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Abstract—Accurate maps are increasingly important with the growth of smart phones and the development of location-based services.
Several crowdsourcing based map generation protocols that rely on users to provide their traces have been proposed. Being creative,
however, those methods pose a significant threat to user privacy as the traces can easily imply user behavior patterns. On the flip
side, crowdsourcing-based map generation method does need individual locations. To address the issue, we present a systematic
participatory-sensing-based high-quality map generation scheme, PMG, that meets the privacy demand of individual users. To be
specific, the individual users merely need to upload unorganized sparse location points to reduce the risk of exposing users’ traces
and utilize the Crust, a technique from computational geometry for curve reconstruction, to estimate the unobserved map as well as
evaluate the degree of privacy leakage. Experiments show that our solution is able to generate high-quality maps for a real environment
that is robust to noisy data. The difference between the ground-truth map and the produced map is less than 10m, even when the
collected locations are about 32m apart after clustering for the purpose of removing noise.

Index Terms—privacy protection, map generation, curve reconstruction, data suppression, participatory sensing
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1 INTRODUCTION
During the last decade, portable devices have signifi-
cant improvements in terms of computing performance,
memory size and the number of embedded sensors(e.g.,
GPS, accelerometer and gyroscope). These improve-
ments allow the devices to be adopted in more scenarios
such as navigation, location-based services and etc. [1]–
[7]. Most of the applications jointly exploit the integrated
maps and users’ current location to provide various
services. Hence, it is fundamental and indispensable
to provide accurate and most-updated maps. Currently,
digital maps based on the satellite images and street level
information are widely used. But they cannot precisely
reflect the most up-to-date ground information, especial-
ly in the developing countries, when cities are often un-
der constructions and renovations, the integrated maps
are likely to be far behind the current state.

To reflect the map dynamics accurately and effectively,
several techniques have been proposed recently, among
which participatory sensing attracts the most attention.
Individual users contribute their trace information (with
GPS data) to a central map generation server. While
guaranteeing high quality of map information, the ex-
isting methods have various limitations, such as energy
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inefficiency and privacy leakage [36]. In this study, we
design a privacy-aware map generation scheme, PMG.
Unlike the existing methods [8]–[13], in our scheme, each
user selectively chooses, reshuffles, and uploads a few
locations from their traces, instead of the entire traces.
After receiving those unorganized points from a group of
users, the server generates the final map.

To provide high-quality map generation service,
meanwhile preserving the privacy for each user, there
are three major challenges we need to address: 1) quan-
tifying the privacy leakage of data points provided by
individual users; 2) generating theoretically-proven map
using the reported unorganized points cloud; 3) design-
ing map generation scheme that is robust to various
discrepancies such as GPS error.

Directly reporting traces is not a good choice for
protecting user’s privacy. In PMG, we let each individual
user select a subset of points from real traces, so that a
user could protect his privacy from two aspects. The first
is to break the temporal relationship among reported
points. We let the user shuffle the points from his trace
and then report the shuffled partial collection to the
server, for obscuring the temporal relationship among
original points. The second aspect is to limit the number
of points reported in a region during a time-window.
The challenge is to decide how many and which points
a user has to select and report and we propose a mathe-
matical formula to quantify the relationship between the
reported locations and the degree of privacy leakage.

In the server, the fundamental task is to reconstruct the
underlying map from a group of unorganized location
points. Clearly, we cannot rely on the traditionally trace-
based map generation method (e.g., CrowdAtlas [2])
that sequentially connects the points according to the
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sampled time label, since two adjacent points may not
be consecutive in any trace. Thus, under the privacy-
preserving, it is not a trivial task to seek for an effective
map generation algorithm with theoretical performance
guarantee. We address the challenge of building a high-
quality map from a set of unorganized points by using
theoretically sound curve reconstruction techniques from
computational geometry. When the sampling (a set of
points reported by all users) reaches a certain threshold,
the quality of the generated map is assured.

The third challenge is to design a map generation algo-
rithm that is robust to noisy data. Typically, the GPS data
has an error at least 10m. The sparsity of the sampled
locations, the small local feature size at some portions
of the map, and the GPS error, will lead to inaccurate or
even erroneous generated map. To overcome these prob-
lems, we apply a simple GPS data filtering procedure
to remove all potential unreliable data. By requesting
sufficiently dense samples and carefully clustering the
reported points, this scheme can be robust to GPS errors.

There are also many subtle details that need to be
carefully considered. For example, a critical component
for the map generator here is to decide where to query
the crowd for points that will produce the best possible
map under certain resource constraints. We formulate
our problem into the classical problem of location se-
lection with the goal of maximizing the Lower Bound
of Voronoi Angle (LBVA) criterion, meanwhile satisfying
the minimal requirement of privacy protection. We show
that such a problem is NP-hard and propose a simple
heuristic with theoretically proven bound on the map
quality that is within a constant factor of the optimum.

We extensively evaluate this design based on two real,
high-resolution, city-scale GPS trace data. Our results
show that the distance between the ground truth map
and the map generated by our scheme PMG is less than
10m. In our experiments, after the filter-out by each
user for privacy-protection, the sampled points are about
7.5m apart on average. As these sampled points are
inherently noisy due to GPS errors, we cluster them to
produce “smoothed” samples for map generation. The
smoothed sample points are actually about 32m apart
on average, sufficient for producing accurate map.

The rest of this paper is organized as follows. In
Section 2 we formally define the map generation prob-
lem with privacy-protection, review the background of
curve reconstruction, and point out the challenges of
applying such theory into our context. Detailed solutions
are presented in Section 3. We present our evaluation
results in Section 4, review the related work in Section 5
and conclude the paper in Section 6.

2 PROBLEM FORMULATION AND BACK-
GROUND

2.1 Problem Formulation

We assume that our map generation service is composed
of one central data processing server and a group of

users spread over a geographic region. The server is in
charge of collecting data (submitted voluntarily by these
users or queried by the server) and producing a high-
quality map from the set of collected locations. For the
map generation, we do not assume that the server has
a prior knowledge of the map, although such knowl-
edge will significantly improve the performance of our
method. A group of users travel in a geographic region
and can collect a stream of GPS location trace using
smartphones. Each user will provide some transformed
data of the traces to the server for map construction.

In this work, a map is mathematically defined as a
geometric graph G = (V,E) where V is the set of inter-
sections in the map and E is the set of road segments
connecting intersections. Consider one unobserved map
F . A simple naive solution of asking each user to report
her/his traces directly will result in the disclosure of
individual trace information which could be used to
infer her/his identity and other behavior patterns, e.g.,
where s/he lives, or even when s/he is away from home.
To eliminate the possible risk of privacy exposure, one
natural way is to let the user report fewer locations.
However, this will inevitably affect the quality of map
generation. To address the debacle between map quality
and user’s privacy, in this work we let each user upload
a subset of GPS points (which are randomly shuffled
to remove the temporal ordering of points in the trace)
so as to minimize a certain measure of map generation
errors. This approach can assure that some constraints
on individual trace privacy exposure are satisfied. If not
specified otherwise, throughout this paper the privacy
we want to protect is the private trace/trajectory associ-
ated with each user.

