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Abstract—In this paper, we study the spectrum assignment
problem for wireless access networks. We assume that each
secondary user will bid a certain value for exclusive usage of some
spectrum channels for a certain time period or for a certain time
duration. A secondary user may also require the exclusive usage
of a subset of channels, or require the exclusive usage of a certain
number of channels. Thus, several versions of problems are
formulated under various different assumptions. For the majority
of problems, we design PTAS or efficient constant-approximation
algorithms such that overall profit is maximized. Here the profit is
defined as the total bids of all satisfied secondary users. As a side-
product of our algorithms, we are able to show that a previously
studied Scheduling Split Interval Problem (SSIP) [2], in which
each job is composed of t intervals, cannot be approximated
within O(t1−ε) for any small ε > 0 unless NP=ZPP.

Opportunistic spectrum usage, although a promising technol-
ogy, could suffer from the selfish behavior of secondary users. In
order to improve opportunistic spectrum usage, we then propose
to combine the game theory with wireless modeling. We show how
to design a truthful mechanism based on all of these algorithms
such that the best strategy of each secondary user to maximize
its own profit is to truthfully report its actual bid.

Index Terms—Wireless networks, spectrum, disk graph, inter-
val graph, PTAS, approximation, strategyproof.

I. INTRODUCTION

Wireless technology is expected to play a bigger and more
fundamental role in the new Internet than it has today. The
radio frequency spectrum has been chronically regulated with
static spectrum allocation policies since the early 20th century.
With the recent fast growing spectrum-based services and
devices, the remaining spectrum available for future wireless
services is being exhausted, known as the spectrum scarcity
problem. The current fixed spectrum allocation scheme leads
to significant spectrum white spaces where many allocated
spectrum blocks are used only in certain geographical areas
and/or in brief periods of time. A huge amount of precious
spectrum (below 5GHz), perfect for wireless communications

P. Xu and S.-J. Tang are with Department of Computer Sci-
ence, Illinois Institute of Technology, Chicago, IL, USA (e-mail:
{pxu3,stang7}@iit.edu). X.-Y. Li is with Institute of Computer
Application Technology, Hangzhou Dianzi University, Hangzhou, 310018,
PRC. He is also with Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA (e-mail: xli@cs.iit.edu). He is a
visiting/adjunct professor of Xi’An JiaoTong University. J. Zhao are with
Department of Computer Science and Tech., Xi’an Jiaotong Univ., China,
Email: zjz@mail.xjtu.edu.cn.

The research of authors are partially supported by NSF CNS-0832120,
National Natural Science Foundation of China under Grant No. 60828003, the
Natural Science Foundation of Zhejiang Province under Grant No.Z1080979,
National Basic Research Program of China (973 Program) under grant No.
2010CB328100, the National High Technology Research and Development
Program of China (863 Program) under grant No. 2007AA01Z180.

that is worth billions of dollars, sit there silently. Recognizing
that the traditional spectrum management process can stifle
innovation, and it is difficult to provide a certain quality of
service (QoS) for systems operated in unlicensed spectrum,
the FCC has proposed new spectrum management models
and the use of a measure of interference temperature. Current
spectrum management methods include command and control
(e.g., for public safety), exclusive usage based on license
(e.g., for cellular communication), commons (e.g., ISM bands),
interference temperature (also called opportunistic usage), and
fast command and control [24].

One promising technology is the opportunistic spectrum
usage. In opportunistic spectrum usage, the secondary users
observe the channel availability dynamically and explore it
opportunistically. Secondary users are cognitive devices that
can sense the environment and adapt to appropriate frequency,
power, and transmission schemes. They can opportunistically
access unused spectrum vacated by idle primary users, who
have strict priority on spectrum access and will share spectrum
with others under certain protections. While opportunistic
spectrum has several advantages, it suffers from the selfish
behavior of the secondary users. For secondary users, usu-
ally they are selfish. Obtaining more spectrum could mean
more benefit economically. Therefore, it is difficult, if not
possible, to require each secondary user faithfully conform
to a distributed channel assignment method that may reduce
its own chance to use the spectrum, for the overall system
benefit. It is then reasonable and appropriate to model them as
rational agents. Thus, we propose to combine the game theory
[20], specifically, mechanism design theory with wireless
communication modeling. More specifically, we study how to
share the spectrum and how to charge the secondary users such
that the overall social benefit or profit by spectrum owner is
maximized even in the presence of selfish behavior.

In this paper, we assume that each secondary user vi will bid
a value bi for usage of some channels vacated by the primary
users. A secondary user may also imply (by its locations)
or specify some additional constraints for the usage of the
spectrums, such as the region where it will use the channels.

The first constraint is where the spectrums will be used.
We assume that each user vi will specify a two-dimensional
space requirement, which is typically a disk D(vi, ri) centered
at node vi with a radius ri. In other words, secondary user
vi wants an exclusive usage of Fi inside the disk D(vi, ri).
Notice that the requirement that the space required by each
secondary user is a disk is immaterial to results presented in
this paper. Our results will hold as along as regions required
by all secondary users have similar size and constant-bounded
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aspect ratio. Here the aspect ratio of a region (without hole)
is defined as its area divided by the square of its perimeter’s
length. For simplicity, all our proofs assume that the space
requirement by a secondary user is a disk with unit radius.

The second constraint is the time constraint which specifies
a time interval [si, ei] or a time duration di that node vi wants
an exclusive usage of Fi for that time interval or duration. In
other words, generally, we assume that for a bundle Fi ⊆ F
of channels, a space requirement specified by a disk D(vi, ri),
and a time constraint (time interval [si, ei] or a duration di)
user vi places a bid bi when it is single-minded. Otherwise,
it could bid bi,j for each channel fj separately with possible
different time constraints for each channel.

The central authority will design a mechanism which, upon
receiving bidding requests from different secondary users,
computes how to share the channels among the secondary
users, and computes a schedule of channels for the secondary
users subject to the time-space restriction: no two secondary
users that are interfered with each other are given the same
channel at any time. Last but not the least, the mechanism
should compute how much we should charge the secondary
users. The difficulty of this problem arises from two aspects.
Firstly, the correlation of the time and space among requests
from secondary users introduces high complexity compared
with traditional auctions [3], [6], [8], [16], [21], [25]. The
problem is NP-complete by the reduction from the problem
the maximum weighted independent set of disk graphs even
the time requirements of all agents over all channels are the
same or from the set packing problem even when all nodes are
co-located. Interference along already makes numerous related
problems untractable, not to mention the scheduling of the
channels.

The main contributions of this paper are as follows. First
we design efficient algorithms to allocate channels in different
cases such that the social efficiency (defined as the total val-
uations of all satisfied bidders) are approximately maximized.
Specifically, we design a polynomial time approximation
scheme (PTAS) for maximizing the social efficiency when all
secondary users are co-located, not single-minded, but could
have mixed time requirements. Here a secondary user is single-
minded if it requests a subset of channels and the assignment
is valid only if the exact subset of channels is allocated to this
user at the exact requested time. All users are co-located if
the space requirements of all users overlap at some point. We
design PTAS for maximizing the social efficiency when (1) all
secondary users are not single-minded (they can be allocated
any number of channels from their required channels), and
(2) the time-requirement by each secondary is specified by a
time-interval. Constant approximation algorithms are designed
when users are not single-minded but with possible mixed
time-requirements.

