Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

Xiang-Yang Lil Shang-Hua Teng? Peng-Jun Wan 3

Abstract: To conduct numerical simulations by finite ele-
ment methods, we often need to generate a high quality mesh,
yet with a smaller number of elements. Moreover, the size
of each of the elements in the mesh should be approximately
equal to a given size requirement. Li et al. recently proposed
anew method, named biting, which combines the strengths of
advancing front and sphere packing. It generates high quality
meshes with a theoretical guarantee. In this paper, we show
that biting squares instead of circles not only generates high
quality meshes but also has the following advantages. It is eas-
ier to generate high quality elements near the boundary with
theoretical guarantee; it isvery efficient time-wise; in addition,
it is easier to implement. Furthermore, it provides ssmple and
straightforward boundary protectionsin three dimensions.

keyword: Unstructured mesh generation, advancing front,
biting, sphere packing, spacing function.

1 Introduction

In numerical simulations or computer graphics applications,
we often need to decompose a domain into a collection of
primitive elements. Not all meshes play equally well for nu-
merical simulations. It is often the case that we are required to
generate high quality meshes with small number of elements.
In order to reduce the problem size, an unstructured mesWwith
a varying local topology and spacing is often used for prob-
lems with complex shape boundaries and with solutions that
changerapidly. Over the years, several meshing methods have
been developed to generate high quality triangular meshes in
2D or 3D. See Bern, Eppstein, and Gilbert (1990); Li and
Teng (1998); Mitchell and Vavasis (1992); Ruppert (1992);
Shewchuk (1998). Those based on advancing front, Delau-
nay triangulations, and quadtrees/octrees have become popul ar
due to their effectiveness in practical applications. However,
these methods do not come with equal strengths. For exam-
ple, the advancing front method offers a high quality of ver-
tex placement strategy and an integrity of the boundary. See
Blacker (1991); Lohrer (1996); Lohrer and Parikh (1988). Un-

IDepartment of Computer Science, University of Illincis a Urbana
Champaign, Urbana, IL 61801. And Department of Computer Science,
Illinois Ingtitute of Technology, Chicago, IL 60616.

2Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801. And Akamai Technologies Inc., 201 Broad-
way, Cambridge, MA 02319.

3Department of Computer Science, lllinois Institute of Technology,
Chicago, IL 60616.

fortunately, it does not provide general guarantees on the size
and quality of meshes it produces. Especidly, it is hard or
time consuming to process when the fronts meet each other or
one front meets itself. On the other hand, more sophisticated
methods such as quadtree/octree refinement, [Bern, Eppstein,
and Gilbert (1990); Mitchell and Vavasis (1992)], and Delau-
nay based methods, [Chew (1997); Miller, Talmor, Teng, and
Walkington (1995); Ruppert (1992); Shewchuk (1998)], guar-
antee to generate a well-shaped mesh such that the number of
elementsis within a constant factor of the optimal.

For numerical simulations, we are often required to gener-
ate a mesh whose element size is no larger than an element
size specified by a function, namely, control spacing function
Some methods, such as Delaunay refinement, are not explic-
itly designed for generating a high quality mesh conforming
to a spacing function. Recently, the authors had developed
a new two-dimensional meshing algorithm called biting; see
Li, Teng, and Ungor (2000). The agorithm combines the
strengths of advancing front and these provably good mesh-
ing methods. It generates a high quality mesh conformingto a
given control spacing function.

The biting algorithm uses the sphere packing # as the underly-
ing structure, in conjunction with the advancing front method.
The biting method first constructs a well-spacedvertex set by
implicitly building a sphere packing of the domain and then
uses the Delaunay triangulation of this vertex set as the final
mesh. They use a new and efficient method to construct an al-
most tight sphere packing. At ahigh level, this new advancing-
front-based packing algorithm first finds a sphere packing of
the domain boundary and then grows the packing towards the
interior of the domain. The packing is constructed implicitly
as follows. For each point in the domain, it defines a biting
sphere, with a radius proportiona to the control spacing de-
fined on it. The algorithm selects a corner vertex from the cur-
rent domain boundary and removes its biting sphere from the
domain. The domain boundary is updated and the algorithmis
repeated until the domain is empty. They show that the set of
smaller spheresentered at al biting centersis a sphere pack-
ing. In other words, the new method uses the advancing front
to construct a sphere packing implicitly. Li, Teng, and Ungor
(2000) showed that the Delaunay triangulation of the centers
of al bitten spheres has small radius-edge ratio. Recall that,
here the radius-edge ratio of an element is the ratio of its cir-

41n this paper, we use sphere as a more general terminology. It represents
circle in two dimensions.

cumradius over thelength of its shortest edge. Theradius-edge
ratio of a mesh is the largest radius-edge ratio of all of its el-
ements. Furthermore, they showed that the size of each mesh
element is within a small constant factor of the control spac-
ing. Consequently, the number of mesh elements is within a
small constant factor of any mesh that has small radius-edge
ratio and conformsto the control spacing.

In this paper, we show that biting square (or cube in 3D) in-
stead of sphere will also generate a high quality mesh whose
size is within a constant factor of the optimal. In addition,
the time complexity of two dimensional square-biting method
is O(nlogn), where n is the number of the output vertices.
Furthermore, it is easier to implement this method than the
previous sphere-biting method. It is also straightforward to
extend the square-biting scheme to three dimensions without
difficulty in protecting the domain boundary.

The rest of the paper is organized as follows. Section 2 in-
troduces definitions that will be used in this paper. Section
3 presents the hiting-square method and the proofs about the
quality of the sphere packing that it generates. Section 4 gives
the details of boundary protection to complete the proof of our
main theorem. We analyze the time complexity of the square-
biting method in Section 5. Section 6 gives some experimental
results to show that the square-biting method actually gener-
ates well-shaped meshes. We conclude our paper in Section
7.

2 Préiminary

In this section, we review some definitions and results which
are essential in presenting our algorithm and in proving the
quality guarantees of the algorithm. Most of them can be
found in many places, but for the completeness of the presen-
tation, we still include them here.

2.1 Well-shaped and Well-conformed Mesh

In two dimensions, we assume that the input domain Q is a
planar-straight-line graph(PSLG), which is a collection of
line segments and points in the plane, closed under intersec-
tion. If a control spacing function f(x) over Q is given, the
generated mesh should conform well to f(x) in addition to be
well-shaped.

Quality measures. Different numerical methods and scien-
tific problems may have different quality requirements on the
underline meshes. Natice that, for very slowly varying func-
tions, an essential quality requirement of the mesh is that all
angles are not obtuse. On the other hand, another common
shape criterion for mesh elements (triangle in 2D, tetrahedron
in 3D) is the condition that the angles of each element are not
toosmall, i.e., the aspect ratio of each element is bounded from
above by aconstant. See Babuskaand Aziz (1976); Bern, Epp-
stein, and Gilbert (1990); Strang and Fix (1973). The aspect

CMES, vol.1, no.1, pp.1-??, 2000

ratio of an element is often defined as the ratio of the radius
of the smallest sphere containing the element to the radius of
the largest sphere contained in the element. The aspect ra-
tio of a mesh is defined as the largest aspect ratio of al of
its elements. Unfortunately, until now, no method guarantees
to generate three-dimensional Delaunay meshes with practi-
cally good small aspect ratio. An alternative but weaker qual-
ity measurement is to use the radius-edge ratiantroduced by
Miller, Talmor, Teng, and Walkington (1995, 1998).

In three dimensions, slivers are the only tetrahedrawhich have
small radius-edge ratio but very large aspect ratio. Here, a
diver is atetrahedron whose four vertices lie close to a plane
and whose projection to that plane is a convex quadrilateral
with no short edge. Notice that, in the recent breakthrough,
Li (2000) developed a new refinement based algorithm that
guarantees to generate meshes with bounded aspect ratio, i.e.,
dliver-free Delaunay meshes. However, the theoretical bound
on the aspect ratio is large, although theoretically it is a con-
stant. Experimental results are necessary to show the practical
advantages of that algorithm.