More formally, consider m users and let Ui(1 ≤ i ≤
m) be the set of collected GPS points by user i. To
avoid potential privacy exposure, each user will carefully
choose a subset of Ui, denoted as Pi, to report. Therefore,
the optimal map generation problem (P) with privacy-
preserving constraints is given as follows:

(P) ∪mi=1P
∗
i = arg min

∀i,Pi⊆Ui
Err (F , ζ(∪mi=1Pi))

subject to PEi(Pi) ≤ bi, 1 ≤ i ≤ m,

where ζ(.) returns the estimated map given reported GP-
S point set from m users, Err() is a certain error function
measuring the distance between the real map F and
the estimated map ζ(.), PEi(.) is the privacy-exposure
function that reflects the degree of privacy leak of user
i and bi is the corresponding privacy leakage constraint
(called privacy budget sometimes) for publishing Pi. of
revealing the individual private location profile.

A typically used error function is the mean-squared
error, defined as ‖F − ζ(∪mi=1Pi)‖2. To compute this
metric, we need to know the original map F beforehand,
which is often unavailable in practical setting. As an
alternative, we will focus on the “quality” of the set of
collected points. We later will show that, if the set of
collected points meets certain sampling condition, the re-
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(a) Initial sam-
ple S

(b) The Voronoi
diagram of S

(c) Del(S ∪ V ) (d) The Crust of
S

Fig. 1: The process of Crust

constructed map will have a lower bound on the quality
between the ground-truth map F and the reconstructed
map. In fact, if we view the map as one polygonal
curve in 2D plane and the point set ∪mi=1Pi as samples
with respective to that curve, the estimate function ζ(·)
will fall into the category of curve reconstruction [16] in
computational geometry, which allows one to uniquely
determine the original curve from a subset of samplings
that satisfies some special conditions. It is therefore
particularly attractive for our specific problem.

The degree of privacy disclosure highly depends on
the data that users publish. The foremost task here is
to quantify the privacy protection of the data submitted
by each user. A simple measure would be the number
of points reported by the user: uploading more points
lead to worse privacy protection. So a user may put
a limit on the number of points reported in a time-
window (thus PEi(Pi) is simply the cardinality of set Pi).
Obviously, reporting a large volume data in a small time-
window is not preferred. Note that this naive cardinality
constraint cannot quantify the privacy protection level
in other metrics. For example, an adversary may still
be able to infer some privacy information if Pi is a
continuous subsegment in a trace. To quantify the ability
of protecting the trace information of each user, we
will introduce a novel privacy quantification function in
Section 3.2. Intuitively, our privacy quantification assures
that the adversary cannot recover the users’ trace when
certain conditions are met. Note that different privacy
quantification functions could be integrated into our
scheme, such as a function based on the Hidden Markov
Model in [14] or the Bayes conditional risk in [15].

2.2 Curve Reconstruction
In this section we briefly review the background and
techniques for curve reconstruction, a theoretical foun-
dation of our map construction scheme.

Consider an unknown smooth curve F . Given a set
of unorganized points S sampled from F , the curve
reconstruction problem is to construct a graph containing
exactly those edges that connect the adjacent points in
F .

Extensive effective approaches [17]–[19] have been
proposed to find the solution of such a problem, among
which Crust [16], one geometric graph, coincides with
F if S satisfies some specific sampling conditions (more
will be discussed below). We next will focus on Crust due
to its simplicity, theoretical guarantees and good quality.

The Crust induced by S is a graph such that any
edge is one element in Del(S ∪Z), with only the points

LFS
(p)p

vs
1

s
2

Fig. 2: Medial Axis (in red), LFS(p), and Voronoi Angle.

in S as its endpoints, where Z is the vertices of the
Voronoi diagram induced by S and Del(S ∪ Z) returns
the Delaunay triangulation of S∪Z. Therefore, the Crust
of S could be generated in three phases: (1) compute
the Voronoi diagram of S; (2) calculate the Delaunay
triangulation of S ∪Z, denoted by D; (3) remove all the
edges in D unless both of their endpoints belong to S.
Figure 1 illustrates the process of constructing the Crust.

Due to the existence of advanced and elegant pro-
gram for Delaunay triangulation [20] and Voronoi di-
agram [21], computing Crust of one given finite set S
is easy to implement and scalable to the cardinality
of S, with O(n log n) running time, where n = |S|.
More importantly, the performance of Crust is theoret-
ically guaranteed, i.e., Crust provably solves the curve
reconstruction problem under certain conditions. Before
giving such specific result, we would like to cite four
relative definitions in [16] at first.

Definition 1. The Medial Axis of a curve F is closure of
the set of points which have two or more closest points in F .

Definition 2. The local feature size, LFS(p), of a point p ∈ F
is the Euclidean distance from p to the closest point on the
medial axis.

Definition 3. A curve F is γ-sampled by points set S if,
∀p ∈ F , the closest sample s ∈ S satisfying D(p,s)

LFS(p) ≤ γ,
where D(p, s) represents the distance between p and s.

Definition 4. A curve Voronoi disk is a maximal disk, empty
of the samples S inside, centered at a point of the curve. A
curve Voronoi vertex v is the center of a curve Voronoi disk.
The angle ∠s1vs2 is called Voronoi angle (e.g., ∠s1vs2 in Fig.
2 if v is a curve Voronoi vertex and s1, s2 are on the boundary
of curve Voronoi disk centered at v.

These definitions are graphically shown in Fig. 2.
The solid black curve represents the original smooth
curve. And its corresponding medial axis is shown as
the dashed red curve.

Armed with these definitions, we will give two useful
theoretical analyses in [16], denoted as Lemma 1 and 2.

LEMMA 1. Let S be a γ-sample from a smooth curve F .
Then (i) if γ ≥ 1, F is un-reconstructible; (ii) if γ ≤ 0.252,
the Crust of S doesn’t contain any edge between nonadjacent
sample vertices on the original curve F .

Lemma 1 implies that given the sampled points S,
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there may not be a unique graph on S that connects
every pair of samples adjacent along that graph when
γ ≥ 1. In addition, when γ ≤ 0.252, all the piece-wise-
linearly-connected edges in the Crust “belong” to the
original curve F .

LEMMA 2. (LBVA) For a γ-sampled curve by S in the plane
with γ < 1, the Voronoi Angle (i.e., ∠s1vs2 in Fig. 2) formed
at a curve Voronoi vertex v between two adjacent samples
along F is at least π − 2 arcsin(γ2 ).

The Voronoi Angle physically represents the discrep-
ancy between the real curve and the recovered curve.
And the higher of this angle, the smaller of such dis-
crepancy. Ideally, the case of ∠s1vs2 = π means that
the recovered curve precisely matches the original one.
We sketch a proof here. When ∠s1vs2 = π, in the
original curve F should have a straight-line connecting
s1s2. Otherwise, it will have small local feature size
for some points between s1 and s2. Then the sampling
condition will imply that we should have additional
sampling points between s1 and s2, which contradicts
the assumption that s1 and s2 are consecutive samples.