When users are single-minded and each user will bid for
a subset of channels, the problem does not have an approxi-
mation ratio within m1/2−ε for any ε > 0, unless NP=ZPP1,

1ZPP (Zero-error Probabilistic Polynomial time) is the complexity class
of problems for which a probabilistic Turing machine exists with these
properties: (1) It always returns the correct YES or NO answer; and (2) The
running time could be unbounded, but is polynomial on average for any input.

where m is the total number of channels in F [9], [16]. In
this case, we then design approximation algorithms with ratio
Θ(
√

m) when the space requirements by all secondary users
are unit disks. As a side-product of our algorithms, we are able
to show that a previously studied Scheduling Split Interval
Problem (SSIP) [2] cannot be approximated within O(t1−ε)
for any small ε > 0 unless NP = ZPP . There is a 2t
approximation method for SSIP [2].

Based on these approximation algorithms, we then design
strategyproof mechanisms to charge the secondary users such
that, under our mechanisms, each secondary user will max-
imize its own profit if it truthfully reported its own bid, no
matter what others will do. We essentially show that our
approximation algorithms satisfy a monotone property: if a
secondary user is satisfied with bid bi then it will still be sat-
isfied with a bid b′i > bi while the bids of all other secondary
users remain the same. Then a strategyproof mechanism can
always be designed, in couple with our algorithms with
monotone property, based on results from [13]. Notice that
here we focus on strategyproof mechanism solution concept
to address the noncooperative game among secondary users.
A number of other interesting solution concepts could be used
to study these games, such as Nash equilibria.

The rest of the paper is organized as follows. In Section II,
we define in detail the problems to be studied in this paper.
Then we review related results on those spectrum assignment
problems in Section III. From Section IV to Section VII, we
discuss algorithms for several versions of problems described
in Section II. In section VIII, we show how to design strate-
gyproof mechanisms based the algorithms we designed. And
we do simulations in section IX to study the performance of
our algorithms in experiment. At last we conclude the paper in
Section X with the discussion of some possible future works.

II. PRELIMINARIES

A. Network Model

Consider a wireless network system formed by some pri-
mary users U = {u1, u2, · · · , up} who hold the right of some
spectrum channels, secondary users V = {v1, v2, · · · , vn}
who want to lease the right to use some channels in some
region for some time period. In certain applications, each
secondary user vi may provide service to κi clients Zi =
{zi,1, zi,2, · · · , zi,κi} within a geometry region. Here uj , vi

and zi,k also represent the fixed two-dimensional geometry lo-
cation of these users. For simplicity, we treat all primary users
as one unified central authority. Let F = {f1, f2, · · · , fm} be
the set of m frequencies that can be used by some secondary
users for a given time interval [0, T ]. For some wireless
network systems, it is possible that the primary users will
only lease a spectrum frequency for a certain time interval
in a certain geographical region. If this is the case, we assume
that for each fi ∈ F , we associate it with a region Ωi and a set
of time intervals Ti that it is available. We assume that every
channel will be available everywhere and at all time slots. Our
results can easily deal with a general Ωi and Ti.

We divide the time into multiple time intervals and make
allocation on each interval at the beginning of that interval.



3

New secondary users may join the system. But they cannot
lease channels until next allocation begins. Existing secondary
users may leave the system at anytime. Observe that the total
time duration required by a user may last for several time
intervals. Thus, at the beginning of each time-interval, some
combination of channels and locations could be hold by users
from previous allocations. Our channel allocation schemes will
not use these channels at some specific regions.

We assume that a secondary user vi may wish to lease a set
of channels Fi ∈ F . For a bidding, the secondary user will
also specify two additional constraints: space requirement and
time condition. We assume that each user vi will specify a two-
dimensional region which is typically a disk D(vi, ri) centered
at node vi with a radius ri. In other words, secondary user
vi wants an exclusive usage of Fi inside the disk D(vi, ri).
Additionally, user vi also specifies a time interval [si, ei] or
a time duration di that node vi wants an exclusive usage of
Fi for that time interval or duration. Here it is assumed that
0 ≤ si < ei ≤ T and 0 < di ≤ T . A time interval requirement
implies that the secondary user wants the exclusive usage of
the channels Fi from time si to time ei. A time duration
requirement di implies that the secondary user wants the
exclusive user of channels for a time that lasted continuously
for di time units. It can be started from any time. Generally,
we use Ti to denote the time constraint of user vi, where Ti

is either [si, ei] or a scalar di > 0.
Two different models of secondary users will be studied in

this paper. The first model assumes that every secondary user
is single-minded: when a secondary user vi bids for Fi, the
valuation of vi over an assignment is 0 if the assignment does
not satisfy all requirements and not all frequencies in Fi are
allocated. The secondary user vi will be called flexible if it will
pay the central authority based on the frequencies allocated.
For a flexible user vi, we assume that for each channel fj ∈ Fi,
user vi will bid bi,j for the right to use the channel fj for
a certain time requirement and geographical requirement. In
this case, we use bi = {bi,1, bi,2, · · · , bi,m} to denote the bid
vector of user i, where bi,j = 0 if vi did not bid for fj . Thus,
a bidding by a user vi will be written as follows

Bi = [bi,Fi, D(vi, ri), Ti]

Upon receiving the bids from secondary users, the central
authority decides an allocation method

1) An allocation method X = {x1, x2, · · · , xn} where xi ∈
{0, 1} denotes whether user vi’s bid will be satisfied, and
also a time-interval [si, ei] with ei − si = di when user
vi required a time-duration di in the bid Bi.

2) A payment scheme P = {p1, p2, · · · , pn} where pi

denotes how much user vi should pay.

The allocation must be conflict free among satisfied bids. Here
two bids Bi and Bj conflict if Fi ∩ Fj 6= ∅, D(vi, ri) ∩
D(vj , rj) 6= ∅, and [si, ei] ∩ [sj , ej ] 6= ∅. The objective of an
allocation is to maximize

∑m
i=1 xibi. For simplicity, given a

set of bids Y , we use ω(Y ) to denote the total weight of bids
in Y , i.e.,

∑
Bi∈Y bi.

B. Introduction to Game Theory and Mechanism Design

A game includes a finite set of players (decision makers), a
set of actions and a set of utility functions that players wish to
maximize. Other games may include additional components,
such as the information available to each player and commu-
nication mechanisms. For example, in a sequential game, one
player makes his decision before others do so and the others
may have some information of the first decision which will
affects their strategies. And in a repeated game, players are
allowed to observe the actions of the other players, remember
past actions, and attempts to predict future actions of players.

Traditional applications of game theory attempt to find
equilibria in these games. In an equilibrium each player has
adopted a strategy that they do not want to change. And
many equilibrium concepts, for example, Nash equilibrium,
have been developed. Equilibrium analysis mainly attempts
to mathematically capture behavior in strategic situations, in
which an individual’s success in making decision depends on
the decision of others.

On the other hand, mechanism design, another branch of
game theory, is the study of designing rules of a game to
achieve a specific outcome [17], [18]. Unlike equilibrium
analysis, mechanism design mainly focus on how to design
rules to achieve a maximized social benefit even though each
user is selfish and how to design a mechanism such that selfish
users have incentive to follow the mechanism truthfully. In a
word, mechanism design uses the techniques of games theory
to develop rules for a game.

A standard model for mechanism design is as following.
There are n agents 1, 2, · · · , n. Each agents i has some private
information ti, which is called type, and a set of strategy
Ai from which it can choose. For each input vector a =
(a1, a2, · · · , an) where ai ∈ Ai is the strategy played by agent
i, the mechanism M = (O, P ) computers and output o =
O(a) and a payment vector p(a) = (p1(a), p2(a), · · · , pn(a)).
Here the payment pi(a) is the money we charge agent i
depending on the strategies vector a.