Delaunay triangulation is widely used on mesh generation be-
cause it often provides a bridge to prove the theoretical qual-
ity guarantees of meshing algorithms. A simplicial mesh is
Delaunay triangulation if the circumsphere of each of its ele-
ments does not contain any vertices inside it. The Delaunay
triangulation of a set of two-dimensional vertices maximizes
the minimum angle among all possible triangulations. Unfor-
tunately, thisis not true in three dimensions.

Based on the radius-edge ratio quality measure, we define
well-shaped meshes as following.

Definition 2.1 [p-WELL-SHAPED MESH] A mesh M isp-

well-shaped if the maximum radius-edge ratio over all of i

elements is bounded from abovegy

Spacing function. A spacing function f(x) is used to spec-
ify theideal element size at every point of the domain Q. The
spacing function is typically defined from the geometry struc-
ture of the domain and/or the numerical system to be con-
ducted on the domain. Let's first study what is the role of
geometry structure of the domain in generating well-shaped
meshesover it. Consider an input domain Q and awell-shaped
mesh M generated on Q. The element of M could not have ar-
bitrary size anywhere. For example, assume that one region of
Q has two closed vertices or segments. Then the local mesh
elementsin that region could not be too large. In other words,
the geometrical structure of the domain more or less defines
the element size of any well-shaped mesh that could be gener-
ated. Ruppert (1992) introduced the concept called local fea-
ture sizefunction Ifs(x) to capture this geometry condition. It
is the radius of the smallest sphere centered at x that contains
two non-incident features of the domain. Here the features are
theinput vertices and segmentsin two dimensions.

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

If the mesh is used for scientific computing, the numerical con-
dition also determines the largest element size at each point
such that the numerical error is not large. This element size
specification is usually obtained from an a priori error analy-
sis, or an a posteriorierror analysis based on an initial numer-
ical simulation. In other words, it defines anumerical spacing
functions denoted by nsf(x), for each point x in the domain Q.
Thevaue of nsf(x), from the interpolation viewpoint, is deter-
mined by the eigenvalues of the Hessian matrix H; see Strang
and Fix (1973). The spacing of the mesh vertices, required by
the accuracy of the discretization near x should depend on the
reciprocal of the square root of the largest eigenvalues of H at
X. Generally, the control spacing function of Q isthe combina-
tion of the local feature size Ifs(x) and the numerical condition
nsf(x).

To make it possible that we can generate a well-shaped mesh
that conformsto a given control spacing f (x), we expect to see
some smoothness condition of f(x). The following Lipschitz
condition are often used to capture the smoothness of f(x).

Definition 2.2 [a-LipscHITz] A function f{x) is a-Lipschitz,
if for any two points X, y of the domain

() = f(Y)] < affx=yl]-

Element size. Given a mesh M, without doubt, we need to
describe the element size so we can measure its conformity to
a given spacing function. There are several ways to describe
the elements size of M. Edge length function el(x) and nearest
neighbor function N(x) are two of the widely used ones. For
each point x € Q, el(x) is the length of the longest edge of all
mesh elements that contain x; while N(x) is the distance of x
to the second nearest mesh vertex in M. Notice that if x isa
mesh vertex, then x itself is the nearest mesh vertex of x.

Given the elements size specification f(x), the generated mesh
should conform well to it in addition to be well-shaped. In the
ideal mesh M, the elements size derived at any vertex of M
should be within asmall constant factor of the control spacing
f(x). The smaller the constant, the better conformed the con-
trol spacing f (x). Thus, we define the conformity of amesh as
following.

Definition 2.3 [Conformity] Let x be a vertex of mesh M; let
N(X) be its nearest neighbor value derived from M. We ¢

c(X) =mi n(%, %) the conformity of vertex x.
Then the conformity of amesh M is defined as following.

Definition 2.4 [y-Well-Conformed Mesh] A mesh isy-well-

conformed if every vertex of the mesh has conformity at le

Y.

In this paper, we consider the following problem. Given a do-
main Q and an a-Lipschitz spacing function f(x), construct a
well-shaped mesh M that conformswell to f(x).

2.2 Sphere Packing Methods

At a high level, the sphere-packing method fills an input do-
main with a set of sphereswhose centers provide agood vertex
set for a high quality Delaunay mesh. It can be used to gener-
ate meshes for various quality conditions.

Shimada and Gossard (1995) developed a sphere-packing
method called bubble mestio generate triangular meshes for
two and three dimensions. Their packing scheme is based on
the simulation of particles that interact with each other under
repulsive/attractive forces. Here particle is typicaly a sphere
with radius proportional to the control spacing at its center for
isotropic meshing. They first define a proximity-based force
among the spheres, and then find a stable configuration by
moving, inserting, or deleting spheres. However, their method
does not provide any theoretical bound on thetime of the algo-
rithm nor the quality of meshes that the algorithm generates.

Miller, Talmor, Teng, and Walkington (1995, 1998) designed
a sphere-packing based meshing method which combines two
well-known methods: quadtree and Delaunay triangulation.
First, the algorithm applies a balanced quadtree refinement
to approximate the spacing function f(x). Second, it over-
samples a set of points in the domain to define a set of over-
lapping spheres. Then, it computes amaximal independent set
(M1S) of non-overlapping spheres to obtain a sphere packing.
Finally, it computes the Delaunay triangulation of the centers
of these spheres. Notice that, to generate high quality meshes,
it needs very dense sample pointsinitially; on the other hand,
dense sample implies high complexity of the algorithm.

Let B(x,r) denote the sphere centered at point x with radiusr.
Suppose f (x) isthe desired element size function. Miller, Tal-
mor, Teng, and Walkington (1995, 1998) introduced the fol-
lowing definition to capture the quality of a sphere packing.

Definition 2.5 [B-Packing] A set S of spheres is[&packing
with centers P of2 with respect to a spacing functior{X) if

1 For each point pof P, Bp, f(p)/2) € S;

2 The interiors of any two spheresand $ in S do not over-
lap; and

3 For each point ¢ Q, there is a sphere in S that overlaps
with B(q, B (q)/2).

allhe following structure theorem by Miller, Talmor, and Teng

(1998) states that B-sphere packing implies a well-shaped
mesh.

Theorem 2.1 For any positive constarf, there exists a con-
fgntp depending only o3 such that if {x) is a spacing
unction of Lipschitz constant 1 over a dom&nand S is a
B-packing with respect to (k), then the Delaunay triangula-

tion M of the centers of S is@well-shaped mesh; in addition,

for each point p inQ, Nv(p) = ©(f(p)), where the constant
in © depends only of.

3 Bitingto Generate Mesh

Li, Teng, and Ungdr (2000) present a new scheme, called
the biting methodwhich combines the strengths of advancing
front and sphere packing. It uses advancing front to generate
a quality sphere packing rather than the mesh itself. The De-
launay triangulation of the centers of the spheresis then used
to define the final mesh. They show that the biting method
constructs a well-shaped Delaunay mesh whose size is opti-
mal up to a constant factor. In this paper, we show that bit-
ing squaresnstead of sphereswill also generate well-shaped
meshes. Moreover, we show that the time complexity of the
new algorithmis O(nlogn), where nisthe number of the mesh
vertices generated. Furthermore, the square biting method can
be easily extended to three dimensions. When post refine-
ment or coarsening is needed, our algorithm can also refine
or coarsen the previous generated mesh.

3.1 Biting Scheme

The basic idea of the biting method is to use the advancing
front method to construct awell-spaced vertex set with respect
to the spacing function. The input domain boundary is set as
theinitial advancing front. The biting method selects a vertex
of the advancing front, and removes a square centered at it
from the remaining interior domain. The removed sgquare is
called the biting-square That vertex is added as a new mesh
vertex, and the boundary between the union of biting-squares
and the remaining interior domain defines the new front. The
above steps are repeated until the advancing front is empty.
The Delaunay triangulation of the biting centers is the final
mesh. Thefollowing Figures 1, 2, 3, 4, 5 give asnapshot of the
biting scheme. Theinput isaPSLG domainwith aholeinside.
Notice that the biting-squares centered at interior points are
aligned with axis.

