a lower bound of the num-
ber of total packets [. Our previous analysis seemly implies
that larger [ leads to better performance for our algorithm.
Essentially, larger [ induces more rounds for transmission,
which gives our algorithm more opportunities to learn and
achieve static optimal solution. However, our analysis is based
on the performance difference between our algorithm and the
static optimal solution. In practice, erasure coding induces
constant size of overhead in each packet. A too large [ will
lead to a large number of overhead which decreases the
performance for both our algorithm and the static optimal
solution. For example, assume the size of overhead is C'. With
erasure coding, to reconstruct a message of size M with high
probability, we need to collect at least [ packets. The total
size of data transmission is l(% +C) = |[M| + Cl. When
the transmission rate is fixed, the time spent in transmission
is linear to the size of data. To minimize the total time spent
in transmission, we should choose [ as small as possible.
The smallest possible is [ = %, where S = B/ fj.
Therefore, there is a trade-off between using relatively large
I for facilitating learning and using small [ for reducing the
size of the transmission data.

3) Impact of Total Transmission Time T': Notice that the
parameters 3, n and «y are determined by the total transmission
time 7. Here we discuss how to choose a feasible T' for
our algorithm. In our protocol, the sender will decide T' and
encode it in each packet. After receiving the first packet, the
receiver knows the parameter 1" and runs our algorithm. Given
quality requirement P, which denotes the probability that the
receiver can receive the message, the sender can decide a
feasible T as follows. Here we use the case where erasure
codes are used as an example. The sender first computes n and
l= % as we previously discussed. Then the sender needs to
estimate a lower bound k- for k,. and a upper bound E for k;.
It computes € such that 1— li = P and finds a feasible constant
¢ > 1 such that [ = 36(1 + 0 + ce)kynlnn/(c — 1)%€%. The

total time of transmission will be 7' = (1+d+ce)l/k, % ":Lk"

Theorem 8 can guarantee that the receiver will obtain the
message with probability at least P. Similarly, we can compute
a feasible 7' when no message codes are used, or fountain

codes are used.

V. SIMULATION RESULTS

In this section, we conduct extensive simulations to validate
our theoretical results and demonstrate the performance of

our MAB-based algorithm for UFH under various jamming
attacks, sender’s sending strategies and packet transmission
strategies.

In our simulation, the sender chooses from one of two
strategies: static sending strategy and random frequency hop-
ping strategy; the jammer chooses from one of three strate-
gies: random, static and adaptive jamming strategies, and the
receiver chooses from one of three strategies: static receiving
strategy, random and adaptive frequency hopping strategies.
Note that i) In static strategies, the chosen channels remain
unchanged for all timeslots; ii) In random strategies, the chan-
nels are chosen uniformly at random from a public frequency
set; iii) In adaptive strategies, the channels are chosen using
the MAB-based algorithm. Also note that an adaptive jammer,
which knows whether it succeeded in jamming the transmitting
channels (i.e., both the sender and the receiver reside on in a
timeslot) for all the past timeslots, is too powerful and thus
infeasible in reality. However, it can be used to demonstrate the
scheme performance in the worst case. In our simulation, we
also compare the performance of our proposed approach with
that of the receiver’s static and adaptive optimal strategies.
The static opt is a fixed strategy chosen to maximize the
number of received packets (total gains) over 1" timeslots.
The adaptive opt, which constantly chooses the best strategy
in each timeslot and obtains maximized number of received
packets, is actually infeasible in reality, and hence it serves as
the theoretical efficiency upper bound in our simulation.

We use a three-element tuple to denote the three parties’
respective strategies in a particular simulation scenario, e.g.,
“ran sta mab” denotes that the sender chooses random hopping
strategy, the jammer chooses static jamming strategy and the
receiver chooses adaptive frequency hopping strategy (i.e.,
MAB-based algorithm for UFH). Without loss of generality,
we assume the sender and receiver have the same number
of antennas with ks, = k., = 3. In the simulation, we
choose 6 = 0.1. After a feasible T is chosen (as discussed

in the Section IV), we can determine the other inputs of

ko

the algorithm as follows 8 = /;%

In%, v = 2nn and

Inn

n= 4Tn>
Note that a reasonable 7" should be chosen to ensure 3 € (0, 1]
and v € (0,1/2].

We vary the strategies of the three parties to study i) the
average number of received packets when 7' increases and
i) the cumulative distribution function (CDF) of the expected
time to reach message delivery 7. We also vary the jammer’s
jamming capability (k;) and the total number of orthogonal
frequencies n to study the impact of parameter selection on
the performance of UFH-based communication. We further
focus on a random sender and evaluate the effectiveness of
our MAB-based frequency hopping algorithm under differ-
ent packet transmission strategies (i.e., without coding and
with (rateless) erasure coding). We show that, the MAB-
based algorithm is asymptotically optimal regardless of the
sending/jamming strategies.

where n is the total number of available channels.

A. Without Message Coding

We first evaluate the performance of the UFH-based com-
munication without using message coding methods. The pur-
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Fig. 2. Average number of received packets vs. the number of timeslots (T) and CDF of expected time to achieve message delivery under different strategy
settings (without message coding)
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pose of the simulation is to compare the performance of our
MAB-based algorithm with that of static receiving strategy
and random hopping strategy at the receiver under different
strategies of the sender and the jammer. Fig. 2 shows (i)
the average number of received packets versus the number
of timeslots (7') and (ii) the CDF of the expected time to
achieve message delivery 7" under different strategy settings
given [ = 20, k; = 7 and n = 2k;. Since the MAB-based
frequency hopping algorithm enables the receiver to explore
the best channels for transmission, it will perform better than
the static and random hopping in a “static” environment. As
shown in Fig. 2 (a) and (b), when both sender and jammer
use static strategies, static receiving strategy performs the
best, and the random hopping strategy performs the worst
at the start of communication (In reality, by using static
strategy the receiver’s channels may be totally jammed or not
overlap with the sender’s channels. Here, we assume that the
receiver chooses at least one channel that is used by the sender
and not jammed.). However, as T increases, our proposed
adaptive strategy outperforms the static one since the receiver
has “learned” the best set of channels for transmission. In
Fig. 2 (b), we find that th