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Social Networking Reduces Peak Power
Consumption in Smart Grid

Qiuyuan Huang, Xin Li, Jing Zhao, Dapeng Wu, Xiang-Yang Li

Abstract—Minimizing the peak power consumption of elec-
trical appliances under delay requirements is shown to be NP
hard. To address this, we propose a “family plan” approach
that partitions users into groups and schedules users’ appliances
to minimize the peak power consumption of each group. Our
scheme leverages the social network topology and statistical
energy usage patterns of users. To partition users into groups
with the potential of reducing peak power consumption, our
distributed clustering scheme seeks such a partition of users
into groups that the total power consumption in each group of
users achieves minimum variance. Then, given a set of jobs of
users’ appliances to be scheduled in the next scheduling period,
we use a distributed scheduling algorithm to minimize the peak
power consumption of each group of users. Our simulation results
demonstrate that our scheme achieves a significant reduction in
user payments, peak power consumption, and fuel cost.

Index Terms—Power grid, social network, family plan, dis-
tributed clustering, trace-driven simulator.

I. INTRODUCTION

Energy consumption in buildings represents approximately
74% of the nation’s electricity consumption [1]. However,
electricity consumption is not efficient in most households,
which results in waste of billions of dollars. To reduce the cost
of power consumption by households and power generation by
utility companies, techniques for scheduling jobs of electrical
appliances were proposed [2], [3]; to make it work, each
electrical appliance needs to be equipped with a Demand
Response Switch (DRS) device1 and can be switched on/off
by the DRS device [3] and all the DRS devices follow the
scheduling commands from the scheduler. These techniques
seek to reduce the peak power consumption of users, since
doing so can help reduce the fluctuation of power consump-
tion, thereby improving the reliability of smart power grids,
and reducing the power generation cost incurred by start-
up/termination of power generators [4].

Another benefit of reducing the peak power consumption
of users is that it may also reduce the payment of users if
the utility company charges users based on the peak power
consumption as well as the total energy consumption, which
is a widely adopted utility cost paradigm in smart grid [3].
Hence, reducing the peak power consumption of users is a
win-win situation for both utility companies and the electricity
users.
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1DRS devices are already available in the market. DRS devices can
communicate with controllers/schedulers over secure tunnels in the Internet
or a household network.

However, minimizing the peak power consumption of
schedulable jobs of electrical appliances of users under de-
lay requirements is shown to be NP hard [3]. Peak power
consumption can be reduced by scheduling jobs of each indi-
vidually controllable family (or unit), or scheduling jobs of all
units served by a utility company. Clearly, scheduling jobs of
all units served by a utility company will lead to a lower peak
demand, but it will incur a larger communication overhead
and managerial cost. To address this, we take a divide-and-
conquer approach, i.e., divide users into small groups and then
schedule/shift jobs to minimize the peak power consumption
of each group, which will attain a good balance between
overhead and reduction in the Peak power to Average power
Ratio (PAR).

To optimally partition users into groups, we propose a
novel distributed clustering scheme, which leverages the social
network topology of users and statistical energy usage patterns
of users. The reason why we promote a social networking
approach is that users need to be socially connected (i.e., being
friends of each other) to be willing to join the same group
and cooperatively schedule jobs of their electrical appliances
to reduce peak power consumption and save cost. This is
similar to multiple friends’ joining a family plan of a mobile
phone company to save the cost of mobile phone bills [5]. In
our approach, each user/node only shares its statistical energy
usage patterns with its trusted friends/nodes who are also
users of the same utility company; we call these trusted nodes
‘socially connected’ nodes of this user. This trusted friendship
forms a social network/graph. Online social networks such as
Facebook and Twitter can help create such a social graph.

Given a social graph, our clustering scheme aims at finding
such groups of users that the total power consumption in each
group of users (which are socially connected) achieves mini-
mum variance, i.e., we prefer to group users having negative
covariance of power consumption patterns. Such clustering
will lead to a natural leveling of the power consumption of
users within a group as negative covariance of users implies
that their periods of high power consumption are less likely
to overlap (or synchronize). Since it is difficult to manage
a large group and schedule jobs of users in a large group,
our clustering scheme also considers the constraint on the
maximum number of users allowed in a group. Different from
the spectral clustering algorithms for graph partitioning [6],
which are centralized, our clustering algorithm is distributed.
Similar to distributed consensus protocols [7], our distributed
clustering algorithm only uses local information exchange with
the aim of achieving global optimality, i.e., finding clusters
with minimum variance.
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Then, given users’ jobs to be scheduled in the next schedul-
ing period, we use an approximation algorithm, called Earliest
Deadline First (EDF), to minimize the peak power consump-
tion of each group of users. Our EDF scheduling algorithm
can be implemented in a distributed manner.

Since the available data-sets do not contain electricity usage
of a large number of households, we resort to simulated
data. We develop a trace-driven simulator, which is based
on an Auto-Regressive Moving Average (ARMA) model and
an exponential distribution, to generate household energy
consumption data and job data. Simulation results demonstrate
that our proposed scheme achieves significant saving in user
payments and fuel cost and a large reduction on peak power
consumption. For example, under our scheme (i.e., the EDF
scheduling for groups of users, obtained by the minimum-
variance clustering), the user payment is reduced by 44.7%
and the peak power is reduced by 47.7%, compared to the
EDF algorithm for a single user; under our scheme, the user
payment is reduced by 17.8% and the peak power is reduced
by 18.9%, compared to the EDF algorithm for groups of users,
obtained by random grouping.

In summary, the main contributions of this paper are 1) a
novel family plan approach for reducing peak power consump-
tion in smart grid, 2) a distributed clustering scheme, with an
unprecedented scalability for a large network due to its linear
complexity, 3) a scheduler, with an unprecedented capability
of dealing with jobs having constrained starting times, and 4)
a trace-driven simulator, with an unprecedented capability of
simulating electricity usage data and job data of an unlimited
number of households. Our trace-driven simulator allows us
to conduct large-scale simulations for performance evaluation
of techniques used in smart grid.

The rest of the paper is organized as follows. Section II
describes the system under study and our family plan approach
for reducing peak power consumption in smart grid. Section III
presents our clustering algorithm that partitions users into
groups. Section IV and Section V present the design of
our simulator and simulation results, respectively. We review
the related work in Section VI and conclude the paper in
Section VII.