Figurel: Theinitial PSLG domain with aholeinside.

Let M(x,r) beasquare centered at point x with edge length 2r.
Note that the orientation of a square is not denoted here. Let
B(x,r) be a sphere centered at point x with radiusr. A biting-
sguare at apoint x is M(x,c, f(x)), where ¢, is a constant that
will be decided later.

CMES, vol.1, no.1, pp.1-??, 2000

Figure2: Biting only on the vertices of the polygon.

Figure 3: Thefirst bite of anon-original vertex.

Figure 4 : Biting alayer of the boundary.

Figure5: Biting alayer in theinterior of the domain.

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 5

Usually, the advancing front is represented as a circular list
of aready placed mesh vertices. In our method, we a-
ways choose the next Steiner point on the front itself, i.e.,
the front itself is a subset of a feasible region to select
new mesh vertices. Consequently, it is easier to choose the
next mesh vertex than classic advancing front methods. Ob-
serve that the packing-sphere will never appear in our biting
method. We only remove the biting-sguares from the domain.
We will prove that the centers of all biting-squares define a
sphere packing by carefully choosing the sizes of the packing-
spheres. The following is a formal description of the biting-
square method.

Algorithm: BITING SQUARE

1. [Initial Front:] Let the boundary of the domain be the
initial front; see Figure 1;

2. [Vertex Protection:] Biteall theinput vertices by remov-
ing their biting squares from the interior of the domain;
see Figure 2. The orientation of the square is decided by
the two incident edges of the vertex. See Figure 7. Up-
date the advancing front after removing the biting-square.

3. [Edge Protection:] Bite squares centered on the input
boundary: choose a vertex x on the front and remove its
biting-square; see Figures 3 and 4. The biting-square is
aligned with the boundary edge. See Figure 6. Update
the advancing front.

Repeat until all initial input boundaries are bitten.

4. [Interior Biting:] Choose avertex x on the front and re-
move its biting-square; see Figures 5. The biting-square
is aligned with the axes. Update the advancing front.

Repeat until the advancing front is empty.

5. [Delaunay Triangulation:] Construct the Delaunay tri-
angulation of the biting centers as the final mesh.

Noticethat, after every biting, theintersection pointsof current
biting-square with previous biting-squares are the candidates
of biting centers later. Hence for protecting the boundary, we
align the biting-square centered at a boundary vertex along the
boundary. Thustheintroduced new candidate biting pointsare
not too close to the boundary compared with its control spac-
ing requirement. See Figure 6 for illustrations of boundary
biting alignments.

However, it is impossible to aign al bitings with the bound-
ary edges. For example, for an input vertex v that is inci-
dent by two non-perpendicular boundary edges vu; and vup,
it is impossible to align the hiting-square centered at v with
v, and vip. Let line vx be the line that divides the angle
Zuivp into equa half. We use the following criteria to se-
lect the orientation of the biting-square centered at v. If the

angle Zupvup < 135°, or the angle Zuivw, > 2259, the diago-
nal of the biting-square is then aligned with vx. Otherwise,
135° < Zupvp < 225°, then one side of the biting-square
is aligned with vx. See Figure 7 for the orientation illustra-
tions. By a simple geometry computation, the above orienta-
tion maximizes the angle formed by the boundary edges and
intersected side edge of the biting-sgquare, i.e., the angle Zvpq
in the Figures.

4 Quality Guarantee of Biting

In this section we show that the biting-square method gener-
ates well-shaped meshes. Moreover, the mesh size is within
a constant factor of the optimal. For the first statement we
prove that the points placed by the biting method are well-
spaced, i.e., they are centers of a [3-packing with respect to a
1-Lipschitz spacing function. The size optimality then follows
from the fact that the spacing function is well-conformed.

4.1 B-SpherePacking

For each mesh vertex generated by the biting scheme, we de-
fine a packing-sphereentered at it. Observe that the biting-
squares generated by the biting scheme overlap among them-
selves. Therefore, the packing-sphere of a mesh vertex is
chosen to be smaller than its hiting-square. Let us focus
on a particular point X. From the specification of the biting
scheme, the biting-square centered at x is (X, ¢y f (X)), where
Cp < 1 is a positive constant. We now choose another posi-
tive constant cp < Cy, and define the packing-sphere at x to be
B(x,cpf(x)). See Figure 8 for an illustration of biting-square
and the packing-sphere defined at a mesh vertex. The follow-
ing lemma proved by Li, Teng, and Ungor (2000) implies the
relation that need to be satisfied by the biting constant ¢, and
the packing constant cp.

Lemma4.l [Li, Teng, and Ungdr (2000)] Assume that
spacing function (x) is a-Lipschitz, and ||x — || >
%’ min(f(x), f(y)), whereay < 1. Then the interior of two
spheres Bx, yf(x)) and By, yf(y)) do not overlap.

Thus the biting-square M (x, ¢y f (X)) is like a protecting square
of x: it prevents any point whose packing-sphere potentially
overlaps with that of point x from being chosen. Notice that
the biting scheme works for any control spacing function f(x)
with Lipschitz condition. Our first goal isto show that the bit-
ing scheme generates a good sphere packing. Let S, be the
set of biting-squares generated by the biting scheme, and Sp
be the set of corresponding packing-spheres defined as above.
Lemma 4.1 implies that if the biting constant satisfies that
Co > 1_23”% and acp < 1, then theinterior of any two packing-
spheres do not overlap. Which is stated by the following
lemma.

boundary

biting order of squares
Figure 6 : Thehiting centered at vertices of input boundary.

q X
U, Roundary boundary
i U
p W
biting square
@

boundary

hiting square

(b)
Figure 7 : The orientation of the biting-square: (a) if 135° <
o < 225°, one side of the hiting-squareis aligned with vx. (b)
if a < 135° or a > 225°, then the diagonal edge of the biting-
squareis aligned with vx.

biting square

Figure 8 : The biting-squares and packing-spheres centered at
point X.

CMES, vol.1, no.1, pp.1-??, 2000

Lemmad4.2 [No OVERLAP] If the packing constant satis-
fies g = ch , then there is no overlap among the packing-
spheres &

PROOF. Let's consider any two packing-spheres B(x,cpf (X))
and B(y, cpf(y)) defined by two biting vertices x and y. Ob-
serve that either x is bitten beforey, or y is bitten before x,
which isimplied by the biting scheme. In other words, either
X is outside of the biting-square centered at y or y is outside
of the biting-square centered at x. This simple observationim-
pliesthat ||[x—y|| > comin(f(x), f(y)). Fromcp = %&%, we

2
have ¢, = 17 and acp = 57 < 1. The lemma then fol-

lows from Lemma4.1. O

In other words, the packing-spheresdefined at the centers of all
bitten squares satisfy the first two conditions of sphere pack-
ing. It remainsto show that for any point y in the domain, there
is asphere from Sp, that intersects the sphere which is 3 factor
of the packing-sphere centered at y, where 3 is a constant.

Lemma4.3 [No LARGE GAP] For any point ye Q, there is
a sphere in g that overlaps with By,Bcpf(y)), wherep =

2v/2—1++/2acy :
Ve In other words, there is no large gap at y.

ProOF. The biting scheme guarantees that point y in the do-
main Q is covered by at least one biting-square of S,. Let
M(x,cpf(x)) be the biting-square that coversy. Then ||y —
X|| < v/2¢, f (x). Because spacing function f (x) isa-Lipschitz,
f(y) > (1—+/2acp) f(x). Noting that cp = 2¢,/(2+ acy), we
have

Bepf(y) +cpf(x)

B2 E o1 (y) +Cpf ()

s (LR () 4 £ (x)

> s (AL (1 \facy)f(x) + (X))

arag ((2V2— 1+ v2acp) f (X) + f(x)
= V2eyf (x)

> [Ix=yll.

Hencefor point y, thereisaspherein S, that overlapswith the
sphere B(y, Bcpf(y)). In other words, there is no large gap at

y. O

Consequently, we know that the biting method implicitly gen-
erates a 3-sphere packing. From the 3-packing definition 2.5,
Sp is B-packing with respect to spacing function 2c, f (x). We
summarizeit by the following theorem.

