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Abstract—Many spectrum auction mechanisms have been proposed for spectrum allocation problem, and unfortunately, few of them
protect the bid privacy of bidders and achieve good social efficiency. In this paper, we propose PPS, a Privacy Preserving Strategyproof
spectrum auction framework. We design two schemes based on PPS separately for 1) the Single-Unit Auction model (SUA), where
only single channel will be sold in the spectrum market; and 2) the Multi-Unit Auction model (MUA), where the primary user subleases
multi-unit channels to the secondary users and each of the secondary users wants to access multi-unit channels either. Since the social
efficiency maximization problem is NP-hard in both auction models, we present allocation mechanisms with approximation factors of
(1 + ϵ) and 32 separately for SUA and MUA, and further judiciously design strategyproof auction mechanisms with privacy preserving
based on them. Our extensive evaluations show that our mechanisms achieve good social efficiency and with low computation and
communication overhead.
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1 INTRODUCTION

T HE ever-increasing demand for limited radio spectrum re-
source poses a great challenge in spectrum allocation and

usage [32]. Recent years, auction has been widely regarded as
a preeminent way to tackle such a challenge because of its
fairness and efficiency [19]. In general, bidders in spectrum
auctions are the secondary users, while the auctioneer is a
primary user in the single-sided spectrum auctions.

In recent years, many strategyproof auction mechanisms, in
which bidding the true valuation is the dominant strategy of
bidders, have been proposed for solving spectrum allocation
issue. Unfortunately, the auctioneer is not always trustworthy.
Once the true valuations of bidders are revealed to a corrupt
auctioneer, he may abuse such information to improve his own
advantage. Besides, the true valuation may divulge the profit
of bidders, which is also a commercial secret for each bidder.
Therefore, bid privacy preservation should be considered in
spectrum auction design.

Allocating channels to the buyers who value them most
will improve the social efficiency. However, it is not trivial
to design a strategyproof spectrum auction mechanism with
maximum social efficiency, due to its NP-hardness. There have
been many studies devoted to maximizing the social efficiency
while ensuring strategyproofness in spectrum auction mecha-
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nism design [8], [10], [32], [38], [40]. Only a few of these
auction mechanisms address performance guarantee on social
efficiency, e.g. [8] proposes a strategyproof combinatorial
spectrum auction mechanism with an approximation factor
of

√
m and [12] designs a set of 1 − 1/e approximation

spectrum auction mechanisms with spatial and temporal reuse.
However, none of them provides any guarantee on bid privacy
preservation. To tackle this, [13] and [26] study the problem
of designing privacy-preserving or secure spectrum auction
mechanisms with untrustworthy auctioneer. Unfortunately, nei-
ther of them provides any performance guarantee.

To maximize the social efficiency of spectrum auctions, we
need to compute various bid sums of conflict-free bidders,
and make decisions based on these bid sums. However, it
is hard for the auctioneer or the bidders to compute these
bid sums with privacy preserving since the auctioneer does
not know any bidder’s true bid value. Furthermore, since the
computation burden for the auctioneer which relies on the
bid values of bidders is too heavy, we cannot get a secure
auction mechanism through simply combining the existing
social-efficient auction mechanisms and some bid privacy
preserving solutions directly. Thus, the task of designing a
privacy preserving strategyproof spectrum auction mechanism
with performance guarantee is highly challenging. We need to
design some new mechanisms to provide good performance
guarantee and protect the true bid values of bidders.

In this paper, we consider the issue of designing strate-
gyproof spectrum auction mechanism which maximizes the
social efficiency while protecting the bid privacy of bidder-
s. We propose a Privacy Preserving Strategyproof spectrum
auction framework (PPS). Under PPS, we mainly study two
models:

• The Single-Unit Auction model (SUA)
• The Multi-Unit Auction model (MUA)
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In the SUA model, the auction mechanism design on-
ly focuses on single channel trading. Multi-unit channels
trading is supported in the case of MUA model. Since the
maximization of social efficiency problem in both SUA and
MUA are NP-hard, we design allocation mechanisms with
approximation factors of (1 + ϵ) and 32 separately for the
SUA and the MUA. We show that the proposed approximation
allocation mechanisms are bid-monotone, and further design
strategyproof auction mechanisms based on them, which are
denoted as PPS-SUA and PPS-MUA respectively. As the PPS-
MUA only ensures the worst case performance, we further
propose an improved mechanism, denoted by PPS-EMUA, to
improve the social efficiency of PPS-MUA. We also show that
PPS-EMUA is strategyproof and privacy-preserving.

It is not a trivial job to protect privacy of the true bid
values of bidders in the auction mechanisms as auction relies
on these bid values to make decision on allocation and
payment computation. To address this challenge, we will
first introduce an agent, which is a semi-trusted third party
(such as FCC), different from auctioneer. The agent, together
with the auctioneer, will execute the auction in PPS. In our
design, bidders apply Paillier’s homomorphic encryption to
encrypt the bids so agent can perform computation on the
ciphertexts, agent then sends the results by adding random
numbers and shuffling bidder IDs to auctioneer for making
allocation decision, which provides privacy protection without
affecting the correctness of the allocation. We will prove that
neither the agent nor the auctioneer can infer any true bid
value about the bidders without collusion. To the best of
our knowledge, PPS is the first privacy preserving spectrum
auction scheme that maximizes the social efficiency. Note that
we did not focus on protecting the location privacy of bidders
in our mechanisms, as previous schemes (e.g., [22]) can be
integrated into our mechanisms.

The remainder of paper is organized as follows. In Section 2,
we formulate the spectrum auction and present the framework
of PPS. Section 3 proposes a strategyproof spectrum auction
mechanism for solving the single-unit auction model. Section
4 further extends the auction model with consideration of
multiple-items trading model. Extensive simulation results
are evaluated in Section 5. Section 6 discusses the related
literatures and Section 7 concludes the paper.

2 PROBLEM FORMULATION AND PRELIMI-
NARIES
In this section, we first formulate our spectrum auction model,
and state the design targets of our work. Then, we overview
the cryptographic tools used in this paper. At last, we will
introduce the PPS, which is a privacy preserving spectrum
auction framework.

2.1 Spectrum Auction Model
We model the procedure of secure spectrum allocation as a
sealed-bid auction, in which there is an auctioneer (a.k.a.
primary user), a set of bidders (a.k.a. secondary users) and an
agent. In each round of the auction, the auctioneer subleases
the access right of m channels to n bidders. The bidders

first encrypt their bids by using the encryption key of a
homomorphic encryption scheme (e.g., Paillier’s scheme) for
the auctioneer, and submit the encrypted bids to the agent
(not the auctioneer). Here, E(m) denotes the homomorphic
encryption of message m. Then, the auctioneer and the agent
allocate the channels to the bidders via communicating with
each other. We assume that the agent is a semi-trusted party,
and will not collude with the auctioneer.