Intuitively, the more of sample points, the better of
curve reconstruction quality. However, the larger size of
S generally leads to the increase of sampling cost. Note
that as the presence of the strong dependence among
the entries in S, the marginal gains of LBVA might be
significantly small and negligible as the increase of S.
Therefore, S must be chosen carefully: it is desirable to
have LBVA as high as possible to guarantee the quality
of estimated curve, and minimize the cost and privacy
leakage caused by collecting more points.

2.3 Alternative Objectives and Challenges
Recall that the task of map generation is to construct one
unobserved map from collected GPS locations shared by
a variety of users. In a sense, the map could be reviewed
as one curve in the 2D plane. Therefore, our problem can
immediately fall into the category of curve reconstruc-
tion. Here the discrete sampled points correspond to the
shared GPS locations. And Crust could be used as the
map estimate procedure.

According to Lemma 2, the quality of recovered curve
could be indirectly measured by the Lower Bound of
Voronoi Angle. Therefore, problem P could be reformu-
lated as

(P) ∪mi=1P
∗
i = arg max

∀i,Pi⊆Si
Γ (∪mi=1Pi)

subject to PEi(Pi) ≤ bi, 1 ≤ i ≤ m,

where Γ(.) returns the Lower Bound of Voronoi Angle(
i.e., π − 2 arcsin(γ2 )). Unless otherwise specified, this
problem will be referred to as MaxLBVA for simplicity
purpose in our subsequent discussion.

There are however three major challenges in applying
Crust to our problem context. First, under the curve
reconstruction framework the set of sampled points is
exactly from the original smooth curve. However, in the

Fig. 3: The architecture of our scheme PMG

physical environment each road has certain width which
determines the distribution of the reported GPS locations
will be arbitrary within that road, instead of along one
smooth curve that we expect. In particular, for a two-way
road with four lines, the Crust might infer the existence
of one road between the points from different lines even
if they are indeed physically from the same road. This
makes it difficult to construct one high-quality map via
directly using Crust on the raw collected data.

A second challenge is that GPS data is not error free.
The users can simply suppress the data if the error
exceeds a predefined threshold. However, doing this
might not completely remove all potential errors. This
is because some other factors such as local obstructions,
weather and users’ movement pattern might also de-
grade the GPS performance.

At last, MaxLBVA is a combinatorial problem with
linear constraints, which has been shown in [22] to
be NP-complete. A simple greedy algorithm is often
used instead. It has a O(1) approximation ratio with
a submodular objective. However, compared with tra-
ditional combinatorial problem, on one hand, for map
reconstruction we do not have direct access to the set
of all sampled points collected at users’ sides; on the
other hand, solving this problem could only be finished
in the decentralized framework that involves in extra
coordination between the users and the server. We show
in subsequent section how these challenges can be ad-
dressed in our scheme such that we can implement this
simple yet effective heuristic in our specific context.

3 PROPOSED SOLUTION

3.1 System Architecture

Figure 3 shows the overall architecture of our solution.
At the network level, the system consists of a number
of users with elegant privacy-preserving schemes, who
would like to contribute their locations and a map
generation server

Users: The users serve as the GPS location provider.
To provide certain diversity of uploaded data, one finite
local buffer is used to record the user’s trace. One
data report engine, called Location Selection, would be
activated by the location query from the remote server.
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Once receiving such request packet, the users will look-
up their corresponding local buffer and reply the server
with the locations that match the request condition.
More information about the request packet will be dis-
cussed in Section 3.3. To avoid potential trace leakage,
all the reported locations must go through one privacy-
assessment module. As a result, only the “safe” data will
be allowed to stream into the server.

Server: The essential function of the server is to pro-
vide high-quality map generation service based on the
collected unorganized GPS locations from various users.
To guarantee the estimated map quality, all chosen GPS
locations will firstly enter into one data pre-processing
block to remove all unjustified data. Then, only the valid
data will go into the map generation module, which has
implemented the aforementioned Crust algorithm. The
following module, called Quality Assessment, is then
executed to examine the quality of current generated
map (i.e., the output of Crust). When the predefined
map quality metric is not met, the block is further
scheduled to estimate the optimal cell that will provide
maximal gains in estimating the original map; server
will broadcast this cell via request packet to actively pull
the useful information. One practical optimal location
selection will be introduced and analyzed in Section 3.3.

3.2 Privacy-preserving Scheme

3.2.1 Threat model and trace privacy-preserving
Threat Model: Since our system consists of multiple
shared clients and a server, any adversary is able to
overhear the packets transmitted between them or ma-
liciously access the server to obtain the shared data.
Thus, the threat model we consider is the attacks on the
server and its corresponding communications with the
shared clients. For simplicity purpose, we assume the
data stored on each client are safe and unobtainable. And
we further assume that the adversaries’ attack objective
is to infer users’ personal sensitive information (e.g.,
home address, workplace, behavior pattern or health
condition) or trace through analyzing or mining the
obtained data. Therefore, we mainly focus on the risks
of privacy leakage based on the shared data.

Trace Privacy-preserving: Although many participa-
tory sensing applications have been implemented to
generate/update the unobserved map accurately based
on shared users’ traces [2] [24], such trace based appli-
cations would inevitably lead to users’ privacy leakage.
Therefore, trace protection should avoid to disclose the
shared users’ trajectory as well as to speculate other
personal sensitive information. In our map generation
application, one main goal of trace privacy-preserving is
to protect individual users’ trajectory within a specific
time interval, formally described as follows.

Definition 5. (IUT: Individual User’s Trajectory/Trace) Con-
sider a time interval T , one trajectory of an individual
user in the 2D space is defined as a sequence of tuples
IUT = {〈px1 , p

y
1, t1〉, 〈px2 , p

y
2, t2〉, . . . , 〈pxn, pyn, tn〉} where pxi

and pyi (i = 1, 2, . . . , n) mean the GPS coordinates of location
pi and 1 ≤ t1 < t2 < · · · < tn ≤ T are ordered discrete time
instances within a time interval of T .

3.2.2 Privacy-preserving policy
Within one time interval, it is well understood that the
leakage of user’s traces greatly depends on the amount
of shared locations, thus one natural way is to define
bi as the maximal number of uploaded locations set by
user i and PEi(.) as the actual number of uploaded
locations from user i. Using this simple rule, the user will
significantly reduce the locations reported to the server,
thus the degree of trace exposure is also decreased.
However, it should be noted that since location data
with time dimension are highly correlative, some attack
strategies could easily infer user’s traces only with a few
locations. Therefore more advanced and elegant privacy-
preserving policy is highly expected.