In our case, each secondary user vi is an agent i. The
valuation of request by vi is private type ti. Moreover, bid bi,
frequencies Fi and region D(vi, ri) are the strategy played by
secondary user vi. We need to design a strategyproof mech-
anism M = (O,P ), i.e., for each secondary user, reporting
its valuation truthfully will maximize its profit. Strategyproof
mechanisms should satisfy both incentive compatible (IC) and
incentive rational (IR) properties. An incentive compatible
mechanism is a mechanism in which an agent will maximize
its utility by reporting its private type truthfully. An individual
rational mechanism is a mechanism in which the utilities of
the agents participating in the output is not less than that of
those no participating in the output. In Section VIII, we will
show how to design strategyproof mechanisms based on the
algorithms we designed.

C. Problems Formulation

In this paper, we study several versions of spectrum assign-
ment problem by separately assuming whether the secondary
users are single-minded or not, whether their required regions
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D(vi, ri) overlap or not, whether all secondary users ask for
a fixed time-interval, or all users ask for some duration, or
the time-requirements are mixed among users. Then we design
strategyproof mechanisms based on those approximation algo-
rithms. Based on those algorithms and performance analysis,
the network system could decide an assumption combination
which is feasible in practice and results in more benefits
theoretically.

For notational convenience, we use CRT to denote a prob-
lem, where
• C denotes choice of spectrums by secondary users. Here

C will be either S (denoting that some secondary users
require a subset of channels and they are single-minded),
or F (denoting that every secondary user will bid sepa-
rately for each channel and is flexible), or Y (denoting
that there is only one channel available in the system, i.e.,
m = 1).

• R denotes region requirement by secondary users. Here
R will be either O (denoting that the required regions
overlap at some single point) or U (denoting that the
required regions are denoted by unit disks in 2D).

• T denotes time requirement by secondary users. Here T
will be either I (denoting that the required time by every
user vi will be an interval [si, ei]) or D (denoting that the
required time by every user vi will be a duration di) or
M (denoting that some users required a time interval and
some users required a time duration).

For example, problem SUI represents the case that each user
vi will bid for a subset of channels Fi and is single-minded,
will require a unit disk region D(vi, 1), and a fixed time-
interval [si, ei]. For each problem where every secondary user
will bid separately for each channel (called problem with C =
Y), we have a corresponding C = Y problem when considering
each user requires k channels as k duplicated users that each
of them requires 1 channel. Therefore, we don’t discuss these
C = F problems as they are special cases of C = Y problems.

Notice that each version of problem includes two parts,
the allocation methods and payment scheme as mentioned in
subsection II-A. In rest of this paper, we mainly focus the
allocation methods. Therefore, when we mention a version of
problem, we indicate its allocation problem without special
explanation.

We would like to point out some relations between the
complexity of different problems. For any problem in which
users have a mixed time requirement, i.e., problems in the
format T=M, it can be solved if the corresponding problems
in the format T=D and T=I are solved. For example, problem
SUM can be solved if problem SUD and problem SUI are
solved. More details and performance analysis will be given
in section IV.

Some versions of the problems turn out to be some well-
studied problems in the literature and some well-studied
problems turns out to be a special case of the above problems.
Problem YOI is essentially to compute the maximum weighted
independent set in interval graphs, which has a well-known
polynomial time algorithm by dynamic programming. Problem
YOD is essentially a knapsack problem, which has a well-
known polynomial time approximation scheme (PTAS) [5].

In this paper, we will mainly focus on the problems YOM,
YUI, YUD, and SUI. Problems YUM can be solved by
algorithm 2 based on our methods for problem YUI and
YUD. Also observe that SOI, SOD, SOM are special cases
of SUI, SUD, SUM respectively. And SUM can be solved
based our method for SUI and a method for SUD. Thus, the
only challenging question that is left unsolved is SUD.

III. LITERATURE REVIEWS

In this section, we briefly review literature related to the
problems studied in following sections. The allocation of
spectrums to users is essentially the combinatorial auctions,
which have been well-studied in the literature and a number
of algorithms [16], [21] have been proposed. And game theory
is also applied widely in resource management problems [1],
[14]. Specifically, the problems we will discuss are at the
intersection of a lot of famous problems, such as knapsack,
rectangle packing, set packing, combinatorial auctions, and so
on. Here we review results for some of these problems.

Knapsack problem, which is same as simple problem YOD
in our definition, has a classic fully polynomial time approx-
imation scheme (FPTAS) by the means of rounding [5], [22].
However, we cannot design a strategyproof mechanism using
this FPTAS since it is not monotone. An alternative rounding
scheme was proposed by Patrick Briest in [4], which gave
a new rounding scheme leading to a monotone FPTAS for
knapsack problem.

Rectangle packing problem is that, there is a set of small
rectangles with specific profits and a big rectangle, we try to
packing small rectangles into the big rectangle with maximal
total profit and no overlap among small rectangles. In [11],
Jansen and Zhang presented a (2+ε)- approximation algorithm
for rectangle packing problem which is similar with our prob-
lem YUI. Specifically, unit-height rectangle packing problem
is a special case of YUI if we don’t consider intersections in
space. Kovaleva described a PTAS for unit-height rectangle
packing problem in [15]. We extend this PTAS to a PTAS for
problem YUI as described in following section.

For the problem SUI such that secondary users require a
subset of channels and they are single-minded, it is a special
case of set packing problem. In [9], Hastad proved that set
packing problem cannot be approximated within m

1
2−ε, unless

NP = ZPP . Another special case of set packing problem is
Scheduling Split Intervals Problem (SSIP), which considers
how to schedule weighted jobs, where each job is given as
a group of non-intersecting t segments on the real line. Bar-
Yehuda et al. [2] gave an algorithm with 2t-approximation
ratio. We show how to convert the problem SUI to SSIP
and our method achieves an approximation ratio, which is
asymptotically tight, in following sections.

In this paper, we also discuss how to design truthful mech-
anism based on our algorithms to compute payment scheme.
The field of mechanism design [17], [18] aims to study how
privately known preferences of many people can be aggre-
gated towards a ”social choice”. Some tools of mechanism
design [7], [19] were applied to optimization problems that
involve selfish participants, which is similar to our problem.
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When users arrive in an online fashion and the system need
make a decision immediately or within a time-limit, recently
Xu et al. [26], [27] developed some mechanisms that can
ensure certain truthfulness and performance guarantee under
some assumptions. Using some concepts of Myerson auction,
Jia et al. [12] designed truthful spectrum auction for spectrum
access to (approximately) maximize the revenue.

IV. ALGORITHM FOR PROBLEM YOM

In this section, we design an approximation algorithm for
problem YOM, which is equivalent to the following problem.
Assume that we are given n1 secondary users whose time
requirements are time intervals [si, ei] for 0 ≤ si < ei ≤ T ,
1 ≤ i ≤ n1, with a weight bi > 0 for each interval; and n2

secondary users whose time requirements are time durations
di for 0 < di ≤ T , where n1 < i ≤ n2 + n1, with a weight
bi > 0 for each duration. Here n = n1 + n2. Our objective is
to select some secondary users such that their requests can be
satisfied in time segment [0, T ] without intersections while the
total weight is maximized. Algorithm 1 provides our method
that essentially uses algorithms for problem YOD, and YOI.