We use C = {c1, ..., cm} to denote the set of channels,
and B = {1, ..., n} to denote the set of bidders. Each bidder
i ∈ B is described as i = {Li, Ni, bi, vi, pi}, where Li is the
geographical location of i, Ni is the number of channels that
bidder i wants to buy, bi, vi and pi separately denote the bid
value, true valuation and payment of i for all the channels
that he wants to buy. We assume that the interference radii of
all channels are the same, which are equal to 1

2 unit. Then,
two bidders i and j conflict with each other if the distance
between Li and Lj is smaller than 1 unit. Bidders can share
one channel iff they are conflict free with each other.

In this paper, we study two spectrum auction models. The
first one is that there is only one channel in the spectrum
market, then m = 1 and Ni = 1 for each bidder. We call
this model the Single-Unit Auction model (SUA). The second
one is the Multi-Unit Auction model (MUA) which supports
multiple channels trading in the market. In MUA, each bidder
wants to access Ni ≥ 1 channels rather than part of them.

2.2 Design Targets

Our work is to design social efficient strategyproof spectrum
auction mechanisms with bid privacy preservation. Firstly, we
will allocate channels to the bidders who value them most to
maximize the social efficiency. However, the optimal channel
allocation problem in SUA and MUA are all NP-hard. Thus,
we will design approximation mechanisms instead. Secondly,
our auction mechanisms should be strategyproof, which means
bidding truthfully is the dominant strategy for any bidders.
To achieve this, it is sufficient to show that our allocation
mechanism is bid-monotone, and always charges each winner
its critical value [25]. We say an allocation mechanism is
bid-monotone if bidder i wins the auction by bidding bi, he
will always win by bidding b′i > bi. And the critical value of
each bidder i in a bid-monotone allocation mechanism is the
minimum bid that bidder i will win in the auction. The third
objective is to protect the privacy of the bid values of bidders.
To achieve privacy protection, we will apply homomorphic
encryption to encrypt the bid values using the public key of
auctioneer, and agent will perform the most of the computation
and send the intermediate results to the auctioneer. We will
show that both the auctioneer and the agent cannot get any
information about the true bid values of bidders as long as
they will not collude with each other.

2.3 Cryptographic Primitives

In this part, we will introduce the cryptographic tools used in
this paper: Paillier’s cryptosystem and homomorphic encryp-
tion.
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Paillier’s cryptosystem: An entity first randomly chooses two
large prime numbers h1 and h2. Then, he computes h = h1h2,
H = h + 1, and publishes EK = (h,H) as his public key
(encryption key). Next, he computes λ = (h1 − 1)(h2 − 1)
and µ = (λ mod h2)−1 mod h, and sets DK = (λ, µ) as his
private key(decryption key).

An encrypter selects a random integer r′ ∈ Zh and encrypts
the message msg by using EK and r′:

E(msg, r′) = gmsgr′
h
mod h2,

where E(msg, r′) is the ciphertext of msg.

The holder of DK = (λ, µ) can decrypt the ciphertext
E(msg, r′), and recover the message by computing the fol-
lowing:

msg = L(E(msg, r′)λ mod h2)µ mod h,

where L(a) = (a− 1)/h mod h.

Homomorphic Encryption (HE): Homomorphic encryption is
a form of encryption which allows addition and multiplication
to be carried out on ciphertext, and obtain a correct encrypted
result.

The Paillier’s cryptosystem satisfies the following homo-
morphic operation:

E(msg1, r
′
1)E(msg2, r

′
2) = E(msg1 + msg2, r

′
1r

′
2) mod h2

E(msg1, r
′
1)

msg2 = E(msg1msg2, r
′msg2
1 ) mod h2.

Note that the random integer r′ dose not contribute to
decryption or other homomorphic operation, hence we use
E(msg) instead of E(msg, r′) in the remaining paper.

Indistinguishability under chosen-plaintext attack (IND-
CPA): Ciphertext indistinguishability plays an important role
in cryptosystems. Intuitively, if a cryptosystem possesses the
property of indistinguishability, then an adversary will not be
able to distinguish from a pair of ciphertexts via the messages
they encrypt. Commonly, the property of indistinguishability
under chosen plaintext attack (IND-CPA) is defined by the
following game:

1) A adversary is given a public key, which it may use to
perform a polynomially bounded number of encryptions
or other operations.

2) The adversary generates two equal-length messages msg1

and msg2, and transmits them to a challenge oracle along
with the public key.

3) The challenge oracle selects one of the messages uni-
formly at random, encrypts the message under the public
key, and returns the resulting ciphertext to the adversary.

We say an underlying cryptosystem is IND-CPA if the prob-
abilistic polynomial time-bounded adversary cannot determine
which of the two messages was chosen by the oracle, with
probability significantly greater than 1

2 (the success rate of
random guessing).

2.4 A Spectrum Auction Framework with Privacy
Preserving
The process of our spectrum auction mechanisms consists of
three steps: bidding, allocation and payment calculation. To
protect the bid values of bidders, we design a strategyproof
spectrum auction framework with privacy preserving, namely
PPS, which is shown in Algorithm 1.

Algorithm 1 PPS: Privacy Preserving Strategyproof Spectrum
Auction Framework

1: Each bidder i submits E(bi), Ni and Li to the agent,
where bi is encrypted by using the encryption key of the
auctioneer;

2: The agent and the auctioneer run a bid-monotone al-
location mechanism while protecting the bid privacy of
bidders.

3: The agent and the auctioneer compute a critical value for
each winner with bid privacy preserving.

3 A SINGLE-UNIT SCHEME

In this section, we will present a strategyproof spectrum
auction mechanism for SUA, denoted by PPS-SUA, which
maximizes the social efficiency and preserves the bid privacy.

3.1 Initialization and Bidding
Before running the auction, the auctioneer generates an en-
cryption key EK and a decryption key DK of Paillier’s
cryptosystem. Then, he announces EK as the public key, and
keeps DK in private. Each bidder i encrypts his bid bi by
using EK, and sends (E(bi), Li) to the agent. In the sending
procedure, each bidder keeps his encrypted bidding price as a
secret to the auctioneer.