Consider a time interval T . Our concept is to provide a
group of unorganized locations which might correspond
to various quite different routes. In other words, given
the shared locations, no algorithm could uniquely and
easily determine the real route that he has been pass-
ing. Mathematically, this curve reconstruction problem
is unsolvable. Therefore, besides breaking the temporal
relationship among reported locations, we should also
focus on how to choose appropriate locations to avoid
leaking the spatial relationship among these locations.
Specifically, the client will use another finite buffer to
store all the points that have been reported within
T . Once having another new reported location point,
the user will examine the trace leakage degree, which
corresponds to the privacy-exposure function PEi(.) in
problem P, to decide whether reporting this point to
the server. This new point is said to be safe or qualified
if the return value of PEi(.) is less than bi. Next, we
will discuss how to choose the privacy-exposure function
PEi(.) and the upper cost bound bi.

From trace protection prospective, the most effective
metric is to let PEi(.) return the deviation between
estimated trace of the reported points and the real trace.
Clearly, the higher value of this metric, the better of the
trace protection would be. Ideally, the user’s trace could
be completely protected when the value of deviation is
nearly infinite. However, it is impractical for a user to
record all the GPS locations within T , so the real trace
is incomplete which means it is impossible to compute
this deviation evenly. Here, we bypass the deviation
metric and choose γ-sample to indirectly measure the
trace exposure degree. In Lemma 1, the most effective
algorithm Crust can’t uniquely determine the original
curve when γ-sample is more than and equal to 1. From
the view of privacy protection, we therefore prefer the
locations set to be at least 1-sample, i.e., γ ≥ 1. For
instance, if a user wants to exactly protect his/her trace
within T , he/she must set γ to be at least 1. From
LEMMA 1, a mediate trace protection degree could be
achieved through setting γ between 0.252 and 1. And a
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user’s trace would be exposed when γ ≤ 0.252. Note that
the smaller γ corresponds to more shared GPS points by
the users and better estimated map quality on the server,
and vice versa. Obviously, γ reflects the tradeoff between
the local trace protection degree and remote estimated
map quality. Therefore, in the practical implementation,
users could adjust γ based on their specific requirements.

3.2.3 Other issues

Note that there still exist trace exposure for the above
mentioned schemes. This is because that the goal of
privacy assessment is to protect the user’s private trace
within T , no guarantee about the larger time interval.
For instances, if T is set to be one hour, the user’s trace
within larger than one hour might be easily determined
if the user repeats the trace which he/she has walked,
even though the real trace in one hour (even less than
one hour) is unsolvable. To maximally avoid the users
trace leak, it is desirable to set a large T , which is more
likely to have no overlapping between different time
windows. Therefore, T reflects the degree of privacy
protection and the user should carefully set this value
according to his/her privacy requirement. Unfortunate-
ly, due to the periodical property of the regular home-
office or home-school route, the privacy could not be
guaranteed no matter how large T we choose. Therefore,
in this paper, we assume the points shared by individual
user are sampled from the not-often passed roads.

In addition, some locations that are very sensitive
or specific could really identify a person, a trajectory
or other private information. Considering this, some
extra user-defined rules shown as follows could also be
integrated into our application (in Fig. 3).

Rule based on sensitive regions. Individual users
could restrict uploading the locations in some sensitive
regions, such as home area.

Rule based on sensitive time. Individual users could
restrict uploading locations collected in some certain
periods of time, such as working hours.

After applying such rules, the privacy-preserving
scheme in our framework will not only protect the
shared user’s trace information, but also avoid the leak-
age of some potential sensitive information.

3.3 Near-optimal Locations Selection

In this subsection we mainly focus on how and where to
query users for locations so as to maximize LBVA. Due to
the hardness solving P directly, we reformulate it as one
equivalent maximization problem over a group of cells.
We then demonstrate that the new objective exhibits the
property of sub-modularity. One simple greedy algorith-
m within constant (≈ 63%) of the optimum is proposed.

3.3.1 Proposed alternative formulation

Obviously, MaxLBVA remains the combinatorial opti-
mization which is intractable. Specifically, without any
prior knowledge about the map that we wish to estimate,

the server is oblivious of the potential location candi-
dates, let alone choosing optimal location set to maxi-
mize Γ(·) without breaching certain privacy constraints.
Finding the optimal solution of MaxLBVA is non-trivial,
especially when any location in the space could be the
candidate.

To bridge the gap between server’s difficulty of having
little knowledge on where to pick points to improve
map quality, and the points that have been collected
by individual users, we will partition the region into a
group of continuous cells. Specifically, given historical
knowledge and collected locations, the server firstly sets
up the general region in which the map need to be
generated or updated and then divides this region into
n × m continuous squares (i.e., cells). Next, the server
estimates marginal gain (i.e., the improvement of the
map quality if it asks for points from users) of each
cell. It picks the cell with the best marginal gain and
asks users to report locations inside this cell. Assume
a region is divided into w cells and use a complete set
I = {1, 2, · · · , w} to denote them. Instead of seeking for
exact locations set, we alternatively look for a subset of
I , each cell possibly including infinite location points.
Therefore, we reformulate P as follow

(P) A∗ = arg max
A⊆I

R(A) = E[Γ(A)]− Γ(S0)

where E[·] denotes expectation operation, computed over
all locations uniformly distributed within the cells and
R(·) represents the margin gain of the cells, that is the
improvement of map quality.

The function Γ(·) we defined is over the location set,
rather than cells. Here we approximate Γ(A) as the
expectation of LBVA when we query points from a set
of cells A. Since we have no idea about the underlying
road distribution and users’s movement pattern, it is
reasonable to assume that the each location within a cell
will be uniformly reported. If A = {a1, a2, · · · , a|A|}, then
E[Γ(A)] is computed sequentially

E[Γ(A)] =

|A|∑
i=1,ai

∫
∀p∈ai

1

r2
Γ(Si−1 ∪ p), (1)

where r is the side length of a cell, p is a location in the
cell and Si is the collected location set by the server after
choosing the i-th cell. Here S0 means the initial sporadic
collected locations by the server and is used as the base
of optimal points/cell query and points update rather
than groundtruth. When no cell is chosen (i.e., A = ∅),
the expectation is only determined by S0. Thus we have
E[Γ(∅)] = Γ(S0) and R(∅)=0.

Regarding the cost associated with each cell, it could
be interpreted as the time interval spent to grab locations
data. Once a cell was chosen, we wish more users in
such cell could quickly reply the server. However, it is
impossible to estimate such time duration due to the
separated procedure of cell selection and cost estimation.
Given a cell, intuitively, the more of qualified users, the
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quicker of collecting locations. For each cell, therefore, if
there is at least one qualified user, the corresponding cell
cost is set to be one over the total number of qualified
users, and infinity for otherwise.

3.3.2 Properties of the objective
There are several important and intuitive properties of
R(A). Firstly, as mentioned, we have R(∅) = 0. Secondly,
R(A) is nondecreasing. That is R(A) ≤ R(B) for all cell
subsets A ⊆ B ⊆ I . Clearly, adding more cells means
that more points will be chosen, thus incurring the
improvement of the LBVA and estimated map quality.
Therefore, choosing more cells will further incur the
increase of R(A). Last but most importantly, it exhibits
diminishing marginal returns. To be specific, adding a
cell to a small subset A, the reward that we can obtain
would be at least as much as if adding it to a larger
one B ⊇ A, which is implied formally by the following
theorems.