II. SYSTEM DESCRIPTION

In this section, we describe the system and our family plan
approach for reducing peak power consumption in smart grid.

A. Problem Formulation

For simplicity, we only consider one utility company and
its customers. Assume the utility company has a set U =
{U1, U2, · · · , UNu} of Nu users. The jobs of these users are
classified into two types: non-deferrable and deferrable. Non-
deferrable jobs are jobs that must be run at some specific time.
In contrast, deferrable jobs are schedulable within a desirable
period. Examples of deferrable jobs include jobs of dish wash-
ers and plug-in electrical vehicles. We consider scheduling of
jobs which will happen in next 24 hours (our method can
be extended to any time interval). We partition 24 hours into
TX time periods, each of which has a length of TL minutes.

E.g., TL = 10 minutes and then TX = 24 × 60/10 = 144.
Let Xi,t denote the sample average2 of (random) total power
consumption of all jobs by User i in time slot t. Then the
statistical power consumption pattern of User i is defined
by Xi� [Xi,1, Xi,2, · · · , Xi,TX ]. Our goal of clustering is to
cluster users into groups such that the variance of power
consumption of a group is minimized. Such a minimum-
variance grouping can achieve more peak reduction than ran-
dom grouping of users, in that our minimum-variance grouping
tends to place users of different electricity usage patterns into
the same group; thus the periods of high power consumption
of different users are less likely to overlap, making the peak-
minimizing scheduler easy to schedule jobs to achieve low
peak demand. See Section V-B5 for more insights.

Let Gj denote the set of users in Group j. Problem 1 defines
the minimum variance clustering problem.

Problem 1 (Minimum Variance Clustering Problem). Con-
sider a set of users U , each user i with a power consumption
pattern Xi. Then the minimum variance clustering problem is
to partition users into a collection of groups {Gj}, such that
the maximum variance of groups is minimized.

Problem: Minimum Variance Clustering
Objective: Minimize maxj∈{1,2,··· ,g} var(Gj)
subject to:{

1) {G1,G2, · · · ,GK} is a partition of U , i.e.,
⋃K

j=1 Gj = U
2) var(Gj) =

∑
i∈Gj

var(Pi) +
∑

i�=m∈Gj
2cov(Pi, Pm),∀j

var(Pi) is the variance of the power consumption of User i,
and can be estimated by sample variance, i.e.,

var(Pi) =
1

TX

TX∑
t=1

(Xi,t)
2 − (

1

TX

TX∑
t=1

Xi,t)
2. (1)

cov(Pi, Pm) is the covariance between the power consump-
tions of User i and User m, and can be estimated by sample
covariance, i.e.,

cov(Pi, Pm) =
1

TX

TX∑
t=1

Xi,tXm,t − (
1

TX

TX∑
t=1

Xi,t)(
1

TX

TX∑
t=1

Xm,t). (2)

Our family plan approach for job scheduling is to partition
socially-connected users into small groups and distributively
schedule the jobs of each group. The reason why we call
it family plan approach is that grouping users is like each
group of users join the same family plan to cooperatively
schedule/shift jobs of their electrical appliances with an aim
at reducing peak power consumption and saving cost.

Next, we briefly describe the three components developed
in this paper: clustering algorithm, scheduler, and simulator.

B. Clustering Algorithm

Given a social graph, our clustering algorithm aims at
finding such groups of users that the total power consumption
in each group of users (which are socially connected) achieves

2A sample average in time slot t is obtained by averaging the samples of
the same slot t in different days.
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minimum variance. We prove that grouping with minimum
total co-variance for all pairs of users in the group is equivalent
to grouping with minimum variance of the aggregated power
consumption pattern of all users in the group. Observe that the
latter criterion implies that the PAR of the group is small. For
easy management of a family-plan group and easy scheduling
of jobs of users within the group, our scheme limits the
maximum number of users allowed in a group. Our distributed
clustering algorithm only uses local information exchange with
an aim of achieving global optimality, i.e., finding clusters with
minimum variance. Whenever a cluster reaches the maximum
size allowed, this cluster of users stops growing and exits, i.e.,
it will not participate in future rounds of finding clusters with
minimum variance. The clustering algorithm terminates when
all constrained minimum-variance clusters are found. When
the clustering algorithm terminates, each user is assigned to
only one cluster/group. Section III will describe this clustering
algorithm in detail.

C. Scheduler

A scheduler is intended to move some jobs from peak
hours to off-peak hours so that the peak power consump-
tion in each group can be further reduced. Without loss of
generality, we consider a discrete time system and a time
period [0, T ] during which NJ jobs of electrical appliances,
J = {J1, J2, · · · , JNJ}, need to be scheduled. Here T is
the length of the scheduling period; typically T is 24 hours.
The i-th job Ji has a demand profile Di parameterized by
(di, τi, t

e
i , t

l
i), where di denotes Ji’s average power consump-

tion3, τi denotes its duration, tei and tli denote the earliest and
latest starting time of the job, respectively. The starting time
si of the job must satisfy tei ≤ si ≤ tli. When the job Ji is
scheduled to start at time si, it specifies a power consumption
function Di(t) = di · I[si,si+τi](t), where I[a,b](t) is a step
function that has value 1 at any time slot in interval [a, b] and
0 at any time slot in [0, a) or (b, T ]. We assume that the job
cannot be interrupted once it starts4. Under a given schedule,
the total load at time t is

D(t) �
NJ∑
i=1

Di(t) =

NJ∑
i=1

di · I[si,si+τi](t).

Our scheduler is intended to minimize the peak demand.
The problem is formulated as below.

Problem 2 (Peak Demand Minimization Problem). Compute
starting time si for each job Ji to minimize the peak demand
DPeak. Then the optimization problem for minimizing peak
demand during a finite horizon T > 0, is formulated as:

Problem: Peak Demand Minimization Scheduling
Objective: Minimize DPeak

subject to:⎧⎪⎨⎪⎩
(1) D(t) � ∑

i Di(t) =
∑NJ

i=1 diI[si,si+τi](t)

(2) tei ≤ si ≤ tli,∀i
(3) DPeak = maxt∈[0,T ] D(t)

3If we consider instantaneous power consumption, di will be a function of
time. This case will be considered in our future work.

4We will consider interruptible jobs in our future work.

For the special case that tei = 0 and tli = T − τi,
∀Ji ∈ J, Problem 2 has been proven to be NP-hard [3]. Hence,
Problem 2 in the general case is also NP-hard.