Algorithm 1 Constant Approximation for YOM
Input: n1 secondary users requiring time intervals and n2

secondary users requiring time duration.
Output: Some secondary users that can be satisfied in time
segment [0, T ] without intersections.

1: Find the optimal solution with the first n1 secondary users
by using dynamic programming. The detail of the dynamic
programming is omitted here due to its simplicity and
space limit. Let S1 denote the solution.

2: Find the approximated optimal solution with all users that
request time duration by using the PTAS for knapsack
problem, e.g., [5], [22]. Let S2 denote the solution.

3: Return one of the solution with larger total weight from
S1 and S2.

Theorem 1: Algorithm 1 is (1−ε)/2-approximation for any
1 > ε > 0.

Proof: For the n1 secondary users who request time inter-
vals, the optimal solution can be found in polynomial time by
dynamic programming. For the n2 secondary user who request
time duration, the optimal solution can be approximated within
1/(1 + ε′) for any 1 > ε′ > 0 by the PTAS for knapsack
problem. Here we also use S1, S2 and OPT to denote the
total weight of these solutions. Then S1 + 1

1+ε′S2 > OPT .
According to pigeonhole principle,

max(S1, S2) ≥
1− ε′

2−ε′

2
OPT

For each 1 > ε > 0, let ε = ε′
2−ε′ , we finish the proof.

Moreover, here we show a general method for those prob-
lems in which users have a mixed time requirement, i.e., prob-
lems in the format T=M, when the corresponding problems
in the format T=D and T=I are solved. The algorithm is as
following.

Theorem 2: Algorithm 2 is at least α1α2
α1+α2

-approximation.

Algorithm 2 Approximation Method for Problems with Mixed
Time Requirement

1: Find a channel allocation to all users who require for a
time-interval, i.e., T=I, using a method with an approxi-
mation ratio α1 ≤ 1;

2: Find a channel allocation to all users who require for a
time-duration, i.e., T=D, using a method with an approx-
imation ratio α2 ≤ 1;

3: Return the better solution of these allocations as the
solution of the problem.

Proof: In the optimal solution, suppose that β(0 ≤ β ≤ 1)
of the total profit comes from the users who require for a time
duration; and 1 − β of the total profit comes from the users
who require for a time interval. Algorithm 2 will give us a
max(βα1, (1−β)α2) approximation by pigeonhole principle.
The minimum value of max(βα1, (1− β)α2) is α1α2

α1+α2
when

β = α2
α1+α2

. Therefore we finish the proof.

V. PTAS FOR PROBLEM YUI

In this section, we present a polynomial time approximation
scheme for the problem YUI, where there is only a single
channel available, the required region by every secondary
user vi is a unit disk, and each user vi asks for a time-
interval [si, ei]. The PTAS runs in O(n

1
ε2 ) time and provides

an approximation factor of (1− ε) where n is the number of
secondary users.

Fig. 1. An illustration of cylinder graph.

Notice that finding the set of bids with the maximum value
is equivalent to solve the maximum weighted independent set
in the following intersection graph of cylinders. Each bid

Bi = [bi,Fi, D(vi, ri), Ti]

defines a three dimensional cylinder Bi = (D(vi, ri)×[si, ei])
with weight bi. See Figure 1 for illustration. For simplicity,
we assume that the three axes are X , Y and Z and the axis
Z denotes the time dimension. The disk D(vi, ri) is called
the base of the cylinder Bi. The intersection graph has all the
cylinders as its vertices, and two vertices form an edge if the
corresponding two cylinders overlap. The weight of a vertex
is the bid value of the corresponding secondary user.

Our PTAS is based on the shifting strategy developed in
[10]. We will partition the space using hyperplanes perpen-
dicular to X-axis and hyperplanes perpendicular to Y -axis.
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Fig. 2. An illustration of partition of space using hyperplanes (k = 6). This
is a view from the top (Z-axis).

See Figure 2 for illustration, which shows a slice produced
by cut the space using the hyperplane Z = 0. In such a
partition, we will throw away some cylinders that intersect
some special hyperplanes X ≡ a mod k and Y ≡ b mod k
for some special values of a and b and a given integer k, and
then solve the sub-instances of cylinders contained in each cell
individually. Here a cell is a 3-dimensional cuboid defined by
{(x, y, z) | a+ik ≤ x ≤ a+(i+1)k, a+jk ≤ y ≤ a+(j+1)k}
for some integers i and j. Let instance I be the set of all
n cylinders. For any given integer k > 1, we derive k2

polynomially solvable sub-instances from the given instance
I in polynomial time. The best value of those sub-instance
solutions is at least (1 − 2

k )ω(OPT (I)), where OPT (I) is
the optimal solution on I and ω(OPT (I)) is the value of
the solution. Then, solve these sub-instances using a dynamic
programming procedure and return the solution with best
value.

Algorithm 3 A PTAS for Problem YUI
Input: A given instance I and a given integer k > 0.
Output: A group of secondary users that can be satisfied
without intersections.

1: Derive k2 sub-instances from the given instance I in
polynomial time. The procedure of deriving will be shown
in subsection V-A.

2: Solve each sub-instances in polynomial time. The proce-
dure of solving will be shown in subsection V-B.

3: Return the solution with the largest total weight in those
solutions to sub-instances.

A. Deriving sub-instances

For simplicity, we assume that the diameter of all disks
D(vi, ri) is 1 and we also assume that the disk is open
disk. Draw a grid consisting of hyperplanes x = i (for
i ∈ Z) perpendicular to X-axis and hyperplanes Y = j
(for j ∈ Z) perpendicular to Y -axis. The distance between
every two parallel neighbor hyperplanes is the diameter of unit
disk. So each cylinder will be hit by at most one hyperplane
perpendicular to X-axis and at most one hyperplane line
perpendicular to Y -axis.

For each i, j belong to {0, 1, · · · , k − 1}, we compose a
sub-instance Ii,j containing all cylinders except those being
hit by a hyperplane from {x = p | p ≡ i mod k} or hit by
a hyperplane from {y = p | p ≡ j mod k}. There are k2

different sub-instances. For each sub-instance, we calculate
its optimal solution using the dynamic programming in every
of the k × k grids, which will be described in detail in the
next subsection. We first establish a technical lemma for the
performance guarantee, then prove our algorithm achieve (1−
ε)-approximation for any 1 > ε > 0.

Lemma 3: For at least one sub-instance Ii,j , 0 ≤ i, j < k,

ω(OPT (Ii,j)) ≥ (1− 2
k

+
1
k2

)ω(OPT (I)).

Proof: Let us project all cylinders to the plane Z = 0
and we only focus on this plane Z = 0. If a disk is hit by a
horizontal line i, it will be dropped k times in the sub-instances
Ii,0, Ii,2, · · · , Ii,k−1. Same result also applies to the case that
it is hit by a vertical line j. Here we double count the number
of dropping once when the disk is hit by a horizontal line and
a vertical line at same time. Therefore each disk is included in
at least k2 − 2k + 1 sub-instances. Therefore the disks in the
optimal solution of I are also included in at least k2− 2k +1
sub-instances, which means

∑

i,j∈{0,1,··· ,k−1}
ω(Ii,j

⋂
OPT (I)) ≥ (k2−2k+1)ω(OPT (I))

The best value of these sub-instance so-
lutions max0≤i,j<k ω(Ii,j

⋂
OPT (I)) ≥

1
k2

∑
0≤i,j<k ω(Ii,j

⋂
OPT (I)) ≥ (1− 2

k + 1
k2 )ω(OPT (I)).