Theorem 1. Consider a smooth curve F . Let V to be the
universal points set. For all S1 ⊆ S2 ⊆ V and all points
p ∈ V \ S2, it holds that

γ(S1 ∪ p)− γ(S1) ≥ γ(S2 ∪ p)− γ(S2),

where the function γ(S1) returns the sample condition of S1

on F . A set function with this property is called sub-modular.

Proof: For any p ∈ V \ S2, denote its two nearest
neighbors in S2 as p1 and p2, respectively. According to
Definition 3, adding a point will definitely affect some
points’ Euclidean distance to their corresponding nearest
neighbors in the sample set. And these points will be
referred to as affected points below. Our proof is similar
to the analysis of [31]. We have the following three cases:

Case 1: p1, p2 ∈ S1: Since p1, p2 ∈ S1, the affected
points are exactly same for S1 and S2. Given a smooth
curve, the local feature size of any point is invariable.
From Definition 3, we have that the new added point p
will lead to exactly same gains, i.e., γ(S1 ∪ p)− γ(S1) =
γ(S2 ∪ p)− γ(S2).

Case 2: p1, p2 ∈ S2 \ S1: For the set S2, the affected
points are a subset between p1 and p2. Since p1, p2 /∈ S1,
the affected points at least contain all the points between
p1 and p2. Therefore, we have γ(S1∪p)−γ(S1) > γ(S2∪
p)− γ(S2).

Case 3: p1 ∈ S1, p2 ∈ S2 (or p2 ∈ S1, p1 ∈ S2) When
p1 ∈ S1, this means that p2 ∈ S2. Thus, the affected points
of S2 are a subset between p1 and p2. Since p2 /∈ S1, the
number of S1’s affected points must be more than that
of B. Thus, we have γ(S1∪p)−γ(S1) > γ(S2∪p)−γ(S2).

We thus conclude that γ(S1 ∪ p)− γ(S1) ≥ γ(S2 ∪ p)−
γ(S2) and the function γ(·) is submodular.

Theorem 2. R(·) is submodular set function.

Proof: Since Γ(S) = π − 2 arcsin γ(S)
2 and γ(·) is

submodular, we have Γ(·) is submodular too. From
Section 3.3.1, we know that R(A) is the integration of
Γ(·) over all possible points in a cell. Therefore, R(·) is
submodular as well.

3.3.3 Proposed greedy algorithm
In general, maximizing submodular functions is NP-
hard [22]. We instead use a heuristic greedy algorithm
to obtain a sub-optimal solution.

The simple one is the unit cost case, where each cell
has equal unit cost (i.e., for any cell i, c(i) = 1). The
greedy algorithm will reduce to select b cells from I
with the highest score. It operates as follows: starting
from A = ∅, iteratively add a single cell with the highest
score, conditioned on the cells chosen in previous steps
until the map quality reaches a certain threshold. More
formally, at each step, the greedy algorithm adds the
element cell i such that

i∗ = arg max
i∈I\A

R(A ∪ i)−R(A). (2)

At each step, the optimal cell could be immediately
determined by the Eq. (1) and (2). Next the server
broadcasts one request packet containing the physical in-
formation (e.g., GPS coordinate for the cell’s four corner
points) of the chosen cell. Any user hearing such request
packet will examine the locations falling in the chosen
cell. If the matched location set is nonempty, the privacy
assessment scheme is further applied on them to remove
all non-safe data that might lead to trace leakage. In
response to the request packet, eventually, the user will
send the final chosen safe locations back to the server.

We end this part by discussing the theoretical bound of
our proposed simple greedy algorithm. Firstly, we give
one proved conclusion in [22], denoted as the following
lemma.

LEMMA 3. (Nemhauser et al., 1978) Let F be a monotone
submodular set function over a finite ground set V with
F (φ) = 0. Let AG be the set of the first k elements chosen by
the greedy algorithm, and let OPT = maxA⊂V,|A|=k F (A),
Then

F (AG) ≥
(

1−
(k − 1

k

)k)
OPT ≥ (1− 1/e)OPT.

This lemma shows that if a set function meets certain
conditions, the simple heuristic greedy algorithm could
achieve a constant-factor ratio to the optimum.

Theorem 3. Let Â be the chosen cells by the greedy algorithm
and A∗ = maxA⊂I R(A). Then

R(Â) ≥ (1− e−1)R(A∗).
Proof: Since R(·) is a nondecreasing submodular set

function with R(∅) = 0, based on LEMMA 3, we have
R(Â) ≥ (1− e−1)R(A∗).

3.4 Impact of GPS Sample Error and Road Width
In our scheme, the location data is mainly from GPS
sampling based on smartphones. Therefore, two critical
issues must be addressed to make our protocol practical:
1) GPS sample error (thus, samples are not necessarily
from the real curve F), and 2) road width (thus, over-
sampled points will result in extra small segments). The
curve reconstruction problem assumes a smooth curve
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(a) Recovery without clustering (b) Recovery with clustering

Fig. 4: Impact of road width.

with zero thickness and the unorganized points precisely
from the underlying curve. While in our situation, even
if the map could be viewed as a smooth curve, the
thickness of each edge could not be zero. The map
generation algorithm (i.e., Crust) might add extensive
unnecessary roads/edges within the same road, espe-
cially when the road width is very large (e.g., high way).
Figure 4 illustrates an example.

For dealing with GPS error, we first remove the da-
ta when such accuracy (e.g., getAccuracy() in Android
returns the standard deviation of the GPS measurement
in the current location) is more than a threshold η. It is
reasonable to set η to be double road width, about 40m.
Even so, the uploaded data is still noisy. We then apply
a simple clustering algorithm to the filtered data. Specif-
ically, the collected points will be divided into several
clusters based on the locations’ geographical proximity.
And we use the cluster center to represent a sample from
the underlying map. We run the Crust algorithm using
the cluster centers rather than all collected raw points.

Consider one location in the 2D plane with x0 as the
GPS ground truth. Let x1, x2, . . . , xn be the measured
value by n different users with xi in a small cluster,
which could be seen as the realization of a random
variable X with mean x0. Considering the Gaussian
noise, X could be modeled as X = x0+N(0, σ2). We next
theoretically show that with the increase of the number
of reported users, the empirical mean will be close to the
real value with higher probability (close to 1).