Given users’ jobs to be scheduled in the next scheduling
period, we use an approximation algorithm, called Earliest
Deadline First (EDF), shown in Algorithm 1, to minimize the
peak power consumption of each group of users. Note that
Algorithm 1 can be applied to 1) jobs of a single user, and 2)
jobs of all the users in one family-plan group. In Algorithm 1,
jobs are partitioned into two subsets: long job set J l and short
job set Js; if the job duration τi is less than T

a (a is a user-
specified parameter and 1 < a ≤ 2), then job Ji belongs
to the short job set Js; otherwise, it belongs to the long job
set Jl. For each long job Ji in Jl, it is scheduled to start at
its earliest starting time, i.e., si = tei . Note that a long job
cannot be sequentially combined with another long job in the
time period [0, T ], i.e., once a long job Ji ends, there is not
enough remaining time to run another long job J k because
τi + τk > T for any long job Ji and any long job Jk (i �= k).
In contrast, it is possible to schedule multiple short jobs in a
sequential manner if the sum of their durations

∑
i τi is not

more than T . For short jobs Ji ∈ Js, these jobs are sorted in
the increasing order of their latest starting time t li (i.e., we sort
short jobs from the most urgent job to the least urgent job); if
multiple jobs have the same tli, then further sort these jobs in
the decreasing order of their power demand d i. Then schedule
the sorted short jobs, using a greedy algorithm, i.e., schedule
the more urgent job first; if multiple jobs have the same t li,
schedule a job with a larger power demand first. In Step 13
of Algorithm 1, eki−1 denotes the end time of job Jki−1 .

Algorithm 1 Earliest Deadline First (Centralized)

Input: Job profile Di = (di, τi, t
e
i , t

l
i), ∀i ∈ {1, · · · , NJ};

parameter a and T .
Output: Job starting time si, ∀i ∈ {1, · · · , NJ}.

1: for each job Ji (i = 1, · · · , NJ ) do
2: if τi < T

a
then

3: Put job Ji into the short job set Js;
4: else
5: Put job Ji into the long job set Jl;
6: for each job Ji ∈ Jl do
7: si = tei ;
8: Sort short jobs Ji ∈ Js in the increasing order of their latest

starting time tli with a tie break rule that a job of larger power
demand di comes first; denote the sorted jobs by Jk1 , · · · , Jkm ,
where m = |Js| and |Js| is the cardinality of set Js;

9: for each job Jki ∈ Js (i = 1, · · · , m) do
10: if i == 1 then
11: ski = teki

;
12: else
13: eki−1 = ski−1 + τki−1 ;
14: if tlki

≥ eki−1 then
15: ski = max{eki−1 , t

e
ki
};

16: else
17: ski = teki

;

Algorithm 1 can deal with both deferrable jobs and non-
deferrable jobs. Both deferrable jobs and non-deferrable jobs
can be characterized by a demand profile (d i, τi, t

e
i , t

l
i) where

i is the job index. For a deferrable job i, tei < tli, i.e., there is
a gap between the earliest starting time and the latest starting
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time so that there is flexibility to schedule the job during
[tei , t

l
i]. For a non-deferrable job i, tei = tli, i.e., the earliest

starting time equals the latest starting time; hence, the job
must start at time tei .

We would like to make a remark regarding the sub-
optimality of Algorithm 1. In fact, Algorithm MP in [3] is
a special case of Algorithm 1 in this paper; that is, for the
special case that each job Ji has the same earliest starting time
tei = 0 and the same latest job completion time tli + τi = T ,
Algorithm 1 in this paper reduces to Algorithm MP in [3].
For this special case, it can be proven [3] that Algorithm 1
has an approximation ratio of at most 7, i.e., in the worse case,
the peak power produced by Algorithm 1 is not larger than 7
times the optimal peak power. For a general case, it is difficult
to find a tight approximation ratio.

Different from the centralized Algorithm MP in [3], in this
paper, we can implement the EDF algorithm in a distributed
manner as follows: each user can exchange information about
its jobs (to be scheduled) with other users in the same group,
and each user can use Algorithm 1 (applied to all the jobs of
the users in the same group) to find a sub-optimal schedule of
its own jobs; each user, actually, the household control center
of each user, applies the resulting schedule of the jobs (via
the DRS devices) to its electrical appliances.

D. Simulator

Since the available data-sets do not contain electricity usage
of a large number of households, we resort to simulated
data. We develop a trace-driven simulator, which is based
on an Auto-Regressive Moving Average (ARMA) model and
an exponential distribution to generate household energy con-
sumption data and job data. Section IV will describe our
simulator in detail.

E. Practicality of Our Scheme

We would like to emphasize that our family-plan approach
is practical. Here is our suggested implementation. 1) Each
customer/user (of the same utility company) who is willing
to participate in the family plans can create an account on
Facebook. 2) Each of these users can download a matching
software of the utility company from the Facebook App store;
this matching App will run Algorithm 3. Note that a user
only exchanges its state vector with its neighbors (e.g., its
trusted friends on Facebook), in Step 7 of Algorithm 3. The
matching App will partition all the users into groups, and
notify each user of its group membership. If all users agree
with the assigned group membership, we move on to the
next phase (scheduling); otherwise, we remove those groups
who already agreed to the assigned membership and re-run
the matching App for the remaining users until all users are
assigned with group memberships. 3) In the scheduling phase,
each user can download a scheduling App from the Facebook
App store; each user will manually enter those jobs that are
automatically switched on/off by its DRS devices; then the
scheduling App of each user exchanges information about its
jobs (to be scheduled) with the scheduling App of other users
in the same group; then the scheduling App of each user runs

Algorithm 1 (applied to all the jobs of the users in the same
group) and obtains a sub-optimal schedule of its own jobs;
then the scheduling App of each user applies the resulting
schedule of the jobs (via the DRS devices) to its electrical
appliances.

From the above discussion, it can be seen that our family-
plan approach consists of two control strategies, which run in
two different time scales.

1) The first control strategy is to partition users into groups
so that the scheduling problem for each cluster can be
solved with low complexity (otherwise, the complexity of
the scheduling problem is NP hard) and with a potential
of achieving small fluctuation of power consumption in
each cluster. This control runs in a long time scale, e.g.,
two years of contract for a family plan like that for mobile
cell phones. To optimally partition users into groups (in
the sense of minimum variance), we propose a distributed
clustering scheme, which leverages the social network
topology of users and statistical energy usage patterns
of users in a long time scale.