3.2 Allocation Mechanism with Privacy Preserving
After receiving the encrypted bids from bidders, the auctioneer
and the agent allocate channels to bidders via communicating
with each other. The goal of our allocation mechanism is to
maximize the social efficiency, which is equal to finding a
group of conflict-free bidders with highest bid sum. Define the
bid value of each bidder as his weight. Our optimal allocation
problem can be easily reduced to the maximum weighted
independent set (MWIS) problem, which is a well-known
NP-hard problem. To tackle this NP-hardness, we propose
a polynomial time approximation scheme (PTAS) based on
shifting strategy [14], [23], which provides an approximation
factor of (1 + ϵ). For completeness of presentation, we first
review this PTAS method.

In the PTAS, we first select a positive integer k, then, the
plane is subdivided into several grids of size at k ∗ k by a
collection of vertical lines x = i · k + r and horizontal lines
y = j ·k+s, where 0 ≤ r, s ≤ k−1. We call such a subdivision
as (r, s)-shifting. Here we assume that the conflict radius of
each bidder is 1

2 , then each bidder can be viewed as a unit
disk. Fig. 1 gives an instance of a grid subdivided by (r, s)-
shifting, where k = 4. We will throw away all the disks which
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Fig. 1: A grid subdivided by (r,s)-shifting (k = 4).

intersect with some special lines X ≡ r mod k and Y ≡ s
mod k in (r, s)-shifting, and solve the sub-instances of disks
contained in each grid individually. Here, a grid is a square
defined by {(x, y) | r + ik ≤ x ≤ r + (i+ 1)k, s+ jk ≤ y ≤
s+(j+1)k} for some integers i and j. Let the optimal solution
of (r, s)-shifting be the union sets of all the optimal solution
of the subdivided grids, and w(OPT (r, s)) be the weight of
the optimal solution of (r, s)-shifting. It can be proven that
there is at least one (r, s)-shifting, 0 ≤ r, s ≤ k − 1, with

w(OPT (r, s)) ≥ (1− 1

k
)2w(OPT (B)), (1)

where OPT (B) is the maximum weighted independent set of
all the bidders, and w(OPT (B)) is the weight of OPT (B).
For any given integer k ≥ 1, there are k2 kinds of different
shiftings in total. We will choose the optimal solution of
(r, s)-shifting’s that with the highest weight as our final
approximation solution. Thus, we have a PTAS for optimal
channel allocation problem, i.e. setting k = 1+ϵ+

√
1+ϵ

ϵ .
Based on this PTAS we then present our channel allocation

mechanism with privacy preserving. Observe that the bidders
submit their bids to agent encrypted using the auctioneer’s
public key. Following the PTAS protocol, we need to compute
a maximum weighted independent set for each grid in the
(r, s)-shifting, i.e., compare the weights of all independent
sets. Clearly, the auctioneer should not access the encrypted
bid of any bidder as he has the decryption key. In our protocol,
the agent will compute E(

∑
i∈S bi) for each of the maximal

independent set contained in a grid, which can be done easily
as E(bi) is computed from homomorphic encryption. For any
given grid gr,sj of the (r, s)-shifting, let D = {dr,s1,j , · · · , d

r,s
z,j}

be the set of maximal independent sets of bidders in gr,sj .
We use OPT (gr,sj ) to denote the optimal solution in the grid
gr,sj . Clearly D has cardinality of at most O(k2) and can be
enumerated in time O(nO(k2)). In Algorithm 2, we present
our method for finding the OPT (gr,sj ) for each subdivided
grid gr,sj with privacy preserving. To hide the true values of
w(dr,si,j ) (which may break privacy) from the auctioneer, the
agent will mask them by using two random values δ1 and δ2
as δ1 + δ2 · w(dr,si,j ). Note that the range [1, 2γ1 ] and [1, 2γ2 ]

for δ1 and δ2 are chosen based on the consideration of the
correctness of modular operations: δ1 + δ2 ·w(dr,si,j ) should be
smaller than the modulo used in Paillier’s system.

Assume that the number of grids that subdivided by (r, s)-
shifting is Nr,s, then the optimal solution of (r, s)-shifting is

OPT (r, s) =
∪

j≤Nr,s

dr,sσ(1),j . (2)

By sending the intermediate results to the auctioneer, the
auctioneer can compare and find which independent set will
be chosen for each subgrid. Observe that both the auctioneer
and the agent will not know the bid values in the independent
set. By using the optimal solution of each grid, the agent can
calculate the encrypted value E(w(OPT (r, s))), and allocate
channels to bidders without leaking the true bid values of
bidders. The allocation will be sent to the auctioneer. The
details are described in Algorithm 3.

Algorithm 2 Computing the optimal solution for grid gr,sj

1: The agent randomly picks two integers δ1 ∈ Z2γ1 , δ2 ∈
Z2γ2 , computes and sends {E(δ1 + δ2w(d

r,s
i,j ))}1≤i≤z to

the auctioneer, where

E(δ1 + δ2w(d
r,s
i,j )) = E(δ1)(

∏
l∈dr,s

i,j

E(bl))
δ2 .

2: The auctioneer decrypts {E(δ1 + δ2w(d
r,s
i,j ))}0≤i≤z , and

sorts them in non-increasing order. Assume

w(dr,sσ(1),j) ≥ w(dr,sσ(2),j) ≥ ... ≥ w(dr,sσ(z),j),

where dr,sσ(i),j is the maximum independent set with rank
i in the sorted list.

3: The auctioneer sends {σ(i)}1≤i≤z to the agent.
4: The agent chooses dr,sσ(1),j as the optimal solution of grid

gr,sj .

Algorithm 3 PTAS with bid privacy preserving
1: The agent randomly picks two integers δ3 ∈ Z2γ1 , δ4 ∈

Z2γ2 , computes and sends E(δ3 + δ4w(OPT (r, s))) for
any 1 ≤ r, s ≤ k to the auctioneer, where

E(δ3+δ4w(OPT (r, s))) = E(δ3)(
∏

j≤Nr,s

E(w(dr,sσ(1),j)))
δ4 .

2: The auctioneer decrypts and sorts the weights of the
optimal solution of different shiftings in non-increasing
order.

w(OPT (σ1(1), σ2(1))) ≥ ... ≥ w(OPT (σ1(k
2), σ2(k

2))),
where OPT (σ1(i), σ2(i)) is the optimal solution of
(σ1(i), σ2(i))-shifting with rank i in the sorted list.

3: The auctioneer sends {(σ1(i), σ2(i))}1≤i≤k2 to the agent.
4: The agent chooses OPT (σ1(1), σ2(1))) as the final solu-

tion, and sends the allocation result to the auctioneer.