Theorem 4.4 [B-SPHERE PACKING] The set of spheres, &

2V2-1++/20¢
aB= e

tion 2+°b f(x).

packing with respect to the spacing func-

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 7

Then it follows from Theorems 2.1 and 4.4 that the Delaunay
triangulation of the centers of Sy, is a well-shaped mesh, i.e.,
the radius-edge ratio of each of its elements is bounded from
above by a constant.

Theorem 4.5 [WELL-SHAPED MESH] The square biting
method generates meshes whose radius-edge ratio is bourigied

from above by a constant.

4.2 The Spacing Conformity and the Size Guarantee

In this section, we show that the nearest neighbor value of any
point x in the domain is related to the control spacing function
f(x) by a constant factor. This relation enables us to show
that the biting scheme generates amesh whose sizeiswithin a
constant factor of any competing mesh.

z

X
Gh(x)
Y| ch@)

@)
biting square at z

biting square at x

(b)
Figure9: The hiting-squares and packing-spheres. (a) a point
y is covered by at least two biting-squares, (b) for any biting-
sguare M(x,c, f (X)), there must exist a biting-square centered
at z, such that z is contained inside the sphere B(x,cef (X)),
where ce = 2v/2¢p/(1— v2acy).

Recall that the required spacing function f(x) is a-Lipschitz.
Let ce = 2v/2cy/ (1 — v/2acy). We define sphere B(x, Cef (X))
as the extension sphere of the biting-square. From Lemma
4.1, we know that the two biting-squares MN(x,cyf(x)) and
M(y,cof(y)) donotintersect if [|x—y|| > cef (x) and v/2ac, <
1. In other words, thereis at least one other mesh vertex gen-
erated inside the sphere B(x,cef (X)) other than x. It implies
that the nearest neighbor value N(x) can not be too large. We
have the following lemmato bound the nearest neighbor value
N(X).

Lemma4.6 For each vertex x of the mesh generated by the
biting-square method, {¥) satisfies that

co(1—v2ac,) f(x) <N(X) < :L\/Z%J%

ROOF. We first show that the nearest neighbor value N(x)
is not too small. Let y be its nearest mesh vertex. Firgt,
if vertex y is not contained inside the interior of the biting-
square MN(x, ¢, f(x)), then N(x) > ¢, f(x). If yisinside square
M(x,cp f (X)), then vertex y must be bitten before x. We have

)

cof () < [ly—x| < V20 f ().
Because f (x) isa-Lipschitz, f(y) > (1—+/2acy) f (x). Hence,
N(X) = |ly—X|| > (1 — v2acp) f ().

We then show that the nearest mesh vertex y can not be too far
away. By Lemma4.1, if y is not contained inside the sphere
B(x,cef(x)), the biting-square centered at y does not overlap
with that of x. Hence, the boundary of M(x,cpf(X)) is not
covered by any other biting-squares. See Figure 9 (c). The
lemma then follows from property that every point in the do-
main is covered by at least one biting-square. In other words,
N(x) < cef(X). m|

The above lemma implies that the generated mesh conforms
well to the given control spacing f (X).

Theorem 4.7 The mesh generated by thging method has
min(cy(1— v/2acy), 1;£gb°b) conformity to the control spac-

ing.

We now show that the nearest neighbor value of each non-
mesh point in the domain is aso linearly related to its control
spacing value.

Lemma4.8 Assume point ¥ Q is not a mesh vertex. Then
N(y) defined by the mesh generated by the biting method sat-
isfies

Cof(y) <

y (3v2—2ac,)cpf(y)
2+ 2\/§GCb o o -

(1—+/2acp)?

@

PrROOF. First, there is at least one biting-square, say
M(x,cpf(x)), that covers point y. As proved by the previ-
ous lemma, we know that there is at least one mesh vertex z
other than x that is inside sphere B(x,cef(x)). See Figure 9
(0). Then ||z—y|| < [|z— ||+ [Ix—YI| < ce(X) + V2ep f (x) =
(Ce+1/2¢,) T (x). So the nearest neighbor value at y satisfies

N(y) < max(||x—yll,|z=YlI) < (Ce+ v200) f (x).

Then the inequality f(y) > f(x) —a|lx—vy|| > (1 -
V2acp) f(x) implies that

N(y) < (V26 +ce) f(y)/(1— vV2acp).

We then show that the nearest neighbor value N(y) is aso not
too large. Recall that point y is covered by biting-squares.
There are two cases: the first case is that only one biting-
square contains y, and the second case is that two or more
biting-squares contain y.

Inthefirst case, let usassumethat y is covered by biting-square
M(x,cpf(x)). Thus|ly— 7| > c»f(2) holdsfor any other mesh
vertex z, i.e, y ¢ M(z cy f(2)). Because f(x) isa-Lipschitz,

f(y) < f(2+ally—2| < (a+1/co)lly—2|.

Thenfor any mesh vertex z, if y¢ N(z cp f(2)), then ||y — 2| >

%g(cb f(y). Therefore, by the definition of the nearest neighbor

function, N(y) > minz:x(|ly —2||). Thisimplies that

Ch
N(y) >
) = 1+acy

f(y).

In the second case, assume that biting-squares M(x, cp f (X))
and N(zc,f(2)) contain y. See Figure 9 (b). Further as-
sume that M(x,cpf (X)) is bitten before M(z,¢c,f(z)). Hence
[Ix—2|| > cpf(x). Because f(x) is a-Lipschitz and y €
M(x,cpf(x)), we have f(y) < (1+ v2acp) f(x). By the tri-
angle inequality,

max(|ly —x{|,ly—2|[)
311x—2]
Co/2f(X)

Co/ (2+ 2v20cp) f(y).

(AVARAVARIVS

Therefore, the second smallest distance from y to the set
of mesh vertices whose hiting-squares contain y is at least
Co/(2+ 20cp) f(y). In addition, from the analysis of the
first case, the smallest distance from y to the set of mesh
vertices whose biting-squares do not contain y is at least
Co/(1+acp) f(y). Thus,

N(y) > cn/(2+ 2v20ac,) f(y).

Consequently,

Co

_ b <N(y) < Mf
2+2\/§GCb

~ 1—+/2acy
and the lemmafollows from ce = 2v/2cp/(1— v2acp). O

Some tedious manipulation yields that the number of the mesh
vertices of a well-shaped triangular mesh is linearly related
to the integral of 1/N(y)? over al y € Q. See the results by

CMES, vol.1, no.1, pp.1-??, 2000

Miller, Tamor, Teng, and Walkington (1998). The N() func-
tion deduced from the mesh generated by the biting method
is within a constant factor of f(x) implies the following the-
orem. Notice that the constant depends on the quality of the
competing mesh.

Theorem 4.9 Size of the mesh generated by the biting method
is within a constant factor of any well-shaped mesh that con-

forms well to the given control spacing functiofxy.

4.3 The Radius-edge Ratio of the Mesh

Theorem 4.5 shows that the biting scheme generates well-
shaped meshes. However, the constant bound on the radius-
edge ratio so derived may be too small. In this section, we
provide a better analysis of the bound of the radius-edge ratio
of all mesh elements.

Our analysis is mainly concentrated on two-dimensional do-
main. In our analysis, as by Li, Teng, and Ungdr (2000), we
divide the triangle elements into two subsets: the first subset
contains al elements whose circumcenters are inside the do-
main and the second subset contains al other elements. Our
aimisto derive adirect analysis on the radius-edgeratio of all
mesh elements generated. We first study the triangles in the
first subset.

Lemma4.10 Let Apgr be a triangle of the first subset. Let
| be the length of the shortest edgedpqr; R be the radius
of the circumcircleC of Apgr. Then the radius-edge ratio of
Apgr satisfies

R 2

_ S L (3)
I = 1-2v2ac,

PROOF. Let ¢ be the circumcenter of Apqr. Assume that

c is covered by biting-square M(x,c,f(x)). Then |jc—X|| <
V/2c, T (). Because the mesh is a Delaunay triangulation, x is
not in the interior of circumcircleof Apgr, i.e, [|x—c|| > R
Thus f(x) > R/(v/2cp). Because f(x) is a-Lipschitz, f(c) >
f(x) —al|c—x||. Also because ||c—X|| < v/2¢, f(X), we have

(0) > (1- vV2005) F(X) > (1— V2UC)R/(v25p).