2) The second control strategy is to schedule the jobs of
electric appliances in a short time scale (e.g., every
minute) so as to actually minimize the fluctuation of
power consumption in each cluster.

There is a potential problem for the above approach. If
a user does not disclose its true urgency of its jobs, e.g.,
always declaring higher urgency for all its jobs than necessary,
then the user will gain an advantage of having its jobs
complete with less delay. To address this problem, we propose
the following mechanism. After all the users agree with the
assigned group membership, they need to sign a contract with
the utility company for a duration, say, two years. The two-
year contract stipulates that if the PAR of a group is less
than a given threshold, each user in the group receives a low
electricity rate; otherwise, each user in the group receives a
high electricity rate. Under this mechanism, each user in the
same group has to disclose its truthful degree of urgency of
jobs; otherwise, it will increase the PAR of the group, resulting
in a penalty for each user in the cluster. Such a contract
produces a win-win situation for both the utility company and
the electricity consumers; i.e., the electricity consumers will
enjoy a low electricity rate while the utility company will have
smoother power demand, resulting in reduced ramp-up/ramp-
down cost of power generators. This reduced ramp-up/ramp-
down cost of power generators allows the utility company to
compensate the low electricity rate offered to its customers
who signed the two-year contract.

III. CLUSTERING SCHEMES

Let Pi(t) denote the instantaneous power consumption of
User i in time slot t. Let var(X) be the variance of random
variable X and cov(X,Y ) be the covariance between X and
Y . Then we have

Fact 1.{
var(X + Y ) = var(X) + var(Y ) + 2× cov(X,Y )

var(X +
∑

i Yi) = var(X) + var(
∑

i Yi) +
∑

i 2cov(X, Yi)
(3)
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From Fact 1, we know that a new user i can be added to a
group Gg of users to further reduce the variance of the power
consumption of all users in the group if and only if

var(Pi) < −
∑
j∈Gg

2cov(Pi, Pj)

Our goal is to find a clustering so that the variance of summed
power consumption is as small as possible.

Let Gu denote the social graph formed by Nu users; the
graph Gu has a node set Vu and an edge set Eu. Denote |Vu|
the cardinality of set Vu. Assume that Nu users are partitioned
into multiple groups, and the members of Group j form a
set denoted by Gj . Notice that var(

∑
i Pi) =

∑
i var(Pi) +∑

i�=j 2cov(Pi, Pj). Then minimal variance clustering problem
studied here can be reduced to a graph clustering problem:
each (user) node i ∈ Vu has a weight var(Pi), and each
edge (i, j) has a weight 2cov(Pi, Pj). Then we need to find a
clustering such that the maximum cluster weight (i.e., sum of
weights of nodes and edges within the cluster) is minimized.
This problem is obviously NP-hard as many NP-hard problems
are special cases of this problem (e.g., subset sum problem).

For ease of understanding, we first present a centralized
version of our clustering algorithm in Algorithm 2; then
present a distributed version in Algorithm 3.

Algorithm 2 outputs groups of users {Gj} and the number
of groups is not an input parameter. Algorithm 2 is a clustering
algorithm that partitions users into K groups where K is
unknown to the algorithm. This is different from K-means
clustering algorithm and spectral clustering algorithms.

In Algorithm 2, each user/node i is assigned with a state
vector [gi, σ2

gi ,Ggi ], where gi is the index of the group Ggi , to
which User i is assigned, and σ2

gi is the variance of
∑

j∈Ggi
Pj .

Let N (i) denote the set of nodes that are neighbors of Node
i in graph Gu. var(Pi) can be estimated by Eq. (1) and
cov(Pi, Pm) can be estimated by Eq. (2).

Algorithm 2 is a greedy algorithm. It begins from an initial
setting, i.e., each node forms a group. Then each iteration
(from Step 5 to Step 18) improves over the previous iteration,
i.e., each iteration is guaranteed to achieve a smaller variance
than the previous iteration; if there is no change between two
iterations, the algorithm stops.

The following proposition shows that Algorithm 2 has linear
complexity per iteration.

Proposition 1. The computational complexity per iteration of
Algorithm 2 is O(|Eu|).
Proof. In Algorithm 2, initializing every node with its group
index requires O(Nu) time. Each iteration of Algorithm 2
takes linear time in the number of edges (O(|Eu|)). At each
node i, we first group the neighbors according to their group
index, with complexity O(di), where di is the node degree
of Node i. We then pick the group of minimum variance and
assign Node i to this group, requiring a worst-case time of
O(di). This process is repeated at all nodes and hence an
overall time is O(|Eu|) for each iteration.

In Algorithm 2, as the number of iterations increases, the
number of nodes that finalize their minimum-variance-group

Algorithm 2 Minimum-Variance Clustering (Centralized)
Input: Group size constraint Nc, social graph Gu, Xi (∀i ∈
Vu).
Output: {Gj}.

1: for i from 1 to |Vu| do
2: (Initialization) gi = i;
3: (Initialization) σ2

gi = var(Pi);
4: (Initialization) Gi = {i};
5: while |Vu| �= 0 do
6: for all i ∈ Vu do
7: For each distinct gk (k ∈ N (i)) and gk �= gi, calculate

γgk = var(Pi) + σ2
gk

+
∑

m∈Ggk
2cov(Pi, Pm);

8: Let γmin
i = mink∈N (i)&gk �=gi γgk ;

9: k∗ = argmink∈N (i)&gk �=gi γgk ;
10: if γmin

i < σ2
gi

then
11: σ2

gi = σ2
gi − var(Pi)−∑

m∈Ggi
\{i} 2cov(Pi, Pm);

12: Move User i from Ggi to Ggk∗ ;
13: if |Ggi | == 0 then
14: Remove Ggi ;
15: gi = gk∗ ;
16: σ2

gi = γmin
i ;

17: if |Ggk∗ | == Nc then
18: Output Ggk∗ and remove all nodes in Ggk∗ and

associated links from graph Gu;
19: if no change in any group then
20: Output all groups and remove all nodes and links from

graph Gu

membership increases. From our experiments, we found that
irrespective of Nu, 95% of the nodes or more finalize their
group membership by the end of the fifth iteration. Since the
number of iterations is independent of |Eu| (as verified in
our experiments), the overall complexity of Algorithm 2 is
O(|Eu|).