The lemma then follows directly from the fact that
ω(OPT (Ii,j)) ≥ ω(Ii,j

⋂
OPT (I)).

Theorem 4: Algorithm 3 is (1 − ε)-approximation for any
1 > ε > 0.

Proof: According to previous lemma, by setting k = 2/ε,
our algorithm implies that we have a PTAS (i.e., finding a
solution whose total value is at least 1 − ε times of the
optimum) for problem SUI in time n

1
ε2 .

For each sub-instance, each disk is in a k×k grid. The disks
in different grid won’t intersect each other. So the solution in
each k × k grid is independent. In the following subsection,
we show that the problem in a k × k grid is polynomially
solvable.

B. Dynamic programming

Here we describe a dynamic programming approach to find
a maximum weighted independent set for an instance Ii,j . We
only consider cylinders contained in one k × k cell of Ii,j .

It is easy to show that the following simple greedy method
does not work. A simple greedy method works as follows: it
sorts the secondary users in the decreasing order of their bids,
say {v1, v2, · · · , vn} is the sorted list, and for i = 1 to n, a user
vi is granted the channel only if it will not cause any conflict
with previously assigned users. Since the time requirement of
that secondary user could intersect with a group of secondary
users whose total bids are arbitrarily larger, the approximation
ratio could be arbitrarily bad.
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For cylinders in each k×k cell, our dynamic programming
method first sort them in non-decreasing order of their ending
time ei. For simplicity, let B1, B2 · · · , Bi, · · · , Bn be the n
cylinders contained in one cell in the sorted order. In the rest
of subsection, we will use i to denote the cylinder Bi.

Definition 1: Pile: A pile is an ordered collection
〈j1, j2, · · · , jq〉 of pairwise non-intersecting cylinders that
intersect a common hyperplane z = b (for some value b)
perpendicular to Z-axis. Here ji is the ending time of a
cylinder Bji and jt < jt+1.

Given a hyperplane z = b for some fixed value b, in a
pile that was hit by z = b, there are at most 2k2 cylinders
in the pile. Notice that all cylinders in this pile intersect the
hyperplane z = b and are disjoint from each other. Then an
area argument implies that the number of cylinders in a pile
is at most k2/π

4 < 2k2.
Lemma 5: The total number of all possible piles in each

k × k grid is polynomial of n.
Proof: There are k hyperplanes perpendicular to X-axis

and k hyperplanes perpendicular to Y -axis in a k×k grid. So
there are k2 intersections defined by these hyperplanes in each
cell. Also there are k2 center points in the k2 small squares in
each grid. Each unit disk in the k×k grid will be hit by either
an intersection or a center point. The disks hit by the same
intersection or center points must intersect with each other.

For each intersection or center point, we enumerate number
of disks hit by the intersection or center point. Then we can
get O(n2k2

) combinations which include all possible piles in
the grid. Since there are O(2k2) cylinders in a pile, we can
check whether a combination of at most 2k2 cylinders is a
pile in time O(k4).

Our dynamic programming approach will first sort the piles
based on an order defined below; then find the optimum
solution of all cylinders that are ordered in front of a pile.

Definition 2: Define an order on the set of piles as follow-
ing: 〈j1, j2, · · · , jl〉 ≺ 〈i1, j2, · · · , im〉 if (1) jl < im, or (2)
jl = im and 〈j1, j2, · · · , jl−1〉 ≺ 〈i1, j2, · · · , im−1〉, or (3)
m = 0.

Definition 3: Let OPT (X | j1, j2, · · · , jl) be the maxi-
mum total weight of pairwise non-overlapping cylinders from
set X given that cylinders j1, j2, · · · , jl already occupy their
places. For a set of non-overlapping cylinders {j1, j2, · · · , jl}
and a cylinder t with t < j1, we define the marginal contribu-
tion, denoted as Rj1,j2,··· ,jl

(t), of cylinder t to OPT (i : i ≤
t | j1, j2, · · · , jl) as

(OPT (i ≤ t | j1, j2, · · · , jl)−OPT (i < t | j1, j2, · · · , jl))
+

.

Here (x)+ = max{0, x}.
Based on the above definition, a cylinder t has positive

marginal contribution Rj1,j2,··· ,jl
(t) will clearly be used in an

optimum solution OPT (i ≤ t | j1, j2, · · · , jl). If its marginal
contribution is 0, then it means that there is one optimum
solution OPT (i ≤ t | j1, j2, · · · , jl) that will not use the
cylinder t.

As proved in [15], it is easy to show that

OPT (i ≤ t | j1, j2, · · · , jl) =
t∑

i=1

Rj1,j2,··· ,jl
(i)

Here, Rj1,j2,··· ,jl
(t) = bt + OPT (i < t | j1, · · · , jl, t) −

OPT (i < t | j1, · · · , jl). We then present our dynamic
programming to find an optimal solution in each k×k cell as
following Algorithm 4.

Algorithm 4 Find Maximum Weighted Independent Set of
Cylinders in Each Cell
Input: A set S of weighted cylinders contained in a cell.
Output: An optimum maximum weighted independent set in
S.

1: Find all the piles P of cylinders from S and sort them in
the order of ≺;

2: Take the piles one by one in the order starting from the
least one. For each pile 〈j1, j2, · · · , jl〉 calculate and store
in the memory the value Rj2,··· ,jl

(j1) according to the
formula:

Rj2,··· ,jl(j1) =

(
bj1 +

∑
i:i<j1

Rj1,j2,··· ,jl(i)−
∑

i:i<j1

Rj2,··· ,jl(i)

)+

3: After all the piles corresponding values of Rj2,j3,··· ,jl
(j1)

is calculated for every possible pile p = 〈j1, j2, · · · , jl〉 ∈
P , we schedule the cylinders in the following way. Con-
sider cylinders from S in the order of decreasing number.
Take a cylinder j next in that order. Suppose that cylinders
{j1, j2, · · · , jl} are already scheduled, then schedule j iff
Rj1,j2,··· ,jl

(j) is positive.

Theorem 6: The running time of our dynamic programming
is at most O(n2k2+1) in the worst case.

Proof: From lemma 5, we know that the total number of
piles is at most n2k2

. Thus, it takes at most O(n2k2
lg n) to

sort them. To find each cylinder’s marginal contribution Rp(j),
it costs n ·n2k2

. Thus, the total time is at most O(n2k2+1).
Notice that O(n2k2

lg n) is the worst case time complexity
in which we assume that, in the computation of the dynamic
programming, there is a certain hyperplane such that there
are Θ(n) cylinders, defined by the bids with bases contained
in a k × k region, which intersect this hyperplane. The
actual time complexity actually depends on the number of
independent set of cylinders intersecting a hyperplane, which
could be much smaller than n in practice. For example, if the
arrivals of requests from users are randomly distributed, the
network system could set a larger interval [0, T ] comparing
with the users’ time requirement. The number of independent
set of cylinders intersecting a hyperplane would decrease
significantly and total time complexity would be much lower
than the theoretical bound. Our simulation studies verified our
claim and showed that the algorithm actually runs efficiently.

VI. ALGORITHM FOR PROBLEM YUD

In this section, we design an approximation algorithm with
a constant approximation ratio for problem YUD, where there
is only a single channel available, the required region by every
secondary user vi is a unit disk and each user vi asked for a
time duration di. We can use the same graph of cylinders
which is mentioned in the previous section. See Figure 1 for
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illustration. Notice that the cylinders can move along the axis
Z in this problem since each user asks for a time duration.