Without loss of generality, assume edge pq is the shortest
edge of the triangle, i.e, ||[p—q|| =1. Also assume that
M(q,cpf(p)) isbitten beforeM(q,c, f(q)), which implies that
| > cpf(p). Because f(x) isa-Lipschitz, f(c) < f(p) +aR<
| /cp+aR. Using f(c) > (1— v/2ac,)R/(V2¢,), we have

(1—v2ac,)R/(V2ep) < f(c) < (I + acyR) /ch.
The lemmathen follows. |

We now study the triangle el ementsin the second subset. Con-
sider atriangle Ax, x,x, from the second subset. Let C beits

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

circumcircle. Let ¢ be the center of C; R be the radius of C.

Assume vertices p; and p, are the two closest mesh vertices

on a boundary that separates Ax;x,x, and c. Here, we also
assume that p, p, is the closest boundary segment to Ax, x,x,-

Note that p; and/or p, may be one of the vertices of triangle

Ax x,x3- See Figure 10 for an example.

Figure 10 : A triangle xyxox3 of the second subset. The cir-
cumcenter ¢ is separated from Xx1x2x3 by segment p1 pa.

From the Delaunay triangulation property, we know that there
is no mesh vertex inside the circumcircle C. It implies that
biting-squares centered at p; and p, should cover the seg-
ment p; p,. Let r be the intersection point of M(py,chf(py))
with M(p,,cpf(py)) that isinside the domain. It is simpleto
show that angle Zp,xp, is obtusefor i = 1,2, 3. Observe that
ZpXipy < £pyrp,. Therefore, angle Zpqrp, is aso obtuse.
Without loss of generality, assume that p; is bitten before ps.

From the biting scheme, we know that only the following bit-
ing scenarios are possible. Vertex p, is on the intersection of
biting-square M (p4,¢, f(p;)) with the boundary segment con-
taining p; p,, asillustrated by Figure 11 (a) and (b). Or vertex
P, is on the intersection of biting-square M(ps, ¢y f (Pg)) with
the boundary segment containing p, p, and biting-squares cen-
tered at p; and p, overlaps, asillustrated by Figure 11 (c). Or
vertex p; is aninput corner vertex, and p, is the intersection
point of biting-square M(p,,cyf(p;)) with the boundary seg-
ment containing p4p,, which is illustrated by Figure 11 (d),
(e) and (f).

Recall that the angle Zp;rp, is obtuse if segment p; p, sepa-
rates atriangle Ax,x,x, and its circumcenter. By checking all
possible configurations of p; and p,, only case (C) is possi-
ble to produce an obtuse angle p;rp,. See Figure 11. It then
remains to study the situation illustrated by the Figure 11 (c).

boundary P P,
1

B

Figure 11 : The configurations of adjacent biting centered at
vertices of input boundary. Cases (8): the spacing at p, isless
than that of p;; (b): the spacing at p, islarger than that of p;;
(©): py istheintersection of M(ps,cpf(p3)) with the boundary
segment; (d): pq isinput vertex, and the input angle at p4 is
larger than 135°. (e) and (f): p; isinput vertex, and the input
angleat p, islessthan 135°.

Lemma4.11 The radius-edge ratio of any generated Delau-
nay triangle whose circumcenter is not inside the domain is at

t2_2t42

least Bl < 575

where t= acy.

PROOF. We assume that the spacing at vertex p; is less than
that of p,. We first show that length of p; p, iswithin a small

10

constant factor of f(p;). Because two biting-squares overlap,

then Lemma 4.1 implies that ||py — po| < T2 f(py). The

Figure 12 : The example of two biting vertices p; and p2 ona
boundary segment that separates a triangle and its circumcen-
ter.

above Figure 12 illustrates the proof that follows. Let r be
the intersection point of biting-squares centered at p; and po,
which is in the interior of the domain. Observe that r must
be inside the circumcircle of triangle 7X1X2X3, @ shown in
the Figure 12. Otherwise, the vertices of triangle 17x1X2X3 can
not be generated by biting. Let hy be the distance of point r
to boundary segment p,p,. We have hy = cpf(p;). Recal
that the angle Z p1rp2 isobtuse. Thenit issimpleto show that
[|pL— Po|| > 2hy. For convenience, let E = || py — Ppo||/2. Then
hr > (1—acp)Eandhr < E.

We then show that the circumradius R of triangle Ax;x,x; iS
not too large. Observe that the circumcircle of Ay, x,x, does
not contain vertices p; and p, inside. Some tedious computa-
tionyieldsthat R < (h? 4+ E?2)/(2hr). For the sake of easy pre-
sentation, let t = acp. Because hr > (1—acy)E and hy < E,
we then have
t2—2t42
R< > E.

It remains to show that the shortest edge of triangle $7X1X2X3
is not too short. Assume that the shortest edge is xi1x3 and
vertex x; is bitten before x3. Then the length | of this shortest
edge satisfies | > ¢f(x1) > cp(f(py) — af[xe — pyl]). From
Zp1X1p, isobtuse, we have ||p, — py|| > ||X1 — py]]. It follows
that

I >cof(py) —t||py— Po|| > (1-3)E.

Then we are in the position to claim that the radius-edge ratio
of triangle Ax, x,x, is bounded from above by a constant, i.e.,

t2_2t4+2
6t2—8t+2°

The similar proof follows when the spacing at vertex p, is not
less than that of p,. m|

R/l <

CMES, vol.1, no.1, pp.1-??, 2000

Consequently, we know that the meshes generated by biting
scheme have small radius-edge ratio. Notice that, the bound
of the radius-edge ratio for triangles whose circumcenters are
not inside the domain can be improved by the following ob-
servation. After biting the squares centered at p1 and po, the
region left in the circumcircle of 7xixox3 istoo small to fill
three bitings centered at X1, X2 ad x3. It impliesthat p; and p2
are the vertices of the triangle 7 x1x2x3.

4.4 Numerical Robustness

To construct the Delaunay triangulation of the biting centers,
we often need to check if all edgesarelocaly Delaunay. Let's
consider an edge pq of the mesh, and let r, s be two mesh
vertices that form two triangles pqr and pgs with edge pq.
Edge pqgislocaly Delaunay, if the circumcircleof triangle pgr
does not contain vertex sinside. The operation to check if an
edge pqislocally Delaunay is often called in-circle test. Due
to the roundoff error, thein-circletest is not always consistent,
whichinturnwill causethe Delaunay kernel to result in anon-
valid triangulation. Several solutions have been investigated to
overcomethese problems; see George and Borouchaki (1998).
They either dightly perturb al points, or introduce a threshold
value in comparisons, or perform exact computations by using
the integer-type coordinate system. To address this problem,
we propose a new method that generates high quality mesh by
combining it with our biting method.

Let ¢ be apositive constant less than 1. Assume pqis the cur-
rent edge to be checked, and 57 pqr, v/ pgsare the two incident
triangles. Let B(cr,Rr), and B(cs, Rs) be the circumcircles of
v Par, v pgsrespectively. We call them the ¢-circumcirclesof
the triangles. For convenience, let a(x) = ||x— ¢||/R, where
¢, Rarethe center and radius of the circumcircle of an element
T. See George and Borouchaki (1998). Then the following
definition isintroduced by Li, Teng, and Ungor (1999).

Definition 4.1 [¢-LocALLY-DELAUNAY] Edge pq is called
¢-locally-Delaunay if r is not in the interior of circle
B(cs,$Rs), and s is not in the interior of circle @r,$Ry),

i.e., 0y pgsr) > ¢, and,agpqr(s) > ¢.

The above Figure 13 gives an example of edge pq that is ¢-
locally Delaunay. Then we define the ¢-Delaunay mesh as
following.