In Algorithm 3, each user knows which users are its
neighbors. A routing protocol is in place, which allows com-
munication between any two users. Each user i has knowledge
of its own electricity usage profile Xi.

Algorithm 3 can run in an asynchronous manner to avoid
inconsistencies in updating the group membership.. In an
asynchronous manner, in each slot, only one node is allowed to
update its group membership based on information collected
in the previous slot. There are many ways of choosing a node
for update. One method is to use a token. A node needs to have
a token to update its group membership. First randomly select
a node and assign a token to this node. After finishing update,
this node randomly relays the token to one of its neighbors.
This relay process continues till Algorithm 3 terminates. Since
grouping does not have stringent delay requirements, the
delay caused by asynchronous implementation of Algorithm 3
is tolerable. It is possible to speed up Algorithm 3 by a
synchronous manner. We leave this for future study.

Since each user may not want to share its statistical energy
usage pattern with others, we suggest the following method
to address this privacy issue. Each user can encrypt the data
before sending it to another party. A receiving node can use the
encrypted data to compute without knowing the actual value
of the data [8].

Remark 1. The centralized clustering algorithm (i.e., Algo-
rithm 2) requires a central controller, i.e., each user has to
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Algorithm 3 Minimum-Variance Clustering (Distributed)
Input: Group size constraint Nc, social graph Gu, Xi (∀i ∈
Vu).
Output: {Gj}.

1: for each user i (i = 1, · · · , |Vu|) do
2: (Initialization) gi = i;
3: (Initialization) σ2

gi = var(Pi);
4: (Initialization) Gi = {i};
5: for each user i (i = 1, · · · , |Vu|) do
6: if User i has not finalized its membership with a group then
7: User i exchanges its state vector [gi, σ2

gi ,Ggi ] with each of
its neighbors User k (k ∈ N (i));

8: User i requests for Xm from User m if m ∈ Ggk (k ∈
N (i)) and Xm is not stored in the memory of User i;

9: For each distinct gk (k ∈ N (i)) and gk �= gi, User i
calculates γgk = var(Pi)+σ2

gk
+
∑

m∈Ggk
2cov(Pi, Pm);

10: Let γmin
i = mink∈N (i)&gk �=gi γgk ;

11: k∗ = argmink∈N (i)&gk �=gi γgk ;
12: if γmin

i < σ2
gi

then
13: σ2

gi = σ2
gi − var(Pi)−∑

m∈Ggi
\{i} 2cov(Pi, Pm);

14: User i notifies each of the users in Ggi about its leaving
the group, and sends the new value of σ2

gi to these users;
15: Each of the users in Ggi removes User i from Ggi , and

update the value of σ2
gi ;

16: gi = gk∗ ;
17: σ2

gk∗ = γmin
i ;

18: User i notifies each of the users in Ggk∗ about its joining
the group, and sends the new value of σ2

gk∗ to these
users;

19: Each of the users in Ggk∗ add User i to Ggk∗ , and update
the value of σ2

gk∗ ;
20: if |Ggk∗ | == Nc then
21: Each of the users in Ggk∗ finalizes its membership

with Ggk∗ ;

report its jobs (to be scheduled) to the central controller. An
issue is how to select a central controller. Will every user agree
with such a selection of central controller? Who wants to be
the central controller? A disadvantage of a central controller
is that it becomes a single point of failure, which is not robust;
in other words, if the central controller breaks down, we
cannot run Algorithm 2. The distributed clustering algorithm
(i.e., Algorithm 3) does not have any of these issues that we
just mentioned.

Besides system robustness, there is another important rea-
son for using the distributed clustering algorithm (Algo-
rithm 3). In our suggested practical implementation of our
proposed family-plan approach in Section II-E, the distributed
clustering algorithm (Algorithm 3) is required since there is
no centralized controller in the system.

IV. DESIGN OF TRACE-DRIVEN SIMULATOR

In this section, we present our design of trace-driven simu-
lator for large-scale simulations in smart grid. In Section IV-A,
we describe our household electricity consumption simulator.
Section IV-B presents our job demand profile simulator.

A. Household Electricity Consumption Simulator

To evaluate the performance of our proposed clustering
scheme, we need electricity consumption data for a large

number of households. Specifically, for each household i, we
need {Xi,t} the statistical-average electricity consumption as
a function of time t (t ∈ {1, 2, · · · , TX}). However, such data
for a large number of households is not available in the public
domain. We only obtained such data for six households [9].
In this section, we will describe our design of a trace-driven
simulator, which is capable of generating simulated {X i,t} for
an unlimited number of households. The simulated {X i,t} is
statistically similar to the real-world {Xi,t}, i.e., they have
similar probability distribution functions and auto-correlation
functions.

Assume that the real-world {Xi,t} is a stationary stochastic
process and can be modelled by an autoregressive moving-
average (ARMA) process, which is defined as below [10].

Definition 1. (ARMA(p,q) Process) The process {Xt, t =
0,±1,±2, ...} is said to be an ARMA(p,q) process if {Xt}
is stationary and if for every t,

Xt −
p∑

i=1

φiXt−i = Zt +

q∑
j=1

θjZt−j (4)

where {Zt} are independent, identically distributed Gaussian
random variables with zero mean and variance σ2

n.

To determine an ARMA model from samples, we need
to determine the orders p, q, parameters {φi}, {θj} and the
white noise variance σ2

n. The problem of determining orders
p and q is a model selection problem. A typical criterion
for model selection is Akaike information criterion (AIC).
However, for autoregressive models, the AIC has a tendency
to overestimate p. The Bayesian information criterion (BIC)
is another criterion, which attempts to correct the overfitting
nature of the AIC. For a zero-mean ARMA(p,q) process, BIC
is given by

BIC = (Ns − p− q) ln[
Nsσ̂

2
n

Ns − p− q
] +Ns(1 + ln

√
2π) (5)

+(p+ q) ln[

∑Ns
t=1X

2
t −Nsσ̂

2
n

p+ q
]

where σ̂2
n is the maximum likelihood estimate of the white

noise variance σ2
n, and Ns is the number of samples. The BIC

provides a consistent order selection procedure in the sense
that if the samples {X1, ..., XNs} are truly measurements of
an ARMA(p,q) process, and if p̂ and q̂ are the estimated orders
found by minimizing the BIC, then p̂ → p and q̂ → q with
probability one as Ns → ∞. Thus, we determine the order p
and q by minimizing BIC: {p̂, q̂} = argminp,q BIC.