The main idea here is to partition cylinders into g groups
such that we can solve the maximum weighted independent set
in each group and then take the group with the best solution.
By pigeonhole principle, we know that it will give us 1/g
approximation. We mainly will focus on designing a partition
with minimum constant value g.

For simplicity, we assume that the radius of every disk
D(vi, ri) is 1 and we also assume that the disk is open disk.
Draw a grid consisting of hyperplanes x = 2+

√
2

3 i (for i ∈ Z)
perpendicular to X-axis and hyperplanes y = 2+

√
2

3 j (for
j ∈ Z) perpendicular to Y -axis. The distance between every
two parallel neighbor hyperplanes is 2+

√
2

3 times the radius of
unit disk.

Algorithm 5 Constant Approximation Method for SUI
Input: An instance for problem SUI.
Output: A group of secondary users who could be satisfied
without intersections.

1: For each i, j ∈ {0, 1, 2}, find a group that contains all
cylinders except those being hit by a hyperplane from
{x = 2+

√
2

3 p | p ≡ i mod 3} or hit by a hyperplane
from {y = 2+

√
2

3 p | p ≡ j mod 3}. Denote the group as
Gi,j .

2: Solve the subproblem for each group.
3: Return the solution with largest total weight in those

solutions to all groups.

Lemma 7: All cylinders in instance are included in at least
one of these groups.

Proof: Consider the X-Y plane. All cylinders are unit
disks on the plane. Since the radius of these disks is 1 and the
distance between every two parallel neighbor hyperplanes is
2+
√

2
3 , a disk is hit by at most 2 parallel neighbor hyperplanes

perpendicular to one axis. Therefore all disks must be in a 3×3
cell. Group G0,0, G0,1, · · · ,G2,2 represents all different groups
with 3× 3 cell on the plane. So all cylinders are included in
at least one of these groups.

Theorem 8: Algorithm 5 is 1/9-approximation and polyno-
mial time solvable.

Proof: For each group, the disks in different cells cannot
intersect with each other. So the solution in each cell is
independent. We can solve these subproblems in each cell one
by one and achieve the final result.

Considering the subproblem in each 3 × 3 cell, the disks
must intersect with each other, which means that we can select
only one disk at any time. Therefore the subproblem becomes
a knapsack problem. We can solve it with a FPTAS. So each
group can be solved with a FPTAS. We can then solve the 9
groups in polynomial time and have a 1/9 approximation by
pigeonhole principle.

VII. ALGORITHM FOR PROBLEM SUI

In this section, we design an approximation algorithm with
approximation ratio Θ(

√
m) for problem SUI where m is the

total number of available channels. Here we say an algorithm
for SUI has approximation ratio α, if for all instances it will
return a solution at least 1/α of the optimum.

Notice that the set packing problem is a special case of
the problem SUI due to the following observation. Recall
that in a set packing problem, we are given a universal set
E (with size m) and a set of subsets S = {S1, S2, · · · , Sn},
where each subset Si ⊂ E is associated with a weight wi.
We need to find a subset of S such that the selected subsets
are disjoint and the summation of their weights is maximized.
Given a set-packing problem, we can easily define a problem
SUI as follows: F ← E , Fi ← Si, bi ← wi, and D(vi, ri)
centered at the point (0, 0). These two problems will have
the same optimum solution. Recall that set packing problem
cannot be approximated within m1/2−ε for any ε > 0, unless
NP=ZPP, i.e., some NP problem can be solved in probabilistic
polynomial time. Thus, we have

Lemma 9: Problem SUI cannot be approximated within
m1/2−ε for any ε > 0, unless NP=ZPP.

Using the same partition method in Section 5, we can get
an asymptotical optimum approximation based on the approx-
imation optimal solution in each group. Next, we will focus
on designing an algorithm for each group with approximation
ratio Θ(

√
m). In the rest of the section, we assume that the

disks D(vi, ri) of all bidders conflict with each other, e.g.,
having a common point.

For set packing problem, a greedy algorithm was proposed
in [16] that will find a solution whose total weight is at
least 1√

m
fraction of the optimum solution. Their method2,

by interpreting using the terms in this paper, will first sort
the bidders in decreasing order of bi√

|Fi|
, where |Fi| denotes

the number of frequencies in Fi. The method processes the
bidders in this order and a bidder i is selected only if it will
not cause conflict with any of the previously selected bidders.

In addition, since the set packing problem is essentially
the maximum weighted independent set (MWIS) problem, we
could also use heuristics for MWIS to find a good solution
for set packing. In [23], Sakai et al. studied the performances
of three simple greedy approaches: GWMIN, GWMAX, and
min-weight-ratio. The heuristic GWMIN always recursively
adds a vertex v minimizing W (v)

dGi
(v)+1 among all vertices in

graph Gi; and then remove v and all adjacent vertices from
Gi to get graph Gi+1. It starts with G1 = G for the first
step. The heuristic GWMAX always recursively adds a vertex
v minimizing W (v)

dGi
(v)(dGi

(v)+1) among all vertices in graph
Gi; and remove v and all its adjacent vertices. The heuristic
min-weight-ratio will always adds a vertex v minimizing∑

u∈NGi
(v) W (u)

W (v) , where NGi(v) is the set of adjacent vertices
of v in graph Gi. It was proved in [23] that heuristics
GWMIN and GWMAX both have approximation ratio Θ( 1

∆ )
and the heuristic min-weight-ratio has approximation ratio∑

v∈V
W (v)2∑

u∈NG(v) W (u) . Here ∆ is the maximum node degree
and w(u) is the weight of the vertex u.

We begin our investigation of algorithm by first showing
that a simple straightforward extension of the above algorithms

2Notice that here the sorting is not based on naive criterion bi
|Fi| .
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could result in an arbitrarily large approximation ratio for our
SUI problem.

First, let us consider the method in [16]. Sorting the bidders
by descending bi√

|Fi|×di

is a very reasonable idea. But this

approach may perform arbitrarily bad. Consider the following
example. Assume that there are only two bidders, i and j:
bi À bj and di is so large that bi√

|Fi|×di

<
bj√

|Fj |×dj

, if we

choose bidder j but not bidder i, the total weight we get is
bj , that is arbitrarily smaller than the optimum solution bi.

Second naive method is to sorting the bidders by nonde-
creasing order of b(Ni)

bi
. Here we use b(Ni) to denote the total

weight bided by the bidders who intersect bidder i, and we call
Ni the neighbors of bidder i. Unfortunately, a simple example
shows that this approach may also perform quite poorly; see
Figure 3 for illustration. Assume that bidder i bids

√
n+ε and

each i’s neighbor bids exactly 1. According to nondecreasing
order of b(Ni)

bi
, we will choose bidder i instead of all its

neighbors since n√
n+ε

<
√

n+ε
1 . The total weight we get is√

n+ ε, but the optimum solution is to select all nodes bidder
1, which give us n. This example shows that this naive method
will have approximation ratio at least Ω(

√
n), i.e., the solution

returned is at most O( 1√
n
) of the optimum for some instances.

= time interval bidded by i
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= time intervals bidded by Ni

Fig. 3. This is a view from the lateral face(XY -axis).

In the rest of section, we will design a polynomial time
algorithm for problem SUI with approximation ratio Θ(

√
m).