Lemma 1: Our allocation mechanism for SUA is bid-
monotone.
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Proof: Without loss of generality, we assume that the
bidder i wins by bidding bi in grid gr,sj . Then, σ1(1) = r,
σ2(1) = s and bidder i in dr,sσ(1),j . It is not hard to get that
the bidder i is still in dr,sσ(1),j when he increases his bid to
b′i > bi. Furthermore, the increased weight of other shiftings
is no more than (r, s)-shifting when i increases his bid, which
indicates that σ1(1) = r and σ2(1) = s still hold. Thus, we
can conclude that i will always win by bidding b′i > bi.

3.3 Payment Calculation with Privacy Preserving

We have proved that our allocation mechanism is bid-
monotone, which indicates that there exists a critical value
for each bidder. The bidder i will win the auction by bidding
a price which is higher than its critical value, otherwise, bidder
i will lose in the auction. To ensure the strategyproofness of
our auction mechanism, we will compute the critical value for
each winner as the final payment in the following.

Without loss of generality, we also assume that the bidder i
wins by bidding bi in grid gr,sj . We further assume that dr,sl(i),j
is the maximum independent set with highest weight which
does not include bidder i, and OPT (σ1(f(i)), σ2(f(i))) is
the optimal solution of (σ1(f(i)), σ2(f(i)))-shifting which has
the highest weight and does not include the bidder i. We
will calculate the critical value of the winner i based on the
following considerations.

• The minimum bid price, denoted as p1i , ensures bidder i
win in grid gr,sj . Then, we can get that

p1i = w(dr,sl(i),j)− w(dr,sσ(1),j) + bi.

• The minimum bid of bidder i which makes OPT (r, s)
always with the highest weight among all the optimal
solutions of shiftings including bidder i. We use p2i (p2i
exists iff f(i) > 2) to denote this minimum bid, and
set p2,qi = w(OPT (σ1(q), σ2(q))) − w(d

σ1(q),σ2(q)
σ(1),j ) +

w(d
σ1(q),σ2(q)
l(i),j )− w(OPT (r, s)) + bi, then

p2i = max{p2,1i , ..., p
2,f(i)−2
i }.

• The minimum bid of bidder i that ensures
w(OPT (r, s)) ≥ w(OPT (σ1(f(i)), σ2(f(i)))), which
is denoted by p3i . Then, we can get that

p3i = w(OPT (σ1(f(i)), σ2(f(i))))−w(OPT (r, s))+bi.

In conclusion, the critical value of bidder i is pi =
max{p1i , p2i , p3i , 0}. Since the agent knows the order of all
the maximum independent sets of each grid and the order
of all the optimal solution of shiftings, he can compute the
encrypted value of p1i , p2i and p3i by homomorphic operations,
respectively. Then, our payment calculation mechanism with
privacy preserving is depicted as follows:

1) The agent computes E(p1i ), E(p2,1i ), · · · , E(p
2,f(i)−2
i ),

E(p3i ), and sends the results to the auctioneer.
2) The auctioneer decrypts the ciphertexts and sets the

payment of winner i as

pi = max{p1i , p
2,1
i , ..., p

2,f(i)−2
i , p3i , 0}. (3)

It is easy to prove the following theorems.
Theorem 2: PPS-SUA charges each winner its critical value

and is strategyproof.
Theorem 3: The computation and communication cost of

PPS-SUA are all O(nk2+1).

3.4 Privacy analysis of PPS-SUA
Theorem 4: PPS-SUA is bid privacy-preserving.

Proof: To confirm the bid privacy, we consider the view
of agent and auctioneer, respectively.

During our auction mechanism for SUA, the agent can
obtain nothing but the encrypted bids and the sorting results
of the weight of each grid and each shifting. Based on the
IND-CPA security of homomorphic cryptosystem, the agent
cannot learn more information about the bid of any bidder.

The auctioneer holds the decryption key. Nevertheless, he
has no direct access to the encrypted bids. While comput-
ing the optimal allocation and critical value of winner i,
the auctioneer can receive the encrypted weight of maximal
independent sets in each grid, weight of the optimal solution
of each shifting, and {p1i , p

2,1
i , ..., p

2,f(i)−2
i , p3i }. From the

weight of solutions in the grids or shiftings, the auction-
eer cannot infer any bid, since they are encrypted by the
agent and the auctioneer has no idea about which bidders
are in these solutions, except the winning shifting. Consider
{p1i , p

2,1
i , ..., p

2,f(i)−2
i , p3i }, auctioneer can construct the equa-

tion of them. However, the bid value of bidder i can still be
well preserved, as auctioneer does not know any value of the
variables in these equations.

4 A MULTI-UNIT SCHEME

In this section, we propose a strategyproof auction mechanism
for MUA, namely PPS-MUA, which protects the bid privacy
of bidders and provides an approximation factor of 32. Then,
we further design an extended version of PPS-MUA, namely
PPS-EMUA, to improve the average performance of PPS-
MUA, while keeping other properties unchanged. Although
PPS-EMUA outperforms PPS-MUA, thoroughly introducing
PPS-MUA can help us to better understand the mechanism
of PPS-EMUA, and to better analyze the key properties of
PPS-EMUA. Thus, we will introduce PPS-MUA first in the
following.

4.1 Initialization and Bidding
The initialization and bidding procedure in MUA is similar
as that in SUA, which can be referred in section 3.1. At last,
each bidder i encrypts his bid bi by using the encryption key
of the auctioneer, and only sends (E(bi), Ni, Li) to the agent.

4.2 Allocation Mechanism with Privacy Preserving
We have proved that the allocation problem which maximizes
the social efficiency in SUA is an NP-hard problem. Since
SUA is a special case of MUA, the optimal allocation issue
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gl1 gl2

gl3 gl4
glr,1 glr,2

glr,3 glr,4

glr

(a) l-th grid at size 2 ∗ 2 (b) glr grid at size 1 ∗ 1

Fig. 2: An example of the subdivided grids

in MUA is also NP-hard. Thus, we will introduce a simple al-
location mechanism which approximates the social efficiency.
We first subdivide the plane into grids at size 2∗2, and use the
symbol gl to denote the l-th 2 ∗ 2 grid. It is obvious that there
are four 1 ∗ 1 grids in each gl. These four 1 ∗ 1 grids can be
categorized into four types as shown in Fig. 2(a). Let glr be
the 1∗1 grid in gl with type r, gr be the set of 1∗1 grids with
type r. We also assume that the conflict radius of each bidder
is 1

2 and regard each bidder as a unit disk. Obviously, each
bidder located in glr cannot conflict with the bidders located
in gl

′

r when l ̸= l′. Let OPT (glr) be the optimal solution of
allocation problem in glr, OPT (gr) be the optimal solution of
the allocation problem in gr, then

OPT (gr) =
∪

l
OPT (glr). (4)

Note that we cannot get the optimal solution in each grid
glr. To tackle this, we further subdivide each 1 ∗ 1 grid glr
into four 1

2 ∗ 1
2 sub-grids as shown in Fig. 2(b), which are

denoted by glr,1, glr,2, glr,3 and glr,4, separately. Notice that all
the bidders located in the same sub-grid glr,s conflict with each
other. Thus, one channel can only be sold to one bidder in glr,s.