Definition 4.2 [¢p-DELAUNAY] A mesh is calleg-Delaunay,
if all edges ared-locally-Delaunay. In other words, thé-
circumcircle of each triangle is empty.

Hence the traditional Delaunay triangulation is 1-Delaunay
under this definition. To make a mesh ¢-Delaunay, we check
each edge of the mesh, if it does not satisfy the ¢-local-
Delaunay property, we flip the edge. Notice that, there may
have many ¢-Delaunay triangulations for a given point set.

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

11

Recall that the Delaunay triangulation of any two-dimensional
point set maximizes the minimum angle among all possible
triangulations. However, the ¢p-Delaunay triangulation of an
arbitrary two-dimensional point set can not guarantee that the
minimum angle is within a constant factor of the minimum
angle generated by the Delaunay triangulation. The next theo-
rem shows that any ¢-Delaunay triangulation of any point set
generated by the biting method is a well-shaped mesh.

Theorem 4.12 [WELL-SHAPED ¢-DELAUNAY] Let M be a

use (pe se to denote the two pointers of a vertex, where pe
and se are the previous and successive incident edges of this
vertex. For example, the advancing front of the domain il-
lustrated in Figure 14 (a) is represented by the linked edges
V1V, VVs, Vs5Va, VaVa, V3V and vovi. Edge vvs is represented
by (v,vs,v1V,V5va). Vertex v has pointers to two edges viv and
V.

We then analyze the time complexity of the agorithm by
studying the complexity of every stage of the biting. Observe
that, there are no intersections among biting-squares centered

¢-Delaunay triangulation of the point set generated by bitingh jnput vertices, because the constant ¢, < 1/2 and the spac-

domainQ according to aro-Lipschitz spacing (x) using bit-

ing function f (x) isno morethan thelocal featuresize function

ing constant g. Then the radius-edge ratio of the mesh is #5(x). Therefore, to remove the biting-square centered at an

most a constant that dependsarcy, ¢.

ProoF. We show it for the triangles whose circumcenters are
inside the domain. We will prove that

V2
(1—+/20cp)d — V20c,

R/I <

Let c be the circumcenter of A pqr; let R be the circumradius
of Apgr. Assumethat the circumcenter cis covered by biting-
square M (x, ¢y f (X)). Noticed that ||x— c|| > ¢ R because of the
¢-Delaunay triangulation property. Similar to Lemma 4.10,
we have

f(c) > (1—v2acp)pR/(v2¢y),
and
f(c)<l/cp+aR

V2acy,
= and acp < v/2/4.

When the circumcenter is not inside the domain, the analysis
is similar to the proof that the Delaunay triangulation of the
generated vertices has small radius-edge ratio. The details of
the proofs are omitted here. |

Then the theorem follows, if ¢ >

5 The Complexity of Biting

In this section, we show that the time complexity of biting
sguare schemeis O(nlogn), where n is the number of the out-
put vertices.

We assume that the advancing front is represented by linked
list of edges. The list of edges are in counterclockwise di-
rection and there is no self-intersection among edges. Each
advancing front edge has pointers to the two vertices and the
two edgesthat areincident to it. In addition, each vertex on ad-
vancing front has pointersto the two edges that are incident to
it. For the sake of easy presentation, we will use (st,ed, pe s
to denote the four pointers of an edge, where st and ed are
the sourceand destinationvertex respectively; peand seare
the previousand successivedge respectively. In addition, we

input vertex v, we only need update the two incident edges of
the vertex v for constructing the new advancing front. For ex-
ample, after removing the biting-square (v, ¢, f (v)) from the
domain illustrated by Figure 14 (a), the new advancing front
is updated as follows. Two new edges pg and qgr are created.
The edge v1v is modified to (vi, p, vav1, pg), i.e., the destina-
tion vertex is set to p and the successive edge is set to pg.
Edge vvs is modified similarly. Observe that we do not need
to modify other edges to construct the new advancing front.
It implies that we can bite the square centered at each input
vertex at constant time. The similar arguments hold for the
biting of vertices on the input boundaries. See the following
Figure 14 for an illustration of removing a biting square and
update the advancing front. In both cases, the new advancing
front can be updated in constant time.

We then study how to bite the squares centered at interior
points efficiently. The following observation is important to
speed up the algorithm. The orientation of the biting-squares
does not affect the theoretical bounds of the qualities of the
generated mesh. Recall that we always align the biting-squares
centered at interior points with the axis in the biting scheme.
Notice that the major cost of hiting an interior point x liesin
computing the intersections of the biting-square M(x,cy f (X))
with the previous advancing front, as well as in constructing
the new advancing front. We prove that these can be donein
O(logn) time, where n is the number of vertices of advancing
front before biting point x.

Then we first show how to find the edges of previous advanc-
ing front that intersect the current biting-square M(x, ¢y f (X)).
Notice that we can find all intersected edges if we find all
vertices of current advancing front that are inside the biting-
sguare(x,cy f(x)). Recall that square M (x, ¢, f (X)) isaigned
with axis. Hence, the question reduces to report all vertices
of the advancing front that are inside a coordinates-aligned
sguare.

Notice that there is no any order requirement for interior bit-
ingsto guaranteethetheoretical bound on the radius-edgeratio
of the mesh. Therefore, we can bite special vertex in current
advancing front if it can speed up the algorithm. For example,
if we select the vertex with the largest y value, then we can

12

Figure 13 : The shared edge pq of two triangles pqr and pgs
are ¢-locally Delaunay. The dashed circles are the circumcir-
cle and ¢-circumcircle of triangle s7pgs And the solid cir-
clesarethe circumcircle and ¢-circumcircle of triangle sy pqr.
Notice that the edge pqis not locally Delaunay under classic
Delaunay definition.

V V3

(b)

Figure 14 : Remove hiting-squares centered at a vertex: case
(a): the vertex is an input vertex; case (b): the vertex ison a
boundary segment. We use the solid points (such as v1, v7)
to denote the vertices of previous advancing front and use the
shaded points (such as p, g of the left figure) to denote the new
verticesin the updated advancing front. For the left figure, the
new advancing front after M(v,cyf(v)) is removed is polygon
pgrvsvavavavy. Here, the points p,q,r are the vertices gener-
ated due to removing of the biting-square IM(v,c, f(v)). For
the right figure, the new advancing front after M(r,c,f(r)) is
removed is pqstuwv4VaVvoVvs.

CMES, vol.1, no.1, pp.1-??, 2000

use the priority search tree to report all pointsin athree-sided
rectangle (the top side of the rectangle is open). As showed
in McCreight (1985), the priority search tree can be built in
O(nlogn) time, the report time is O(logn + k), and the space
requirement is O(n). Here k is the number of points to be
reported. More importantly, the priority search tree can be
updated in O(logn) time per deletion of avertex and per inser-
tion of avertex. Let'sfirst assume that thereis only a constant
number of vertices of the advancing front that are inside the
biting-square to be reported. The proof is given later in this
section. Then we can compute all edgesin the current advanc-
ing front that intersect with the edges of M(x,c,f(x)). Hence
only a constant number of queriesfrom the priority search tree
is necessary for constructing the new advancing front after bit-
ing x. Recall that each query costs O(logn) time. However, we
have to update the priority search tree also. Noticethat thereis
only a constant number of new intersection points introduced.
And there is only a constant number of vertices that are cov-
ered by the biting square need to be deleted from the current
advancing front. Therefore, thereis only a constant number of
deletions and insertions that are needed to update the priority
search tree. This can be donein O(logn) time also.

Observethat for updating the new advancing front, just finding
the intersection points and all segments that form the advanc-
ing front is not sufficient. We have to connect the segments,
for example, by linked lists to form the polygona boundaries
of the remaining domain. We show that the new advancing
front can be re-linked in constant time after all segments had
been computed.