Algorithm 4 shows our procedure for generating electricity
consumption samples of a simulated household. The first part
of Algorithm 4 is to use model selection and parameter esti-
mation to determine the best-fit model and optimal parameter
values. The techniques used in Steps 2 and 9 can be found
in Ref. [10]. The second part is to use the resulting model to
generate simulated electricity consumption process {X̂i,t}.

B. Job Demand Profile Simulator

To evaluate the performance of our scheduler, we need
job data for a large number of households. Specifically, for
each household, we need the demand profile of each job.
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Algorithm 4 Household Electricity Consumption Simulator
Input: pmax, qmax, and electricity consumption measurements
of a real-world household {Xi,t}.
Output: Electricity consumption samples of a simulated
household {X̂i,t}.

1: pmin = 1;
2: qmin = 1;
3: Calculate autocorrelation function (ACF) R(τ ) and partial auto-

correlation function (PACF) α(τ ), where τ is a time lag;
4: Determine the model type according to the features of ACF

and PACF, i.e., determine whether it is an AR(p), or MA(q),
or ARMA(p, q) process;

5: if it is an AR(p) process then
6: qmin = 0;
7: qmax = 0;
8: if it is an MA(q) process then
9: pmin = 0;

10: pmax = 0;
11: for p = pmin to pmax do
12: for q = qmin to qmax do
13: Estimate parameters {φi, θj : i = 1, ..., p; j = 1, ..., .q};
14: Find p ∈ {pmin, · · · , pmax} and q ∈ {qmin, · · · , qmax} that

minimize BIC in Eq. (5);
15: Use the resulting model to generate samples {X̂i,t};

Examples of jobs are listed in Table I. For the k-th job J i,k

of User i, it has a demand profile Di,k parameterized by
(di,k, τi,k, t

e
i,k, t

l
i,k), where di,k denotes Ji,k’s average power

consumption, τi,k denotes its duration, tei,k and tli,k denote
the earliest and latest starting time of the job, respectively.
However, such job data for a large number of households
is not available in the public domain. We only obtained
such job data for six households [9]. In this section, we
will describe our design of a job profile simulator, which
is capable of generating Di,k for an unlimited number of
households. The statistical averages of simulated {Di,k} need
to match {X̂i,t} generated by Algorithm 4, i.e., the expectation
E[

∑
k∈{k:tei,k∈[a,b−τi,k]&tli,k∈[a,b−τi,k]} di,k×τi,k] should equal∑b

t=a X̂i,t for all a, b (0 ≤ a < b ≤ T ).
For simplicity, we assume all jobs have constant instan-

taneous power consumption5 and constant duration6. For the
same household i used in Algorithm 4, we also obtained the
real-world power measurements of each job of Household i.
The average power, duration, and frequency of each job for
one of the six households are listed in Table I. Note that each
of the six real-world households has such a table of job profile;
so we have six different tables of job profile. To save space,
we only list one household’s job profile in Table I.

To generate the earliest starting time of each job of the j-th
type for User i, we use an exponential distribution to generate
the interval between two consecutive jobs of the same type
(j-th type), denoted by βj . That is, the probability density
function of βj is

p(βj) = λje
−λjβj (6)

5For simplicity, we use average power to replace instantaneous power.
6If the power consumption and duration of a job are assumed to be random,

we can use Gamma distribution to model them since power consumption and
duration are positive-real-valued and Gamma distribution has a support of
(0,∞) and is versatile in modeling various shape of distribution. We will
leave this for future work.

TABLE I
PROFILE OF JOBS IN A HOUSEHOLD

Job name Avg power Avg duration Avg frequency
(W) (sec) (times/day)

Oven 1840 330 2.44
Dishwasher 450 7020 0.23
Refrigerator 191 360 19.33

Kitchen Outlet 16 86400 2.33
Lighting 81 210 123.32

Washer Dryer 267 1590 0.68
Microwave 1580 30 8.6
Bathroom 1618 210 0.82

Stove 593 210 0.36
Disposal 28 60 0.36
Furnace 610 570 6.88

Sub-panel 239 3510 0.63
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Fig. 1. Power spectral density of real-world data and simulated
data

where λj is the average frequency of the j-th type of job,
i.e., a value in the fourth column of Table I. Since λ j is
in unit of times/day, βj needs to be in unit of one day (24
hours). We generate the first βj,1 using the distribution in
(6). If βj,1 ≥ 1 day, no job is generated for the j-th type
of job for this user and move on to generate another type of
job; else then let tei,1 = βj,1 and then generate the second
βj,2. If tei,1 + βj,2 ≥ 1 day, then tli,1 = 1 − τi,j (where
τi,j is the duration of the j-th type of job of User i and
is in the third column of Table I) and move on to generate
another type of job; else then let tei,2 = tei,1 + βj,2 and
tli,1 = tei,2 − τi,j . Repeat this process for each type of job
for this user until E[

∑
k∈{k:tei,k∈[a,b−τi,k]&tli,k∈[a,b−τi,k]} di,k×

τi,k] =
∑b

t=a X̂i,t for all a, b (0 ≤ a < b ≤ T ). We usually
choose b − a = 10 minutes.

V. SIMULATION RESULTS

A. Simulation Setting

1) Network Topology Simulator: To evaluate the perfor-
mance of our clustering scheme, we adopt widely-used LFR
random network generator [11], [12] to generate large-scale
realistic social network topologies, which have the following
properties: 1) the node degree follows a power law distribu-
tion, and 2) the distribution of cluster/community sizes also
follows a power law distribution. We assume that there are
1000 households in the system. So we use the LFR network
generator to generate a small-world scale-free network of 1000
nodes, representing a social network.



8

0 5 10 15 20 25
0

100

200

300

400

500

 Time (hour)

 En
er

gy
 co

ns
um

pt
ion

 (k
W

h)

0 5 10 15 20 25
0

100

200

300

400

Time (hour)

 Pa
ym

en
t (

do
lla

rs)

Fig. 2. Energy consumption and payment without family plan
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Fig. 3. Energy consumption and payment under family plan
(Nc = 5)

2) Measurement Data: Our trace-driven simulator needs
real-world electricity consumption measurements as input.
From [9], [13], we obtained a set of several weeks of power
data for 6 different homes, which includes two types of power
data: 1) the whole household power consumption measured
at a rate of 1 Hz, and 2) power consumption of up to
24 individual appliances in a home, measured at a rate of
0.5 Hz. Using the power measurements of each appliance in
a household, we obtain Table I, which is used as job profiles.