The optimal allocation problem in each sub-grid glr,s can be
reduced to a knapsack problem (KP), where the bid value of
bidders is the value of items in KP, the number of channels
in the market and channel demand of each bidder is the
total volume of the knapsack and the volume of each item
respectively. Although the KP is an NP-hard problem, there
exists a PTAS [20], and a greedy allocation mechanism with
approximation factor of 2 (the details can be referred to lines
3-5 in Algorithm 4). It is hard to design a privacy preserv-
ing version of the PTAS based on dynamic programming,
thus, we design our allocation mechanism for MUA based
on the greedy allocation mechanism in each sub-grid glr,s.
Assume that APP (B), APP (gr), APP (glr) and APP (glr,s)
are the approximation solution of the allocation problem in
the whole plane, gr, g

l
r and glr,s, separately. We choose the

APP (glr,s) with biggest weight as the solution of grid glr and
the APP (gr) with the biggest weight as our final solution
APP (B) (the details is depicted in Algorithm 4).

Theorem 5: Our auction mechanism for MUA has an ap-
proximation factor of 32.

Proof: Assume that OPT (B) is the optimal solution of

our original allocation problem, and OPTr(B) = {i|i ∈
OPT (B) and i is allocated in gr}. Then, we can get that

w(OPT (B)) =
∑

1≤r≤4

w(OPTr(B))

≤
∑

1≤r≤4

w(OPT (gr))

≤ 4max{w(OPT (gr))}1≤r≤4,

(5)

where w(·) is an operation to compute the weight of solutions.
For each grid glr, we can get that

w(OPT (glr)) ≤
∑

1≤s≤4

w(OPT (glr,s))

≤ 4max{w(OPT (glr,s))}1≤s≤4.

(6)

Since we sort bidders in non-increasing order accord-
ing to their per-unit bidding prices, so user i has the i-
th largest value in bi

Ni
and

∑k
i=0 Ni > m,

∑k
i=0 bi >

w(OPT (glr,s)). Our approximation allocation mechanism sets
APP (glr,s) = {1, 2, ..., k−1} if

∑k−1
i=0 bi ≥ bk; otherwise, we

set APP (glr,s) = {k}. Thus,

OPT (glr,s) ≤ 2APP (glr,s). (7)

Because we choose the APP (glr,s) with biggest weight as
APP (glr), we can further get that

OPT (glr) ≤ 4max(OPT (glr,s))1≤s≤4

≤ 8APP (glr).
(8)

In a similar way, we can get that

OPT (B) ≤ 4max(OPT (gr))1≤r≤4

≤ 32APP (B).
(9)

In the following, we will show the privacy preserving
version of our channel allocation mechanism for MUA in
Algorithm 5. To protect the bid privacy of bidders, the
agent confuses the ID of bidders by using a permutation
π : Zn → Zn, and masks the encrypted bids by using two
random values δlr,1 ∈ Z2γ1 and δlr,2 ∈ Z2γ1 as E(δlr,1bi+δlr,2)
after receiving the encrypted bids. Following by our channel
allocation mechanism for MUA, we need to sort the bidders
which are allocated in each sub-grid glr,s by their bidding
prices and find the critical bidder σ(k) in the sorted bidder
list to decide which bidders should win in glr,s. This can be
easily done by the auctioneer as he has the decryption key.
Meanwhile, the auctioneer cannot access any true bid values
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Algorithm 4 Channel allocation mechanism for MUA
1: for each sub-grid glr,s do
2: if The number of channels that all the bidders located

in glr,s want to buy is larger than m then
3: Sorting the bidders that located in glr,s in non-

increasing order according to their per-unit bid values
bi
Ni

, where σ(i) is the bidder with i-th per-unit bid
value in the sorted list;

4: Find the critical bidder σ(k) in the sorted bidder list,
which satisfies:∑k−1

i=1
Nσ(i) ≤ m <

∑k

i=1
Nσ(i);

5: Set APP (glr,s) = {σ(1), σ(2), ..., σ(k − 1)} if∑k−1
i=1 bσ(i) ≥ bσ(k); otherwise, set APP (glr,s) =

{σ(k)};
6: else
7: Set APP (glr,s) is all the bidders that located in glr,s;
8: for each grid glr do
9: Set s′ = argmax

s
{w(APP (glr,s))|1 ≤ s ≤ 4}, where

w(·) is an operation to compute the weight of solutions.
10: Set APP (glr) = APP (glr,s′);
11: for r = 1 to 4 do
12: Set APP (gr) =

∪
l APP (glr);

13: Set r′ = argmax
r

{w(APP (gr))|1 ≤ r ≤ 4};
14: Return APP ((B)) = APP (gr′) as the final solution;

or the bid order of bidders as the ID and encrypted bid of
bidders are permutated or masked by random values. Then, the
agent can compute the encrypted bid sums E(w(APP (glr,s)))
for each sub-grid glr,s and E(w(APP (gr))). To hide the
true values of w(APP (glr,s)) and E(w(APP (gr))) from the
auctioneer, the agent masks these encrypted bid sums by
random integers either. Then, the agent can decide which
buyers should win the auction via communicating with the
auctioneer with bid privacy preserving.

Lemma 6: Our allocation mechanism for MUA is bid-
monotone.

Proof: Assume bidder i is located in grid glr,s and wins
the auction by bidding bi, then he must be in the solutions
APP (glr,s), APP (glr) and APP (B) at the same time. Thus,
we will check if the bidder i still belongs to these solutions
when he bids b′i > bi in the following.

First, we consider the solution APP (glr,s). Obviously, the
rank of bidder i will not decrease when bidder i increases his
bidding value. Thus, b′i is always larger than the sum bid of the
top k− 1 bidders when i = σ(k), which means i will remain
in APP (glr,s) in this case. In another case, all the bidders
with top (k − 1) per-unit bid remains unchanged when i bids
b′i > bi, and thus their sum bid is still larger than the k-th bid.
Thus, i will always win the auction when he increases his bid.