Theorem 4. Given one location with n real measured noisy
value xi. If xi ∈ [−d2 + x0,

d
2 + x0], then we have

Pr(| 1
n

n∑
i=1

xi − x0| ≥ δ) ≤ 2exp(−2n
1
3 ), (3)

which is valid for positive value of δ = d

n
1
3

.
Proof: This theorem could be achieved directly based

on Hoeffding’s inequality: Suppose X1, X2, . . . , Xn are
independent real-valued random variables, such that for
each i, Xi takes values from the interval [ai, bi], Let X =
1
n (X1 +X2 + +Xn). Then, for all δ > 0, Pr(|X−E(X)| ≥
δ) ≤ 2exp(− 2n2δ2∑n

i=1(bi−ai)2
). Here, with xi ∈ [−d2 + x0,

d
2 +

x0] and δ = d

n
1
3

, we could naturally achieve Eq.(3).
Using the collected noisy GPS data, we examine the

performance of the Voronoi Angle (i.e., α in Fig. 5(a))
and the maximal Euclidean distance between the real
curve and the estimated (i.e. h in Fig. 5(b)). Consider
two consecutive sample points p1 and p2 on a smooth
curve F , as shown by Fig. 5. Due to the noise in the
physical setting, their corresponding real measured GPS
values are actually uniformly distributed within the two
bigger dashed circles with radius d

2 . From lemma 2, we

d

a

a
d

(a) Voronoi Angle

d

h

d

a

(b) Max distance gap between
the real curve and the estimated

Fig. 5: The effect of GPS data error.

have α = π−2 arcsin γ
2 under the noise-free assumption.

From Theorem 4, we know that the sampled GPS data
of p1 and p2 will concentrate in the two smaller disks
with radius δ. Clearly, we can see that their correspond-
ing α and h will fall in the range of [α− δα, α+ δα] and
[h−δh, h+δh], respectively. Based on the basic geometric
knowledge, δα = arcsin δγ

tan(arcsin γ
2 )Ds(p1,p2)

and δh = δ.
Clearly, these two metrics quantifying the quality of

recovered map will fluctuate within a very small range,
determined by δ. Similarly, as the number of samples
increases, they will approximate their corresponding
ground truth with higher probability (close to 1). This
means that our proposed map generation scheme is ro-
bust against the inherent noises of GPS data by clustering
(sort of resampling by server).

4 PERFORMANCE EVALUATION

In this section, we present a series of experiments per-
formed on two group city-scale GPS trace data. We focus
on the impact of different parameters on the estimated
map quality and the overall effectiveness of PMG. We
will use greedy algorithm mentioned in section 3.3 to
choose optimal cells. The map generator we use is Crust.

We will use two datasets. The first one, also referred to
as the Shanghai Data, is a group of GPS data published on
the CrowdAtlas website with 24 traces containing 954000
locations in total [23]. The area of this dataset is about
149.09km2 and the total length of traces is 111390m. The
second, referred to as the Wuxi Data, was collected in
Wuxi New district, with 323120 locations. And its area
and traces are 36.45km2 and 29284m, respectively.

Due to the lack of large scale participant sensing filed,
we reshuffle the two datasets and randomly assign these
locations into m different files to emulate the number of
users. This value (i.e., m) is set be 10 and 50 for the Wuxi
data and Shanghai data, respectively. In addition, each
user defines his/her privacy protection level to be no
trace leakage within a day (i.e., T = 24h and γ

′
=1).

Denote the recovered segments set as Ê = {ei, 1 ≤
i ≤ |Ê|}, each segment with ni points. We next will
use two metrics to verify the effectiveness of PMG:
one is Deviation Metric(DM) denoting how far is the
estimated map from the ground truth, and the other is
Gamma Metric(GM), an indirect criterion measuring the
estimated map quality. They are given by

DM = (

|Ê|∑
i=1

DMi)/|Ê|, GM = (

|Ê|∑
i=1

GMi)/|Ê|
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Fig. 6: The impact of cluster range.

which DMi/GMi is also referred to as segment
DM/GM , defined as DMi = (

∑ni

j=1 h
i
j)/n

i and GMi =

(
∑ni

j=1 γ
i
j)/n

i. Here, hij is the j-th point’s physical devia-
tion from the true value on ei and γij denotes this point’s
sample condition on segment ei.

4.1 Impact of different parameters
In this subsection, we observe the impact of different
parameters (i.e., cluster range, cell size and the degree of
privacy protection) on the final estimated map quality.
We conducted our experiments on the two datasets, the
effect of which share similar trend. Thus, we only report
the results on Wuxi data.

4.1.1 Cluster range
Figure 6 shows the performance of DM and GM by
adjusting the cluster range from 0m to 100m, with
increments of 2m. We run this experiment for 4 times
using four different side lengths of cell (i.e., r =
200, 300, 400, 500, all in units of m).

Regardless of the cell size r, we can clearly see that
both DM and GM behave a sharply downward trend
at the beginning, then decrease slowly between 15m and
25m and increase gradually when the cluster range is
more than 30m. Moreover, the quality of the generated
map could achieve the empirical optimum/minimum
when the cluster range is around 20m, which is consis-
tent with the real road width (about 20m). Note that the
bigger of the cluster range, the sparser of the collected
points. Thus, as the cluster range grows, the real input
of our map estimator (i.e., Crust) will fail to reflect the
road features, such as corner. This is the reason why the
performance of DM and GM degrades gradually when
the cluster range is more than 30m.

4.1.2 Cell size
We next examine the effect of cell size on the generated
map quality. Due to the performance similarity between
DM and GM , we only offer the performance of GM
under different cell size. Since our location selection
algorithm is cell-based, we also investigate the impact
of different cell size on the Number of Locations (NoL)
(i.e., the number of all real collected locations when the
greedy algorithm finishes). We did this experiment un-
der different number of request packets from the server.
The results are shown in Fig. 7.
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Fig. 8: Influences of different degree of privacy protection

From Fig. 7(a), we can see that as the increase of r,
NoL increases at first, achieves a peak when r = 400,
then begins to decrease. GM behaves the opposite trend.
The result is reasonable. When cell size is small, each cell
might contain a few matched locations, so after hearing
the request packet, less users will response. When r is
increasing, more qualified locations might be contained
in each cell, leading to the increases of NoL. However,
when r = 500, the cell size will be so large that the
chosen cell might contain many roadless areas, which
results in the worse performance relative to r = 400.

Once the cell size is fixed, the NoL(GM) behaves
monotonically increasing(decreasing) with the increase
of the number of request packets. This is because more
request packets mean more collected locations, which im-
proves the final generated map quality (i.e., the decrease
of GM ). However, there is a small exception for GM
when r = 500 (see, Fig. 7(b)). Again this is due to that r
is too large, containing many areas without roads which
might lead to the less number of qualified locations.

4.1.3 The degree of privacy protection
In Lemma 1 and Section 3.2, we have pointed out that
γ

′
in client reflects the degree of privacy protection

and the user could set this value according to his/her
privacy requirement. If γ

′
is set to be 1.0 , it means

that γ computed by the reported locations of individual
users within T must be bigger than γ

′
, i.e., γ > 1.0.