Assume that we want to bite vertex v, and had computed all
edges in current advancing fronts which intersect with the
edges of M(v,c,f(v)). For the sake of easy presentation, we
first assume that the current advancing front is represented by
one polygon P. Assume that each edge has one unique in-
dex. And the indices of edges are numbered in monatonically
increasing counterclockwise order. Let g, 1 <i < m bethe
edges of the polygon P that intersect the sides of biting-square
centered at v; let vi, 1 < i < m be the corresponding intersec-
tion points. If one edge eintersects the biting-squaretwice, we
can view the edge e as two imaginary edges such that each one
intersects the biting-square once. Notice that m is bounded
from above by a constant by Lemma 5.2. Then in constant
time, we can sort the intersected edges {& | 1 < j < m} in
increasing order according to their indices. Furthermore, we
sort the intersection pointsvj, 1 <i < m, by counterclockwise
order on the four edges of M(v,cp f(v)). Thiscan also be done
in constant time. Let V; be the sorted result.

For example, let's see what al above discussion means
by studying the biting of the domain illustrated in Fig-
ure 15 (a). The advancing front is represented by polygon
VV1V2 ... V1gVooVo1. Edgeviviy1 hasindex i. Herelet v denote
v. Recall that the priority search tree will return all vertices
inside the biting-square centered at v, i.e., v1, V2, V3, V4, Vs, Vs,

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 13

T T T T T T

V. V v

13 14 17

A configuration before the biting-square centered at v is removed.

The remaining domain defined by the new advancing fronts.
Figure 15 ;: Remove the hiting-square centered at a vertex v:
We use the solid points to denote the vertices of previous ad-
vancing front and use the shaded points to denote the newly
introduced vertices in the new advancing fronts.

Vo, Voo and v21. By checking the two incident edges of each
vertex that is inside the biting-sgquare, we could find all edges
that intersect the biting-square. Edges vsvg, V7vs, Vgvio and
VigV1g intersect the biting-square M(v,c, f(v)). The intersec-
tion pointsarea, b,c, d, eand f.

Then we show how to construct the new advancing front
by just using these intersection points and the corresponding
edges.

Procedure: UPDATING THE ADVANCING FRONTS

1. Select an intersected edge going toward the outside of
biting-square M(v,c,f(v)), let's say edge E;. We then
have the corresponding intersection point uj.

2. Search theintersected edges list of the current advancing
front to get the edge E» that is ordered immediately after
the edge that is found in previous step. This can also be
done in constant time. We aso have the corresponding
intersection point u, produced by E».

3. If thereis no intersection point between the two intersec-
tion points u; and uy, we then connect u; and u, along
the biting-sgquareto create new edge(s). The new edge(s),
together with all edges between edge E; and E; of current
advancing front form a new polygonal advancing front.

Notice that if u; and u, are on two different sides of the
biting-square, we need create more than one new edges
to connect u; and up along the biting-sguare.

4. If there are intersection points between u; and uy, let x be
the intersection point on the biting-square that is ordered
immediately before u,. Let E be the edge that produces
X. Then we create anew edge by connecting x to u, along
the side of the biting-square. Then we link the new edge
to be the previous edge of edge e, and to be the successive
edge of edge E».

5. Repest the above steps 2-4 until intersection point uy is
checked again.

6. Repesat the above steps 1-5 until all intersection pointsare
checked.

Let's see what the method means by studying the domain il-
lustrated in Figure 15 (a). Assume that wefirst select the inter-
sected edge VsV as the edge that is going toward the outside of
biting-square, i.e., E1 = vsvg. We then have the corresponding
intersection point u; = a. We then find intersected edge v7vg
that is ordered immediately after the edge Ey, i.e., Ex = v7vs.
We also have the corresponding intersection point u, = b. No-
tice that there is no intersection point between the two inter-
section points a and b. We then connect a and b along the
biting-square to create a new edge ba. The new edge ba, to-
gether with modified edges vsvg, Vgv7 and vyvg, forms a new

14

advancing front. Then we find another outgoing intersected
edge vovip. Similarly, we will create a new edge dc, and set
edgedcasthe successive edge of edgevigd and asthe previous
edge of edge avip. In other words, only three edges are need
to be modified to form the new polygon cvigvis ... vi7visd. At
last, we will link points f and e and create polygon fewvg as
a new advancing front. See Figure 15 (b) for the updated ad-
vancing fronts.

Thus, if the intersected points are known, we can then update
the advancing frontin constant time. Noticethat al considered
edges in this round are all from the same old polygon. Hence
the ordering of the edgesin new polygonis still monotonically
increased. When more than one polygons form the advanc-
ing fronts, the same scheme will also correctly construct the
new advancing fronts if we assume that there are no holesin
the domain. If there are holes in the input domain, we can add
some artificial edgesto cut the domain into acollection of sub-
domains without holes. Notice that if there are h holes in the
original domain, then we need at least h artificial edges to cut
it. The following lemma concludes the above results.

Lemmab5.1 If the intersected edges is known, we can bite t

square centered at interior point v in constant time.

Notice that, until now, we did not show that there is only a
constant number of edges that intersect with the biting-square
centered at v. We also did not show that there is only a
constant number of vertices that are inside the biting-square
M(v,cpf(v)). Theremaining of this section is devoted to solve
these questions. We first show that only constant number of
biting vertices are inside square N (v, c f(v)) for any constant ¢
satisfies that v/2ac < 1.

squareﬂ(.x cf(x)), wherey2ac < 1.

PROOF. Let yy, Yo, -+, Y be the k biting vertices in square
M(x,cf(x)). Thefact that y; isinside M(x,cf(x)) impliesthat
fly)) > f(x) -

ally —x|| > (1 - v2ac)f(x),

and

f(n) < (1+v2ac)f(x).

Then packing-sphere B(y;,cpf(y;)) is contained inside the
square M(x,cf(x) + cpf(y;)). In other words, al packing-
spheres are contained in a sguare M(x,cf(x) + (1 +
V2ac)cpf(x)). Recal that all packing-spheres do not over-
lap. Then an areaargument implies that

k

_Zln(cpf(yi))z < 4(cf(x) + (14 V2ac)cp f (x)2.

CMES, vol.1, no.1, pp.1-??, 2000

It implies that k < 2 (M) Notice that ¢, is a con-

stant that depends on a and ¢,. Then the lemmafollows. O

We then show that only constant number of edges of current
advancing front can intersect with abiting-square centered at a
vertex v. Noticethat after the boundary segmentsare hitten, all
edges of the advancing front are the edges of previous biting-
squares. Let's consider an intersected edge e, which isthe side
edge of biting-square centered at vertex u. Thereforethe edge
e intersects with current biting-square M(v,cpf(v)) implies
that biting-squares M(v,cpf(v)) and M(u,c,f(u)) intersect.

Thus, we have [Ju—V|| < 12‘/\;% f(v). Inother words, all ver-
tices whose incident edges will possibly intersect with biting-
square (v, ¢, f (V) isinside sphere B(v, 13@‘;’% f(v)). Thena
simple application of abovelemmab.2 yieldsthat thereisonly

constant number of vertices whose biting-squares intersect

with(v,cy f (v)). Noticethat, herewe need \/_alz“f_‘;bc <1

In other words, the biting constant c,, satisfiesthat ac, <

4+¢’

ht remains to show that there is only constant number of ver-
tices that are inside the biting-square centered at v. Notice
that the vertices of advancing front are the corner vertices of
previous hiting-squares or the intersection points by previous
biting-squares. In the first case, let’s assume that M(u,c, f (u))
has one corner pointsinside M(v,cp f(v)). Then M(u,cyf(u))
intersects with M (v, ¢y f(v)). In the second case, let’s assume
that point x is inside M(v,cpf(v)), and it is the intersection
point of previous biting-squares centered at u; and up. Then
these two previous biting-squares intersect M(v,c, f(v)), Oth-
erwise vertex x could not beinside IM(v, cp f (v)). In both cases,
we know that all inside vertices are from the biting-squares
that intersect M(v,cpf(v)). As discussed in previous pare-

rHraph we know that there is only a constant number of bit-

ten vertices whose biting-squares intersect with (v, c, f (v)).
Thereofore, these biting-squares will only generate constant
number of intersection points. Thus there is only constant
number of vertices of current advancing front that are inside
M(v,cpf(v)).