Then, we consider the solutions APP (glr) and APP (B).
When i bids b′i > bi, the w(APP (glr,s)) will increase,
and w(APP (glr,s′)) will keep unchanged if s′ ̸= s. Thus,
APP (glr,s) still has the highest weight and will be selected

as APP (glr). Similarly, APP (gr) will be selected as the final
allocation APP (B) either.

Bidder i will always win by bidding b′i > bi if he wins by
bidding bi, i.e., our allocation mechanism is bid-monotone.

Algorithm 5 Channel allocation mechanism for MUA with
bid privacy

1: for each sub-grid glr,s do
2: if The number of channels that all the bidders located

in glr,s want to buy is larger than m then
3: The agent randomly chooses two integers

δlr,1 ∈ Z2γ1 , δlr,2 ∈ Z2γ2 , computes and sends
(π(i), E(δlr,1bi + δlr,2), Ni) to the auctioneer if i is
located in glr,s.

4: The auctioneer decrypts and sorts the per-unit bids
of bidders in non-increasing order;

5: The auctioneer finds the critical bidder σ(k) in the
sorted bidder list, and sends ({σ(i)}i<k, σ(k)) to the
agent;

6: The agent computes and sends E(δlr,1
∑k−1

i=1 bσ(i) +
δlr,2)) to the auctioneer;

7: The auctioneer sends {σ(i)}i<k to the agent if∑k−1
i=1 bσ(i) ≥ bσ(k); otherwise, he sends σ(k);

8: The agent sets APP (glr,s) includes all the bidders
that the auctioneer sent to him;

9: else
10: The agent sets APP (glr,s) as all the bidders located

in glr,s;
11: for each grid glr do
12: The agent chooses two integers δlr,3 ∈ Z2γ1 ,

δlr,4 ∈ Z2γ2 , computes {(s,E(δlr,3w(APP (glr,s)) +
δlr,4)}1≤s≤4 and sends them to the auctioneer.

13: The auctioneer decrypts the ciphertexts and finds s′ =
argmax

s
{w(APP (glr,s))|1 ≤ s ≤ 4}. Then, he sends

s′ to the agent.
14: The agent sets APP (glr) = APP (glr,s′);
15: for r = 1 to 4 do
16: The agent sets APP (gr) =

∪
l APP (glr);

17: The agent chooses two integers δl1 ∈ Z2γ1 , δl2 ∈ Z2γ2 ,
computes {(r, E(δl1w(APP (gr)) + δl2)}1≤r≤4 and sends
them to the auctioneer.

18: The auctioneer decrypts the ciphertexts and finds r′ =
argmax

r
{w(APP (gr))|1 ≤ r ≤ 4}. Then, he sends r′ to

the agent;
19: The agent sets APP (B) = APP (gr′), and sends

APP (B) to the auctioneer as the final solution;

4.3 Payment Calculation with Privacy Preserving
After allocating channels to the bidders in our allocation
mechanism, we need to compute a critical value for each
winner as their payment. We now consider the procedure of
payment calculation for a winner i which is located in grid
glr,s.

Since the bidder i wins the auction, we can conclude that:
1) i ∈ APP (glr,s);
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2) APP (glr) = APP (glr,s);
3) APP (B) = APP (gr).
We first consider the minimum bid value of bidder i, denot-

ed by p1i , with which the bidder i will be put in APP (glr,s).
In the case that all the bidders located in glr,s win the auction,
we set p1i = 0; otherwise, we assume that i = σ(j) in the
sorted bidder list of glr,s when i bids bi, then the process of
p1i computation is shown in Algorithm 6.

Under the assumption that APP (glr,s) keeps unchanged, we
suppose p2i is the minimum bid value of bidder i that makes
APP (glr) = APP (glr,s), p3i is the minimum bid value of
bidder i that makes APP (B) = APP (gr). Then, we have

p2i = max{w(APP (glr,s′))|s′ ̸= s} − w(APP (glr,s)) + bi.

(10)

p3i = max{w(APP (gr′))|r′ ̸= r}−w(APP (gr))+ bi. (11)

The critical value of bidder i is pi = max(p1i , p
2
i , p

3
i ). Next

we will show that we can compute the critical value for each
winner without leaking the true bid value of bidders.

Algorithm 6 p1i computation for winner i in MUA
1: Set j = j + 1;
2: Set b′i =

bσ(j)Ni

Nσ(j)
;

3: Run lines 3 ∼ 5 of Algorithm 4 to check if bidder i will
win by bidding b′i;

4: if i wins by bidding b′i then
5: Repeat steps 1 ∼ 3 until i lose the auction;
6: if i is the k-th bidder when he bids b′i then
7: Set p1i = max(

∑k−1
q=1 bσ′(q), b

′
i), where σ′(q) is the

bidder with q-th per-unit bid when i bids b′i;
8: else
9: Set p1i = max(bσ′(k) + bi −

∑k−1
q=1 bσ′(q), b

′
i);

Since the agent can compute E(δlr,1b
′
iNσ(j) + δlr,2Nσ(j))

which is equal to E(δlr,1bσ(j)Ni + δlr,2Nσ(j)), the auctioneer
can decrypt and compute the value of δlr,1b

′
i + δlr,2. Thus,

the auctioneer and agent can check if bidder i will win the
auction by bidding b′i as they did in lines 3 ∼ 7 of Algorithm
5. Further, the agent can get max{w(APP (glr,s′))|s′ ̸= s}
and max{w(APP (gr′))|r′ ̸= r} via communicating with the
auctioneer. Thus, the agent can choose two integers δ1 ∈ Z2γ1 ,
δ2 ∈ Z2γ2 and compute the ciphertexts of δ1p1i +δ2, δ1p2i +δ2
and δ1p

3
i + δ2 through homomorphic operations, and sends

them to the auctioneer. Then, the auctioneer decrypts these ci-
phertexts, sets δ1pi+δ2 = max(δ1p

1
i +δ2, δ1p

2
i +δ2, δ1p

3
i +δ2)

and sends δ1pi+δ2 to the agent. After computing the payment
pi of each winner i, the agent sends them to the auctioneer.

From above analysis, we can conclude that:
Theorem 7: We charge each winner its critical value in

PPS-MUA. PPS-MUA is strategyproofness.

4.4 Extended Auction Mechanism for MUA
We have designed a simple allocation mechanism for MUA,
which provides an approximation factor of 32. However, PPS-

MUA only chooses the solution of a 1
2 ∗

1
2 sub-grid as the final

solution of a 2 ∗ 2 grid, while dropping all the other bidders
that located in other 15 sub-grids. Although the allocation in
this way provides a guarantee for the worst case performance,
the average performance may be relatively low. To address this
issue, we extend our allocation mechanism by supplementing
the solution with other bidders as shown in Algorithm 7.