Theoretically, for individual users, a higher value of γ
′

in client is better to preserve his/her privacy. This is
also clearly shown by Fig. 8(a). In Fig. 8(a), we can find
that with the increase of γ

′
, the deviation between the

estimated traces of individual users and the ground truth
is increasing. When γ

′
= 0.4, DM of most users is more

than 100m and when γ
′

= 1.0, even all users have the
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(a) NoL=500 (b) NoL=1000 (c) NoL=1500

(d) NoL=2000 (e) NoL=2500 (f) Groundtruth

Fig. 9: Wuxi data: generated maps at different NoL

(a) NoL=500 (b) NoL=1000 (c) NoL=5000 (d) Groundtruth

Fig. 10: Shanghai data: generated maps at different NoL

DM of more than 100m.
For the server, however, a higher value of γ

′
in client

is not better for the efficiency of map generation. From
Fig. 8(b), we could see that when the number of request
packets received by each user is the same, the bigger
γ

′
is, the less the number of locations uploaded to the

server is. This means more time is needed to generate or
update a map if a bigger γ

′
is set. Another meaningful

discovery is that when γ
′

= 0.2 and 0.4, the number
of locations received in server is nearly the same, while
when γ

′
= 0.6 , 0.8 and 1.0, the number is significantly

fewer. This is because individual users only send a few
locations to the server in a period of time, e.g., one day,
which makes the traces generated by these locations in
client quite different from ground truth, i.e., γ computed
in client is usually bigger than the set threshold γ

′
.

Therefore, when the set threshold is low, e.g., 0.2 or 0.4,
the user usually could response most request packets if
he/she has the satisfied locations. With the increase of
the set threshold, however, more points are not satisfied
this stricter demand of privacy protection. Hence, these
points would not be sent to the server so that the number
of locations received in server decreases.

By analyzing and comparing these two figures in
Fig. 8, it is obvious that in a real environment, an
appropriate threshold γ

′
is essential for both individual

users and the server. Based on the result shown in Fig. 8,
it is relatively appropriate to set γ

′
to be from 0.6 to 1.0.

4.2 The quality of generated map

In this section, we will investigate the generated map
quality in various dimensions. Unless otherwise stated,
we will set the cluster range and size length of a cell r
to be 20m and 400m in the next experiments.
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Fig. 11: CDF observation with Wuxi data
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Fig. 12: CDF observation with Shanghai data
TABLE 1: Map Generation Results with Two Data Sets

DataSet NoL NoLC DM |Ê| Length Density

Wuxi

500 221 128.40m 96 3776.9m 17.09
1000 230 38.44m 157 4941.1m 21.48
1500 273 25.31m 256 8153.9m 29.87
2000 432 6.04m 416 13430m 31.09
2500 594 5.53m 578 20186m 33.98

Shanghai

500 273 8.93m 246 7041.3m 25.79
1000 304 8.01m 277 6424.2m 21.13
2000 310 7.79m 284 6335.6m 20.44
3000 320 7.43m 292 7100.6m 22.19
4000 326 7.34m 299 7893.0m 24.21
5000 332 7.38m 307 7945.6m 23.93

4.2.1 Visual comparison
We first visually observe the generated map quality un-
der different sampling points both in Wuxi and Shang-
hai( Fig. 9 and 10). Here the red lines mean the recovered
segments, the blue points represent the clustered sam-
pling locations. And we also provide the ground truth
in black (Fig. 9(f) and 10(d)). As expected, the more of
sampling locations, the better of recovered map quality.
In Wuxi experiment, Figure 9 shows that when NoL
= 2500, the recovered map could almost capture the
general trend of the original map. For the Shanghai data,
the performance improvement is very small if changing
the number of locations from 500 to 1000. Moreover, such
improvement almost disappears when NoL > 1000.

4.2.2 Quantitative evaluation
To be more precise in comparison, we further observe the
CDF of segment DM and GM under different number of
sampling locations shown in Fig. 11 and 12. The results
suggest that the estimated map based on Wuxi data
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performs better than Shanghai’s, e.g., when NoL= 1500,
about 90% of the recovered segments are at most 10m
apart from the ground truth, while for Shanghai, there
are only 80% such segments even if NoL= 3000.

More statistical information describing the recovered
map quality is presented in Table 1. Here, NoLC means
the number of locations after clustering and Density
(with the unit of cluster/m) represents the average dis-
tance of consecutive clustered points. The recovered map
quality improves as the increase of sampling locations.
Such improvement could also be verified by the increase
of Density and the decrease of DM. Compared with
Wuxi data, the performance gains are not obvious for the
Shanghai data. Only 12 new clustered points are added
even if NoL adjusts from 3000 to 5000. This is because
the number of users (i.e., 50) might be a little big for the
cell with side length 400m. When one request is sent,
if too many users response, the sampling locations are
too dense, which results in the less NoLC and the slow
growth of the quality. Therefore, it is highly necessary
to select appropriate parameters based on real situation,
e.g., the number of users, the cell side length and so on.

4.3 Evaluation of Privacy Protection

We examine the performance of privacy protection by
observing the individual recovered trace. We set the
privacy protection level (i.e. γ

′
) to be one which has

been discussed in Section 4.1.3. For simplicity purpose,
each user exploits exactly same γ

′
. We randomly choose

a user’s reported locations from Wuxi data and Shanghai
data, then use Crust to estimate their corresponding trace
within a day. Figure 13 illustrates the recovered individ-
ual trace. Clearly, compared with the ground truth in
Fig. 9(f) and Fig. 10(d), these two graphs contain so many
separated segments and points that we cannot know the
users’ complete or real trace.

We also observe the CDF of individual users’ DM to
have a more precise evaluation of privacy protection.
Figure 14 shows that when individual users send 5,
10, 30 and 50 locations to the server in one day, the
deviation between generated trace of individual users
and ground truth is always more than 30m with Wuxi
users’ data and 250m with Shanghai users’ data. With the
increase of reported locations, the deviation is decreas-
ing. Compared with Fig. 14(b), we find that Fig. 14(a)
has a much less deviation. This is because Shanghai’s
data were collected in more complicated roads, so when
individual users only report a few locations, it is much
more difficult to speculate accurate users’ traces. This
discovery inspires us that our privacy-preserving scheme
might be improved by setting γ

′
based on different road

conditions in the future work.
In summary, Figure 13 and 14 demonstrate that even

if the server can effectively and accurately recover the
unobserved map of individual users, it is impossible for
adversaries to infer each user’s private accurate trace
because the large DM indicates the failure of the Crust.

(a) Wuxi user data (b) Shanghai user data

Fig. 13: Recovered trace by one user in one day (γ
′

= 1)
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Fig. 14: CDF with Wuxi and Shanghai users’ data

5 RELATED WORK

Map Generation and Curve Reconstruction. Nowa-
days, many mapping projects with crowdsourcing ac-
tivities have been successfully implemented, e.g., Open-
StreetMap [24] and Google Map Maker. Wang et al.
develop an application CrowdAtlas [2] to automate map
update based on user traces. When there are sufficient
traces, map inference algorithms can automatically up-
date the map. Shen et al. present Walkie-Markie [3] to
generate an indoor map based on user trajectories and
use WiFi-Marks based on the RSS trend to locate. Al-
though these approaches could generate maps efficiently,
none of them consider protecting user privacy. Therefore,
we propose to generate a map with unorganized points
uploaded by users instead of the whole traces.