A. Θ(
√

m)-Approximation Algorithm For SUI with Single
Time Interval

Consider each frequency set bided by different bidders.
Assume that every bidder bids k frequencies and single time
interval. When k = 1, obviously the optimum solution is the
union of the optimum solutions OPTi, where OPTi is the
optimum solution for the set of users who do bid for frequency
fi. Notice that we can compute the optimal solution OPTi

using dynamic programming.
Next, we will focus on the scenario in which k > 1, i.e.,

each bidder bids for at least k different frequencies. In the
following part, we will use OPT to denote the global optimal
solution. For each frequency fi, let OPT |i be the set of users
in OPT that bid for frequency fi. Obviously, we have

m∑

i=1

OPT |i ≥ k ×OPT,

since each user in OPT will appear in at least k different

OPT |i. Thus,

max{OPT |1, OPT |2, · · · , OPT |m} ≥ k

m
×OPT.

Algorithm 6 Asymptotically Optimum Method for SUI with
Single Time Interval
Input: An instance for problem SUI
Output: A group of secondary users who could be satisfied
without intersections.

1: Partition the bidders into two groups:
1) Z1 contains all the bidders that bid at least

√
m

frequencies; and
2) Z2 contains all the other bidders, i.e., bid less than√

m frequencies.
2: Approximate the optimal solution for Z1 and Z2 using

best available polynomial-time method.
3: Return the larger solution.

We will show algorithms with approximation ratio Θ(
√

m)
for both groups respectively. Then obviously, the maximum
of these two solutions will give us Θ(

√
m) approximation for

SUI.
Lemma 10: For SUI with group Z1, there is a polynomial-

time method with approximation ratio Θ(
√

m).
Proof: First for users in group Z1, we just use

max{OPT1, OPT2, · · · , OPTm} as our solution. Since each
bidder bids at least k ≥ √

m frequencies,

m
max
i=1

OPT (Z1)|i ≥
√

m

m
OPT (Z1) =

1√
m

OPT (Z1).

Here OPT (Zj) is the optimal solution for users in group Zj

for j = 1, 2. For bidders in Z1, we use Ii to denote the set
of bidders in Z1 that bid for frequency fi. Then we find the
maximum weighted independent set OPTi of Ii using stan-
dard dynamic programming. Obviously, OPTi ≥ OPT (Z1)|i.
Thus, we have

m
max
i=1

OPTi ≥ m
max
i=1

OPT (Z1)|i ≥ 1√
m

OPT (Z1).

This finishes the proof.
Lemma 11: For users in group Z2, there is a polynomial-

time method with approximation ratio Θ(
√

m).
Proof: We will convert this problem into the Schedul-

ing Split Intervals Problem (SSIP) [2]. The ordinary SSIP
considers the problem of scheduling jobs that are given as
groups of non-intersecting segments on the real line. Each job
Ji is associated with an interval, Ij , which consists of up to t
segments, for some t ≥ 1, and a positive weight, wj . Two jobs
are in conflict if any of their segments intersect. The objective
is to schedule a subset of non-conflicting jobs with maximum
total weight.

In [2], they gave an algorithm with 2t-approximation ratio
for problem SSIP. Here we create a special instance for
SSIP problem as follows. Let [0, T ] be the original time
period where bidders can place their time-interval [si, ei], i.e.,
0 ≤ si ≤ ei ≤ T for every bidder i. We then create a
bigger time period [0,m · T ] where m is the total number of
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frequencies. Then a user i will be associated with following
ti = |Fi| <

√
m segments in [0, m · T ]:

{[(j − 1) · T + si, (j − 1) · T + ei] | fj ∈ Fi, 1 ≤ j ≤ m}

In other words, we duplicate the period [0, T ] m times for
each of the frequencies in F , and a user i will have a segment
in the jth duplication if it bids for frequency fj . Then there
are at most

√
m segments for every bidder. Then based on

algorithms in [2], we get 2
√

m-approximation solution, i.e.,
find a solution with value at least OPT (Z2)

2
√

m
.

Theorem 12: Algorithm 6 has approximation ratio Θ(
√

m)
for problem SUI with single time interval.

Proof: Let OPT (Z1) and OPT (Z2) be the optimum
solution for group Z1 and group Z2 respectively. Then the
maximum of these two solutions is at least

max
(

OPT (Z1)√
m

,
OPT (Z2)

2
√

m

)
≥ 1

3
√

m
OPT,

since either OPT (Z1) ≥ 1
3OPT , or OPT (Z2) ≥ 2

3OPT
from OPT (Z1)+OPT (Z2) ≥ OPT . We finish the proof.

Notice that by using a different group partition, where group
Z1 contains the bidders that bid for at least

√
m
2 , we get an

algorithm with approximation ration
√

2
4
√

m
.

As a byproduct of our result, we show that for problem SSIP,
there is no approximation algorithm with ratio O(t1−ε) for any
ε > 0 unless NP = ZPP . To the best of our knowledge, we
are the first one to prove this.

Theorem 13: For problem SSIP, there is no polynomial-
time approximation algorithm with ratio O(t1−ε) for any ε > 0
unless NP = ZPP .

Proof: We prove this by contradiction. Assume that there
is a polynomial-time algorithm A with ratio O(t1−ε) for some
ε > 0. We will use this algorithm to design an algorithm for
solving the problem SUI with approximation ratio O(m

1
2−ε′)

for some ε′ > 0. We partition the bidders into two groups:
group Z1 contains all bidders requiring at least m

1
2−ε frequen-

cies; group Z1 contains all other bidders. We then solve the
SUI problem as our previous discussion: finding a maximum
independent set in Z1 using max1≤i≤m OPT (Ii); finding a
maximum independent set in Z2 using a SSIP transformation.
Obviously, we have

OPT (Z1) = max
1≤i≤m

OPT (Ii) ≥ m
1

2−ε

m
·OPT,

and for some constant c > 0,

OPT (Z2) ≥ c · 1

m
1

2−ε (1−ε)
·OPT.

It is easy to show that max{OPT (Z1), OPT (Z2)} will give
us a solution that is at least O( 1

m
1
2−

ε
4−2ε

) times of the
optimum. Notice that here ε is a certain fixed constant. This
implies that we have an algorithm for SUI (and thus set-
packing problem) with approximation ratio m

1
2−ε′ , where

constant ε′ = ε
4−2ε > ε

4 . This is clearly impossible if NP
is not equal to ZPP. This finishes the proof.

B. Θ(t
√

m)-Approximation Algorithm For SUI With t Time
Intervals

Different from the above case, assume that every secondary
user could requires t time intervals (or at most t time intervals)
and bids for a set of frequencies. We need to find a subset of
non-conflicting users with the maximum total bid value. Ob-
viously, when all users bid for more than b|F|/2c frequencies,
every pair of users will have a common requested frequency.
Thus, for this case, computing the approximation solution for
each frequency is exactly the traditional SSIP. And we can get
2t-approximation solution for this special case.

Here we show that Algorithm 6 also works for this case.
Lemma 14: For users in group Z1, there is a polynomial-

time algorithm for SUI with approximation ratio Θ(t
√

m).
Proof: For group Z1, for each frequency fi, let

OPT (Z1)|i be the set of users in OPT (Z1) that bid for
frequency fi and let OPTi be the optimum solution for users
in Z1 whose bid contains frequency fi. Clearly, ω(OPTi) ≥
ω(OPT (Z1)|i). We just use maxm

i=1 OPTi as our solution.
Assume that each user bids at least k frequencies. Then we
have

∑m
i=1 OPT (Z1)|i ≥ k ×OPT (Z1), which implies that

m
max
i=1

OPT (Z1)|i ≥ k

m
OPT (Z1).