Algorithm 7 Extended Allocation Mechanism PPS-EMUA
1: Run Algorithm 4 to allocate channels to bidders;
2: Sort all the bidders who lose in Algorithm 4 in non-

increasing order according to their bid values.
3: for each loser i in the sorted list do
4: if we can allocate channels to i without interfering with

the existing winners then
5: Set i wins and allocate channels to him;

Lemma 8: The allocation mechanism PPS-EMUA present-
ed in Algorithm 7 is bid-monotone.

Proof: Since we have proved that if the winner i increases
his bid in Algorithm 4, he will always win the auction. Here,
we only need to concentrate on the winners that lose in
Algorithm 4, but will win in the extended version. Suppose
such a winner i increases his bid to b′i which satisfies b′i > bi,
there are two possible cases: 1) i wins in Algorithm 4 and
2) i remains lose in Algorithm 4. In the case that i loses in
Algorithm 4, the final allocation of Algorithm 4 is the same
as the allocation when i bids bi. Thus, there is no new bidder
whose bidding price is higher than i in the sorted loser list of
Algorithm 7 after the bidder i increasing his bid. In addition
to i wins by bidding bi, we can conclude that the bidder i will
also win the auction when he increases his bid.

As this new allocation mechanism is bid-monotone, there
exists a critical value for each winner. We use p′i here to
denote the minimum bid value of bidder i with which i will
win in Algorithm 4, and p′′i to denote the minimum bid value
of winner i with which i will win in the sorted loser list.
According to Algorithm 7, p′i is the critical value of bidder i
in Algorithm 4, and p′′i should be smaller than p′i.

For each winner i, his critical value can be computed as
follows:

• If i wins in line 1 of Algorithm 7 and will lose as long
as he bids b′i < p′i, his critical value is equal to p′i;

• Otherwise, his critical value is equal to p′′i . Suppose f(i)
is the first bidder in the sorted loser list who loses the
auction but will win as long as the bidder i’s bidding
price is smaller than his, then p′′i = bf(i) if f(i) exits
and p′′i = 0 otherwise.

As the extended allocation mechanism is bid-monotone and
we always charge each winner its critical value, we have

Theorem 9: PPS-EMUA is strategyproof and social effi-
cient.

In the following, we will show that PPS-EMUA can be
performed with privacy preserving. Algorithm 8 shows the
allocation mechanism of PPS-EMUA with bid privacy.

The procedure of payment calculation has four steps: 1) We
can obtain p′i for each winner who wins in line 1 of Algorithm



9

Algorithm 8 PPS-EMUA: Privacy-Preserving Allocation
Mechanism

1: The auctioneer and the agent run Algorithm 5;
2: The agent randomly chooses two integers δ1 ∈ Z2γ1 ,

δ2 ∈ Z2γ2 , computes and sends (π(i), E(δ1bi + δ2)) if
bidder i loses in Algorithm 5, and {π(i), Ni, Li}i∈B to
the auctioneer;

3: The auctioneer decrypts the encrypted bids, and run lines
2 ∼ 5 of Algorithm 7;

7 and protect the true bid value of bidders by using the method
we have introduced previously. 2) The auctioneer and agent
can check if bidder i will lose as long as his bid is smaller
than p′i by running Algorithm 8 and assuming i loses in line
1 of Algorithm 7. 3) In the case that i may win when he bids
smaller than p′i, the auctioneer sets p′′i = 0 if f(i) does not
exist, and sets p′′i = δ1bf(i)+ δ2 if f(i) exists. The auctioneer
sends δ1p′i+δ2 in the case that p′i is the critical value of bidder
i, and δ1p

′′
i + δ2 in other case. 4) With the encrypted critical

value, the agent can compute the payment of winner i. After
obtaining all the payment of winners, the agent will send them
to the auctioneer.

Theorem 10: The computation and communication cost are
all O(n2) for PPS-MUA and PPS-EMUA.

4.5 Privacy Analysis

Theorem 11: PPS-MUA and PPS-EMUA are privacy-
preserving for each bidder.

Proof: Here we only prove it for PPS-EMUA as PPS-
MUA is a procedure of PPS-EMUA. We first consider the
agent. Except the encrypted bids, the agent can only obtain
some orders, such as the bidding price of the bidders in each
sub-grid, during our auction mechanism of PPS-EMUA. In
the process of payment calculation, the agent can get nothing
but the auction outcomes and some new orders. Based on the
IND-CPA security of homomorphic cryptosystem, the agent
cannot learn more information about the bid of any bidder.

Although the auctioneer holds the decryption key, he has
no direct access to the encrypted bids. While computing the
allocation in each sub-grid glr,s, the auctioneer can built |glr,s|+
1 functions that with |glr,s| bids and two random numbers,
where |glr,s| is the number of bidders that located in glr,s. Since
the number of variables is larger than the number of functions,
the auctioneer cannot decrypt any true bid value of bidders. In
the other parts of our auction mechanism, the auctioneer only
receives the weight of solutions. Since the auctioneer has no
idea about which bidders are in these solutions, he can also
get nothing from them.

5 PERFORMANCE EVALUATIONS

5.1 Simulation Setup

In our simulations, the number of bidders varies from 50 to
300, and all the bidders are randomly distributed in a square
area. The bidding price of each bidder is uniformly generated
in [0, 100]. We use a 1024-bit length Pailliers homomorphic

encryption system in the simulation. Thus, we choose γ1 =
1007 and γ2 = 1022 to ensure the correctness of modular
operations. For Multi-Unit Auction (MUA), we assume the
channel demand of each bidder is randomly generated from
1 to 4, and there are 4 or 8 available channels in spectrum
market.

We mainly study the social efficiency ratio, computation
overhead and the communication overhead in our simulations.
We define the social efficiency ratio is the ratio between the
social efficiency of our approximation mechanism and the
optimal one. Since agent and auctioneer are two central party
in this paper, we evaluate the computation overhead of them
in our design by recording the required processing time, and
evaluate the communication overhead through calculating the
size of essential information transferred in the auction. All the
simulations are performed over 100 runs and the result is the
averaged value.

5.2 Performance of the PPS

In this section, we mainly focus on the performance of social
efficiency ratio, auction computation overhead, and communi-
cation overhead under different simulation settings.