Our idea is coincident with curve reconstruction meth-
ods in computational geometry. α-shape is one rep-
resentative work and uniquely determines a polytope
by a finite point set and a parameter α. However,
the parameter α must be chosen experimentally and is
constant during the recovery, while in map generation
there is no ideal value of α due to the unconstant
sampling density. In γ-neighborhood graph [25], the
sampling density should be the same in each part of the
curve, so it isn’t suit for the map generation either. β-
Skeleton [26] is similar to γ-neighborhood graph except
that the radius of the forbidden region of two points in
β-Skeleton is the same while in γ-neighborhood graph
is different. Furthermore, like α-shape, β-Skeleton also
needs to choose an appropriate threshold β to ensure the
results of curve reconstruction. While in our work, we
use Crust [16], which has been introduced in detail in
section 2.2, to reconstruct the map as well as to evaluate
the privacy leakage because of its simplicity, theoretical
guarantees and good estimated quality.
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Privacy Protection: Privacy protection is an important
issue in participatory sensing and numerous protection
strategies have been proposed (e.g. see a well survey
from [40]). According to the protection method, they
could be roughly divided into data suppression, data
perturbation, anonymization/ pseudonymity, and data
aggregation. Below we will review them in detail.

Data suppression. The idea of this strategy is to control
data collection or publication. For example, users could
selectively collect or report certain locations/traces based
on some predefined rules [27]. Literature [44] iteratively
suppresses selected locations from the original traces
until a privacy constraint is satisfied. Gruteser et al. [45]
differ sensitive area and insensitive area in a map. Once
users enter into a sensitive area, location updates are
delayed or not released from that area and vice versa.

Data perturbation. As the name suggests, the collected
data will be distorted by adding an artificial noise before
publishing out to the sever [32]–[34] . Ganti et al. [33]
propose to generate a noise model with characteristics
similar to a realistic dataset by using an approximate
model of the phenomenon monitored by the application.
Pham et al. [32] develop a correlated noise model that
can be utilized to perturb location-tagged data to protect
both the data and location privacy( especially multidi-
mensional correlated time-series data) while allowing
community statistics to be reconstructed accurately. Mir
et al. [34] propose DP-WHERE to achieve differential
privacy by adding controlled noise to the set of empirical
probability distributions.

Anonymization. The most widely approach of
anonymization is k-anonymity [28], the basic idea
of which is to remove some features such that each
record is not distinguishable among other k − 1 items.
Terrovitis et al. [44] have defined a new version of the k-
anonymity guarantee, the km-anonymity which relies on
generalization, to limit the effects of data dimensionality.
Beresford et al. [29] [37] design mix zone model which
assigns users in mix zones different pseudonyms
to hide their paths. Delphine et al. [41] propose an
anonymity-preserving reputation framework based on
blind signatures which use periodic pseudonyms to
prevent an adversary from compromising the user
reports to extract private information.

Data Aggregation. This method relies on a mutual
protection within participants rather than applications
or a third party to protect data privacy. The collabo-
rative path hiding mechanism [42] proposes that user-
s exchange previously collected sensor readings when
they physically encounter each other. Swapping a subset
of the data samples removes the association between
the sensor readings and the identity of the users who
collected them so that the sensor readings don’t reveal
the actual paths of each user.

5.1 Comparison with Prior Work
The goal of our work is to generate an accurate and
reliable map while avoid leaking the users’ privacy.

TABLE 2: Comparison with Existing Work

Methods TP1 DV1 DD1 MQ1

Suppression [14] [27] Low Normal × Uncertain
Perturbation [33] Medium Normal

√
Poor

Anonymization &
Pseudonymity [28] [41] Medium Normal

√
High

Aggregation [42] Medium Large × High
PMG High Small × High

To this end, we now discuss the limitations of prior
work about privacy protection under map generation
and compare our method with them. We summarize the
differences in TABLE 2.

Data suppression is a simple and effective strategy that
is most related to our work. Most methods, however, rely
on some unsophisticated rules so that they could only
protect parts of locations but not guarantee the safety
of the whole trajectory [14] [27]. Moreover, once the
background of adversaries and users is unknown or the
suppression is excessive or unreasonable, this strategy
is no longer applicable. In our work, each user merely
needs to contribute little data, e.g., less than 100 locations
rather than the whole trace. Meanwhile, in order to
increase the utilization of each shared locations, we also
design a greedy algorithm to maximize the marginal
benefits of each location so that the map could achieve
a constant factor of the optimum as soon as possible.
Therefore, our method could generate a high-quality
map even with suppressing most locations of the traces.

Additionally, other privacy-preserving strategies men-
tioned above focus on slightly related problems. Data
perturbation requires preliminary knowledge about data
distribution. It also compromises data authenticity so
that it could seriously damage the accuracy and effi-
ciency of map generation, which is also the limitation of
pseudonymity. The k-anonymity model based on traces
is quite different from that of locations. Accurately, the
k-anonymity model based on traces is to ensure that
each trace is not distinguishable from other k traces in
the anonymous set, which means all sample locations
in each trace should be anonymized within this set.
As anonymous traces are dynamic, it is a challenging
problem that how to determine the anonymous set of
the traces. And it is like mix zone that there must be
enough users to enhance locations and trace privacy. Our
application, however, doesn’t require the user density
they claim and the predictable user behavior pattern. In
data aggregation, the traces could still be leaked if the
data is intercepted by the adversaries, or the users and
the server conspire to reconstruct certain users’ traces.
Moreover, transmitting data could result in extra energy
consumption which is another vital issue in participatory
sensing. However, compared with other strategies, the
data volume in our approach during the transmission
and used to generate map is greatly reduced.

Compared with the earlier version of this work [46],
we clearly point out the formal definition of trace privacy

1 TP: Trace Protection; DV: Data Volume; DD: Data Distortion; MQ: Map
Quality.
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and the threat model in the context of map generation.
Then we investigate the impact of local privacy pro-
tection requirement (i.e., γ

′
) on both the users’ privacy

protection degree and the estimated map quality on the
server. This experiment proves that smaller γ

′
could

lead to smaller local DM which means weaker trace
protection. What’s more, the additional result shown in
Fig. 14 demonstrates that even if shared locations are
unencrypted, the user’s private trace during a period T
could be effectively protected. In addition, the under-
lying reason of the performance differences on the two
datasets could guide us to explore more sophisticated
privacy-preserving scheme in map generation in the
future.

6 CONCLUSION AND FUTURE WORK

In this paper, we jointly studied the high-quality map
generation and the policy of privacy-preserving in the
context of participant sensing. We viewed the map as a
smooth curve in the 2D plane and leveraged the process
of constructing Crust to be the map estimator. Based on
the γ-sample condition of the Crust, our scheme meets
the individual user privacy demand and is robust to in-
herent noises of GPS data. Through extensive numerical
experiments over two real city-scale GPS datasets, we
showed that the server can generate a high-quality map
with error bounded by 10m with a noisy sample point
about every 7.5m.

There are several future issues to pursue. First, we
need to design more efficient algorithm to choose the lo-
cations with maximal gains in estimating the underlying
map. Second, the trade-off between the privacy leak and
the overall estimated map quality should be quantity.
We also need to design schemes that can recover more
detailed road conditions such as one-way or two-way
road and the traffic load of different road segments.
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