Therefore, for every biting, we only need to spend O(logn)
time to update the new advancing front and the priority search
tree, where n is the total number of the vertices in previous
advancing front. Then we have the following theorem.

Theorem 5.3 The biting vertices can be computed in
O(NlogN) time, where N is the total number of vertices gen-
erated.

6 Experimental Result

In this section, we give some experimental results to show that
the biting method generates well-shaped and well-conformed
mesh in two dimensions. The input domainisa9 by 9 square.

Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 15

The spacing function used is same as that by George and
Borouchaki (1998). In other words, if point has coordinates
(%,¥), then its control spacing valueis defined as following.

1-0.95) 2 ify<2
f(y) = o.o&;)jszoyrs if2<y<45

0.2z if45<y<7

0.2+08(%0)* if7<y<9

(a) biting by ¢, = 0.5 (b) biting by ¢, = 0.7
Figure 16 : Meshes generated by the biting method.

‘The angle quality of the mesh generated by biting

Angle distribution of the meshes.

“The spacing conformity of the mesh generated by biing

0 01 02 03 04 05 06 07 08 09 1
conformity

Vertex conformity distribution of the meshes
Figure17: Thequalitiesof the meshes generated by the biting
method.

In Figure 16, we show two meshes generated by our biting
method: Figure (a) is generated by setting biting constant ¢, =
0.5; Figure (b) isfrom ¢, = 0.7. Thereare 6728 mesh vertices,

and the minimal angleis about 13° for mesh showed by Figure
16 (a); there are 3435 mesh vertices, and the minimal angleis
about 7° for mesh showed by Figure 16 (b). The quality of the
mesh generated by the biting method isillustrated in the Figure
17. Although the theoretic bound for the biting constant is
about 0.33, we found that by setting ¢, = 0.5 (even cp = 0.7),
it also generates well-shaped and well-conformed mesh. We
also found that the angle distributions of two biting instances
arealmost same. The conformity of the mesh verticesisalmost
same as the biting constant, which matches our guess about the
conformity.

7 Conclusion

In this paper, we present a variation of the hiting method,
which combines the merits of the advancing front and the
sphere packing methods. It is as simple and as practical as
the advancing front methods. It is efficient in time complex-
ity and is ssimple and straightforward to be extended to three
dimensions. The biting scheme is theoretically efficient than
the classic advancing front method because it explicitly main-
tains the set of candidates for new mesh vertices, and it does
not have to handle the case when fronts meet each other or one
front meetsitself. The new scheme resolves this difficulty that
occurs at the end of the standard advancing front method. The
size of the generated mesh is within a constant factor of the
optimal.

Note that the biting square method can be extended to gener-
ate three-dimensional meshes: by replacing the biting-square
as the biting-cube. Unlike the biting sphere method that has
to use complicated method to protect the boundary, the bound-
ary faces and edges are protected easily by biting cubein three
dimensions, because the biting-cube naturally pushestheinter-
section points away from the boundary. The complete prove of
the quality of the mesh is omitted here. Recall that for the gen-
erated tetrahedron element whose circumcenter is inside the
domain, we have the similar theoretical bound on the radius-
edgeratio astwo-dimensional counterpart. However when the
circumcenter is not inside the domain, the proof is much more
complicated. Notice that, we can always apply the boundary
protection method as Delaunay refinement Shewchuk (1998)
to improve the radius-edge ratio of this kind of tetrahedra.

Furthermore, the biting method can al so be used to conduct the
refinement and coarsening of a mesh. The key observation is
that the biting scheme generates a sequence of biting-squares
such that the center of alater squareis not contained inside any
previous biting-squares. Assume that we are given amesh M
and a new spacing function f(x). For each mesh vertex v, the
biting-square centered at v is defined as M (v, ¢y f (v)). The ori-
entation of the biting-squareis defined asin the biting scheme.
Notice that for refinement, the set of biting-squares defined on
mesh vertices of M may not cover the entire domain. Then we
bite the remaining pieces of domain by the biting method and
the Delaunay triangulation of all mesh vertices and new intro-

16

duced bitten verticesis the final mesh. For coarsening a mesh
M, the biting-squares defined on original mesh vertices may
not be ordered such that the center of each later biting-square
is not contained inside previous biting-squares. However, we
can remove the biting-sguares whose centers are contained in-
side other squares using a similar approach to MIS method,
or we can apply the topological sorting method to extract a
seguence of biting-squares from M. Then the Delaunay trian-
gulationis constructed as the final mesh.

References

Babuska, |.; Aziz, A. K. (1976): On the angle conditionin
the finite element method. SIAM J. Numer. Analvol. 13(2),
pp. 214-226.

Bern, M.; Eppstein, D.; Gilbert, J. R. (1990): Prov-

CMES, vol.1, no.1, pp.1-??, 2000

Miller, G. L.; Talmor, D.; Teng, S. H. (1998): Optimal
coarsening of unstructured meshes. Journal of Algorithms
invited and accepted to a special issue for SODA 97.

Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N.
(1995): A delaunay based numerical method for three dimen-
sions: generation, formulation, and partition. . In Proc. 27th
Annu. ACM Sympos. Theory Comppéges 683-692, 1995.

Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N.
(1998): On the radius—edge condition in the control vol-
ume method. SIAM J. on Numerical Analysisaccepted and
to appear.

Mitchell, S. A.; Vavasis, S. A. (1992): Quality mesh genera-
tionin threedimensions. . In ACM Symposium on Computa-
tional Geometrypages 212-221, 1992.

ably good mesh generation. . In the 31st Annual Symposiunhuppert, J.(1992): A new and simple agorithm for quality

on Foundations of Computer Science, |IEpages 231-241,
1990.

Blacker, T. D. (1991): Paving: a new approach to automated
quadrilateral mesh generation. Int. Jour. for Numerical Meth-
ods in Engvol. 32, pp. 811-847.

Chew, L. P. (1997): Guaranteed-quality delaunay meshingin
3d (short version). . In 13th ACM Sym. on Comp. Geometr
pages 391393, 1997.

George, P--L.; Borouchaki, H. (1998):
lations and MeshingHERMES.

Li, X. Y. (2000):
Mesh GeneratiorPhD thesis, University of Illinoisat Urbana-
Champaign, 2000.

Delaunay Triangu-

Li, X.Y.; Teng, S. H. (1998): Dynamic load balancing for
parallel adaptive mesh refinement. . In 5th International Sym-

2-dimensiona mesh generation. . In Third Annual ACM-SIAM
Symposium on Discrete Algorithppeges 83-92, 1992.

Shewchuk, J. R. (1998): Tetrahedral mesh generation by
delaunay refinement. . In 14th Annual ACM Symposium on
Computational Geometrypages 86-95, 1998.

Shimada, K.; Gossard, D. C. (1995): Bubble mesh:

Yautomated triangular meshing of non-manifold geometry by

sphere-packing. . In third Symp. on Solid Modeling and Appl.
pages 409-419, 1995.

Strang, G.; Fix, G. J. (1973): An Analysis of the Finite

Sliver-free Three Dimensional Delaunayzlement MethodPrentice-Hall.

posium on Solving Irregularly Structured Problems in Parallel

pages 144155, Berkeley, 1998.

Li, X. Y.; Teng, S. H.; Ungor, A. (1999): Biting ellipse
to generate anisotropic mesh. . In 8th International Meshing
Roundtable1999.

Li, X.Y.; Teng, S. H.; Ungér, A. (2000): Biting: advancing
front meets sphere packing. Int. Jour. for Numerical Methods
in Eng vol. 49, no. 1-2, pp. 61-81.

Lohrer, R. (1996): Progressin grid generation via the ad-
vancing front technique. Engineering with Computersol.
12, pp. 186-210.

Lohrer, R.; Parikh, P. (1988): Three dimensional grid gen-
eration by the advancing-front method. Int. J. Numer. Meth.
Fluids, val. 8, pp. 1135-1149.

McCreight, E. M. (1985): Priority search trees. SIAM
Journal on Computingvol. 14, pp. 257-270.