We first study the social efficiency ratio of our mechanisms
under SUA model and MUA model respectively. From Fig.
3(a) and Fig. 4(a), obviously, the social efficiency ratio de-
creases when the number of bidders increases. This is because
the increasing number of bidders will incur a more fierce
degree of competition. Therefore, the social efficiency ratio
decreases slightly with the increasing number of bidders in
both auction models. Fig. 3(a) also shows that the social
efficiency ratio increases when k increases, where k is the
size of a subdivided grid. From the theoretical analysis,
we can learn that when k increases, less unit-disk defined
by bidders’ requests are thrown away by using the shifting
method. Thus, the social efficiency ratio increases with the
increase of parameter k. Of course, the performances of our
proposed PPS-SUA is always better than the theoretical bound
in performance analysis. Specifically, Fig. 4(a) examines the
social efficiency ratio achieved by PPS-MUA and extended
version of PPS-MUA (a.k.a PPS-EMUA). We can observe that
the ratio of PPS-EMUA performs much better than PPS-MUA
when the available channels in spectrum market is fixed to 4.
We can also observe that the PPS-EMUA greatly improves
the performance in Fig. 4(a). This is because the PPS-EMUA
adopts a greedy-like allocation mechanism to allocate channels
to the potential bidders who lose in PPS-MUA.

Then we study the computation overhead of the proposed
mechanisms that were depicted in Fig. 3(b) and Fig. 4(b). It
is obvious that the computation overhead of the agent change
greatly as the number of bidders and k in PPS-SUA. We
can also find that the computation overhead of the agent is
increased with the number of bidders, and affected by the
changing of the number of channels slightly in Fig. 4(b).

Similar to the agent computation overhead, Fig. 3(c) and
Fig. 4(c) plot computation overhead of the auctioneer. We find
that the cost time of auctioneer is much larger than that of the
agent, this is because that the decryption operation cost much
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Fig. 3: The performance of PPS under SUA model. Here all the bidders are uniformly distributed in a 100× 100 square area.
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Fig. 4: The performance of PPS under MUA model. Here all the bidders are uniformly distributed in a 100 × 100 square area, and the
channel demand of each bidder is randomly generated from 1 to 4.

TABLE 1: Communication Overhead under SUA model (KB)

k Number of bidders
50 100 150 200 250 300

k=10 124 233 333 428 521 611
k=20 231 416 601 799 1026 1273
k=30 327 603 926 1312 1779 2619

more time than the homomorphic operations and auctioneer is
responsible for all the decryption operations.

Table 1 and Table 2 show the overall communication
overhead induced under SUA and MUA respectively. We can
easily get that the communication overhead is increased with
the increment of number of bidders and k in Table 1. In Table
2, the total number of channels also plays an important role in
the cost of communication overhead. Anyway, the overheads
of the proposed PPS mechanism are appropriate to be applied
in real auction systems.

6 LITERATURE REVIEWS

6.1 Spectrum Auction

Auctions have been widely used in the scope of dynamic
spectrum allocation. Large amount of studies are proposed
aiming at designing economical robust spectrum auction mech-
anisms (e.g. [2], [7], [8], [10], [12], [28]–[30], [32], [34],
[37]–[41]). One line of work on spectrum auction is based

on studying auction with spectrum spatial reuse, e.g. [11],
[15], [29], [30], [31], [38] and etc. The basic idea is that
the spectrum can be reused by s set of conflict-free winning
buyers. However, a number of recent studies have shown that
the spectrum utilization varies dramatically, both in the spatial
and temporal domains [36]. The above studies do not consider
the temporal demands from buyers, where each buyer may
only require a channel within a certain period of time and
different buyers may have different time periods. Thus, another
line is based on spectrum temporal reuse, e.g. [8], [28]. These
studies ignore spatial reuse by assuming that the conflict graph
amongst buyers geometry locations is a completed graph for
each channel.

Each of these approaches has its own optimization goal.
For instance, [8], [10], [32], [38], [40] focus on maximizing
the social efficiency while ensuring strategyproofness in an
auction design, and [2], [15] aim at achieving the optimal
revenue for the primary user. Moreover, most above auction
mechanisms were designed to achieve strategyproofness, with-
out considering performance guarantee.

In [7], [28], [33], [34], the authors consider the strate-
gyproof online spectrum auction or allocation design. Wu et
al. [30] and Xu et al. [32], [34] proposed spectrum auction
mechanisms for multi-channel wireless networks. Wang et al.
[29] and Zhou et al. [39] solve the spectrum allocation in a
double auction framework. Unfortunately, none of the above
studies addresses the privacy preserving issue in the auction
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TABLE 2: Communication Overhead under MUA model (KB)

Channel Number Number of bidders
50 100 150 200 250 300

4 33.5 61.9 87.5 110.8 132.2 153.0
8 34.2 63.7 90.7 117.2 140.6 164.1
12 34.4 63.8 91.1 116.7 142.0 165.1

design.

6.2 Privacy Preserving Spectrum Auction
Privacy preserving, one of the critical human factors, has
gained increasing attentions recently. Many privacy preserving
mechanisms have been proposed in mechanism design [5],
[16], [18], [21], [27]. Recent years, many research efforts
begin to focus on privacy preserving study in auction design,
e.g. [3], [4], [24]. Brandt et al. [3] studied unconditional full
privacy in the sealed-bid auctions. Naor et al. [24] proposed
an architecture for auction mechanism design with the goal
of preserving the privacy of the inputs of the participants
while maintaining communication and computational efficien-
cy. However, these methods cannot be directly applied in
spectrum auction design due to various reasons (such as
spectrum spatial reuse, computationally complexity).

Huang et al. [13] first proposed a strategyproof spectrum
auction with consideration of privacy preserving, and Pan et al.
[26] provided a secure spectrum auction to prevent the frauds
of the insincere auctioneer. Unfortunately, none of the existing
solutions with privacy preserving provides any performance
guarantee, such as maximizing the social efficiency which is
often NP-hard. Designing a strategyproof auction mechanism
with provable performance guarantee is a harder problem,
particularly if we want to support privacy preservation. Our
mechanisms rely on privacy preserving comparison and poly-
nomial evaluations [17], which is extensively studied topic in
secure multi-party computation [1], [6], [9], [35].

7 CONCLUSION

In this paper, we focused on designing strategyproof auction
mechanisms which maximize the social efficiency without
leaking any true bid value of bidders, and proposed a frame-
work of PPS for solving this issue. We designed privacy-
preserving strategyproof auction mechanisms with approxima-
tion factors of (1 + ϵ) and 32 separately for SUA and MUA.
Our evaluation results demonstrated that both PPS-SUA and
PPS-EMUA achieve good performance on social efficiency,
while inducing only a small amount of computation and
communication overhead. A future work is to design robust
privacy-preserving strategyproof auction mechanisms without
inexplicitly requiring the location of bidders. Another future
work is to design privacy-preserving auction mechanisms by
removing the dependency of third-party agent.
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