3) Generation of Household Electricity Consumption Data:
Algorithm 4 takes the power measurements of each of the six
household as input to generate 200 electricity consumption
processes {X̂i,t} (i = 1, · · · , 200; t = 1, · · · , TX ). Since we
have power measurements of six households, we generate a
total of 1200 electricity consumption processes. Since there
are 1000 households in the system, we randomly pick 1000
out of the 1200 processes and assign each selected process to
one household in the social network.

4) Generation of Job Demand Profile Data: As described
in Section IV-B, given {X̂i,t} and Table I, the job demand
profile simulator generates job demand profiles for each of
the 1000 households in the social network.

5) Energy Pricing Model: To evaluate how much cost is
saved under our proposed scheme, we need an energy pricing
model to convert user power consumption into user payment.
In our simulations, we use a quadratic pricing model [2] as
below

Ct = r × (Lt)
2, (7)

where Ct is the price/user-cost in time slot t, Lt is the total
load/energy-consumption in slot t, and r is a rate and we
set r = 0.02. Since (7) penalizes more on large power con-
sumption than on small power consumption, a load schedule
that minimizes the peak power consumption would obviously
reduce the user cost at the same time. This pricing model
has been used by utility companies as incentives for users to
comply with peak-minimization load schedules.

B. Performance of Proposed Schemes

In this section, we evaluate the performance of our proposed
scheme by simulation.

1) Accuracy of Our Trace Driven Simulator: Fig. 1 shows
the power spectral density (PSD) of the real-world data and the
simulated data generated by Algorithm 4. It can be observed
that the PSD of the simulated data agrees very well with that of
the real-world data, indicating high accuracy of Algorithm 4.

2) PAR and User Payment under Family Plan Scheme: In
this section, we compare our family plan scheme with the case
of not using family plan. Fig. 2 shows energy consumption
and user payment as a function of time for the case of not
using family plan. Fig. 3 shows energy consumption and user
payment as a function of time for our family plan scheme.
The user payment/cost is obtained by (7). As shown in Fig. 2,
when the family plan scheme is not used, the PAR for 1000
households is 2.69 and the total user payment is $2842.3.
In contrast, when the family plan scheme is used (under
Nc = 5), the PAR reduces to 1.45 (46.1% less) and the total
user payment reduces to $1693.4 (40.4% less). In addition,
when the family plan scheme is used, the load becomes much
smoother, compared to no family plan.

3) Fuel Cost under Family Plan Scheme: To show the gain
of reducing peak power consumption from the utility company
perspective, we use the values in Tables II and III [4] to
compute the fuel cost for one million households. The reason
why we consider one million households is because we need
one million households to meet the output power of a power
generator; the demand of 1000 households is not sufficient to
meet the minimum power generated by a power generator in
Table II.

TABLE II
CHARACTERISTICS OF GENERATORS

Unit Minimum power (MW) Maximum power (MW)
G1 50 250
G2 50 200

TABLE III
FUEL DATA

Unit a b c Start-up fuel Fuel price
(MBtu) (MBtu/MWh) (MBtu/MM2h) (MBtu) ($/MBtu)

G1 0.0024 12.33 28 1500 1
G2 0.0044 13.29 39 1500 1
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Fig. 4. Fuel cost in each hour.

We assume two thermal generators provide power for one
million households. We also assume that the energy con-
sumption of users scales with the number of users, which
is reasonable; hence, the energy consumption of these one
million households is simply 1000 times the energy consump-
tion of the thousand households obtained in Section V-B2.
From Table III, Generator G1 costs less than Generator G2 if
both produce the same amount of power. So, as long as G 1

can satisfy the demand, we would always use G1 instead of
G2. Let Lt denote the power demand/load in time slot t. If
Lt ≤ 250 MW, only G1 is on. The amount of fuel needed [4]
is a+b×Lt+c×L2

t = 0.0024+12.33Lt+28L2
t (MBtu) and

it costs 0.0024 + 12.33Lt + 28L2
t dollars since 1 MBtu costs

1 dollar according to Table III. When L t becomes larger than
250 MW, G2 also needs to be activated and the cost of start-up
fuel 1500 (MBtu) needs to be added. If 250 < L t ≤ 450, both
G1 and G2 need to be on. Since G1 has higher efficiency, G1

should produce 250 MW and G2 should produce (Lt − 250)
MW, and the cost of fuel is 0.0024+12.33×250+28×2502+
0.0044+13.29(Lt−250)+39(Lt−250)2. If Lt > 450, some
load has to be shed.

Using the energy consumption obtained in Section V-B2
(magnified by 1000 times), we calculate the fuel cost in each
hour, shown in Fig. 4. In 24 hours, the total fuel cost for
no family plan is $21,343,000; and the total fuel cost under
family plan is $11,265,000. Hence, the family plan approach
saves 47.22% in fuel cost.

4) Effect of Nc: In this section, we study the effect of group
size constraint Nc on the performance of our family plan

scheme. Fig. 5 shows PAR and user payment as a function
of Nc for our family plan scheme. The case for Nc = 1
corresponds to no family plan. It can be observed that the
larger Nc, the lower PAR and the lower user payment. The
reason is obvious: the larger group size, the more jobs to be
scheduled, resulting in lower PAR under our peak-minimizing
scheduler. But the catch is that the strategy for grouping
needs to be carefully selected; random grouping + peak-
minimizing scheduling is not optimal; it can be improved by
minimum-variance grouping + peak-minimizing scheduling.
We demonstrate this in the next section.

5) Minimum-Variance Grouping vs. Random Grouping: In
this section, we compare performance of random grouping +
peak-minimizing scheduling with minimum-variance grouping
+ peak-minimizing scheduling. Fig. 6 shows PAR as a function
of Nc for the minimum-variance grouping and the random
grouping. Fig. 7 shows user payment as a function of N c

for the minimum-variance grouping and the random group-
ing. It can be observed that the minimum-variance grouping
achieves much better performance than the random grouping.
For Nc = 3, our minimum-variance grouping helps reduce
PAR and user payment by 17.0% and 11.6%, respectively,
compared to random grouping. The reason of this performance
gain is that different from random grouping, our minimum-
variance grouping tends to place users of different electricity
usage patterns into the same group; thus the periods of high
power consumption of different users are less likely to overlap,
making the peak-minimizing scheduler easy to schedule jobs
to achieve low peak demand. E.g., under our minimum-
variance grouping, a household that usually has high power
usage between 3pm and 7pm may be grouped with another
household that usually has high power usage between 7pm and
11pm; then a peak-minimizing scheduler can easily achieve a
big reduction in peak power consumption. In contrast, under
random grouping, two households with the same peak usage
hour may be placed in the same group; a peak-minimizing
scheduler cannot achieve a low peak demand since many jobs
of the two households need to be scheduled within the same
hour – there is little room to shift jobs within this peak hour
even if some other time periods have no jobs. However, this
is unlikely to happen under our minimum-variance grouping
since grouping two households with the same peak period will
result in very high variance.
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6) EDF Scheduling vs. No Scheduling: In this section,
we evaluate how much gain the EDF scheduling (i.e., Al-
gorithm 1) can achieve, compared to no scheduling. Here,
no scheduling means that the users can run the jobs at will
(without any coordination), i.e., each job J i is randomly
assigned with a starting time si, which is uniformly distributed
in [tei , t

l
i]. We study three cases.

• Case 1: tei = 0 and tli = T − τi (∀i). We choose T =
24 hours. Case 1 represents the most flexible constraint,
that is, each job has the maximum flexibility/range, i.e.,
[0, T − τi], for scheduling.

• Case 2: tli − tei ≤ 2 hours (∀i). Case 2 represents a
more stringent constraint, i.e., each job must be scheduled
within an interval of two hours.

• Case 3: 0 < tli− tei ≤ 2 hours (for deferrable job Ji) and
tlj− tej = 0 (for non-deferrable job Jj). Case 3 represents
a mixture of deferrable jobs and non-deferrable jobs; e.g.,
a refrigerator is a non-deferrable appliance. Based on the
measurement data in six houses [9], [13], on average,
89.76% power is consumed by deferrable jobs and the
remaining power is consumed by non-deferrable jobs.
Hence, our simulator generates deferrable jobs, which
consume 89.76% of the total power on average, and non-
deferrable jobs, which consume 10.24% of the total power
on average.

For Case 1, we observe that the PAR values for the EDF
scheduling and no scheduling are 1.34 and 1.99, respectively;
hence the EDF scheduling reduces PAR by 32.67%, compared
to no scheduling. For Case 2, we observe that the PAR
values for the EDF scheduling and no scheduling are 1.43 and
1.59, respectively; hence the EDF scheduling reduces PAR by
10.06%, compared to no scheduling. For Case 3, we observe
that the PAR values for the EDF scheduling and no scheduling
are 1.45 and 1.60, respectively; hence the EDF scheduling
reduces PAR by 9.37%, compared to no scheduling. It can
be observed that the smaller interval of [tei , t

l
i], the less PAR

reduction. This is because the smaller interval of [tei , t
l
i], the

less room to shift jobs around under the EDF scheduling. For
a non-deferrable job i, since tei = tli, our EDF scheduling
algorithm is not allowed to shift the job and hence there will
be no gain for non-deferrable jobs. The lower percentage of
non-deferrable jobs in the total power consumption, the higher
gain achieved by our EDF scheduling algorithm.

In summary, the simulation results demonstrate that our
family plan approach achieves significant saving in user pay-
ments and fuel cost in power generation and a large reduction
on peak power consumption.

VI. RELATED WORK

Peak demand reduction by model predictive control (MPC)
with real-time electricity pricing was studied in [14]. Some
recent papers (e.g., [15]) focus on designing online algorithms
for using UPS units for cost reduction via shaving workload
“peaks” that correspond to higher energy prices. It provides
a worst-case competitive ratio analysis. The other body of
works study workload shifting for power cost reduction [16]
or improving performance and availability [17].

The component of partitioning users into groups in our
scheme is closely related to the graph clustering problem [18],
for which various novel techniques (see [19] for a survey) have
been proposed, including spectral clustering techniques [6].
These techniques often have high complexity, usually O(|Vu|3)
where |Vu| is the number of nodes in a graph. Our graph
clustering scheme is distributed and has linear complexity
O(|Eu|). For a social network, which is a scale-free network,
the number of edges |Eu| is in the same order of the number
of nodes |Vu|; hence our clustering scheme has a complexity
of O(|Vu|) for a social network. Therefore, it is scalable for a
large social network or a large scale-free network. The reason
why our clustering scheme has a linear complexity instead
of O(|Vu|3) as in spectral clustering, is because our scheme
does not use eigen-decomposition of the Laplacian matrix of
a global topology/graph (which requires O(|Vu|3)); instead,
our scheme only uses local information and hence the overall
complexity linearly depends on the number of edges.

Within each cluster, we schedule jobs to further reduce
the PAR. Scheduling was extensively studied, including link
scheduling in wireless networks [20], and parallel job schedul-
ing [21]. Smart grid job scheduling has also been studied
previously for various objectives: incentive [2], stochastic
reliability [22], reducing single-unit PAR [3], and micro-grid
[23]. Some problems closely related to job scheduling in
smart grid studied here include rectangle packing [24] and
Orthogonal Rectangular Strip Packing Problem (SPP) [25]. In
these traditional packing problems, jobs are “rigid”, thus, many
holes exist in the packing solution. As power consumption
is simple sum of the power consumed by all appliances,
traditional techniques cannot be directly applied.

VII. CONCLUSIONS

In this paper, we proposed a family-plan approach for
collaboratively reducing the peak power consumption. Our
scheme leverages the social network structure among users and
heterogeneous energy consumption patterns of households, to
schedule the load among consumers in the service area of the
same utility company. We designed a linear-time-complexity
clustering algorithm for fully exploiting the heterogeneity of
users’ energy consumption patterns, and a sub-optimal load
scheduling algorithm in each group to further reduce the PAR.
Using synthetic data generated by our trace-driven simulator,
our evaluations show that our proposed scheme significantly
reduces the peak power as well as user payment and fuel cost
of power generation. Last but not the least, our family-plan
approach can be applied to an arbitrary topology although we
only showed simulation results for a scale-free network of
1000 nodes in Section V. Our future direction is to consider
scheduling of interruptible jobs.
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