Since each bidder bids at least k ≥ √
m frequencies,

m
max
i=1

OPTi ≥
√

m

m
OPT (Z1) =

1√
m

OPT (Z1).

The SSID problem has a polynomial-time algorithm with
approximation ratio 1

2t , which implies an algorithm with
approximation ratio 1

2t·√m
for problem SUI with users in Z1.

Lemma 15: For users in group Z2, there is a polynomial-
time algorithm with approximation ratio Θ(t

√
m).

Proof: We can also convert this problem into SSIP [2].
Similarly, we duplicate the period [0, T ] m times for each of
the frequencies in F , and a user i will have t segments in
the jth duplication if it bids for frequency fj . Then there are
at most t × √

m segments for every bidder. Then based on
algorithms in [2], we get 2t×√m-approximation solution for
OPT (Z2).

Theorem 16: Algorithm 6 is Θ(t
√

m) approximation for
problem SUI with t time intervals.

Proof: Let OPT (Z1) and OPT (Z2) be the optimum
solution for group Z1 and group Z2 respectively. Then the
maximum of the above two solutions is at least

max
(

OPT (Z1)
t
√

m
,
OPT (Z2)

2t
√

m

)
≥ 1

3t
√

m
OPT,

since either OPT (Z1) ≥ 1
3OPT , or OPT (Z2) ≥ 2

3OPT
from OPT (Z1) + OPT (Z2) ≥ OPT .

Notice that by using a different group partition, where group
Z1 contains the bidders that bid for at least

√
m
2 , we can also

get an algorithm that finds a set of secondary users with profit
that is at least

√
2

4t
√

m
fraction of the optimum.
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VIII. STRATEGYPROOF MECHANISM DESIGN

From section IV to section VII, we mainly focus on the
allocation methods, i.e. who will get the channels, for different
versions of problems. Recall that we also need to compute
payment schemes, i.e., how much each secondary user should
pay. In this section, we show how to design a truthful
mechanism based on the algorithms discussed in previous
sections to compute payment schemes. The mechanism should
be strategyproof, i.e., for each secondary user, reporting its
valuation truthfully is its dominant strategy.

A strategyproof mechanism should satisfy both IC and IR
properties which was introduced in Section II-B. To satisfy
these properties, the underlying allocation method must be
a monotone output algorithm O. Then we can design the
payment based on a critical payment scheme P . It was proved
that all strategyproof mechanisms should have a monotone
allocation method and their payment schemes are based on
the cut value [13]. Here an allocation algorithm is monotone
if, for an agent that is allocated, the agent will still participate
in the output when it increases its bid. We define a critical
value θi, i.e., the minimum valuation vi that makes agent i
participate in the output. A critical value payment scheme PO

for an algorithm O is that pi = θi if agent i is in the output,
otherwise, pi = 0. If O is a monotone algorithm and PO

is a critical value payment scheme for O, M = (O, PO) is a
strategyproof mechanism [13]. Now let us consider whether al-
gorithms described in previous sections are monotone. If they
are monotone, we also have relevant strategyproof mechanism.

In these algorithms, we used technology of dynamic pro-
gramming, grouping and the classic FPTAS for knapsack
problem. Dynamic programming and grouping clearly do not
affect the monotone property. However, the classic FPTAS [5],
[22] for knapsack problem is not monotone. We know that
classic FPTAS for knapsack uses bnpi

εP c to round all values
down to a smaller value, where n is the number of items,
pi is the profit of item i, P is the maximal possible profit.
Then solve the knapsack by using dynamic programming. For
more details, see [5], [22]. Here is a counterexample why these
methods are not always monotone. Suppose a knapsack with
size 300, item 1, 2 and 3’s profits and sizes are all 100, item
4, 5, 6 and 7’s profits and sizes are all 75. We choose ε = 7

15 .
After rounding, item 1, 2 and 3’s profits are both 15, item 4,
5, 6 and 7’s profits are all 11. So the solution of knapsack is
item 1, 2 and 3. However, if item 1 increases its profit to 101,
after rounding, item 1’s profit is 15, item 2 and 3’s profits are
both 14, item 4, 5, 6 and 7’s profits are all still 11. Therefore
solution will be item 4, 5, 6 and 7. Item 1 will not participate
in the solution when increasing its bid, which means that this
FPTAS is not monotone.

Now our question becomes whether there is a monotone
FPTAS for knapsack problem. If we have such FPTAS, all
algorithms in previous sections can be monotone, because
combinations of monotone methods is still monotone. In [4],
Briest proposed an alternative rounding scheme that transforms
a pseudopolynomial algorithm into a monotone FPTAS for
knapsack problem. Using this FPTAS for knapsack prob-
lem, all algorithms presented in previous sections will be

monotone. Therefore we can design strategyproof mechanisms
M = (O, PO) for all problems discussed in previous sections.
Observe that the payment of any agent i in a strategyproof
mechanism is always at most its bid bi. Due to space limit
and its simplicity, we omit all mechanisms here.

Dynamic User Join and Leaving: So far we assumed
that when we make spectrum allocation and decide the pay-
ment from secondary users, we know all the requests by all
secondary users. This is also the assumption made by the
majority results in the literature. In practice, it is possible
that secondary users may arrive in an online fashion and
we are required to make a decision on whether to grant the
request of a secondary user immediately or within a certain
time limit. To address such challenge, we propose a simple
solution here. We divide the time into multiple time intervals
(the length of a time interval depend on applications) and
make allocation on each interval at the beginning of that
interval. New secondary users may join the system anytime.
However, they cannot lease channels until next allocation
begins, i.e., they will be considered at the beginning of next
time interval. Existing secondary users may leave the system
at anytime since we already charged the existing secondary
users. After a secondary user leaves, it releases the right to
the channels allocated at its required region. If a secondary
user leaves earlier than its reserved time, here we assume
that no compensation from the system will be given. At the
beginning of any time interval, we run our mechanisms for
only newly arrived secondary users without using the channels
at regions already occupied by existing users. When secondary
users will not lie about their arrival time, we can show that
our mechanisms are still truthful and efficient.

IX. SIMULATIONS

We conduct extensive simulations to study the performances
of our algorithms, mainly algorithms for problem YUI. We
also study the performance of the mechanisms by comparing
the payment charged to all users and the total valuations of
all allocated users.

In our simulations, we generate random requests with
random bid, random time requirement and random space
requirement. The bid of each request is uniformly drawn from
all integers in [1, 100]. The length of each time interval is
uniformly drawn from all integers in [1, 10] and the start time
of each time interval is uniformly distributed in [0, 100]. The
space requirement of each user is a unit disk. Each unit disk
is uniformly distributed in a 100× 100 square area.

One aspect may affect the results is the degree of compe-
tition. We use the average number of requests generated to
represent the degree of competition. For mechanism design,
more competition often means that the collected payment by
our strategyproof mechanism is closer to the total valuations
of all allocated users.

We first study the approximation ratio of our method for
problem YUI in simulations. From Fig 4, obviously, the
approximation ratio increases when k increases, where k is
the size of a cell used in our method. This is because when k
increases, less cylinders defined by users’ requests are thrown
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Fig. 4. The approximation ratio of algorithm for problem YUI
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Fig. 5. The efficiency ratio of mechanism for problem YUI

away during the step of dynamic programming. Therefore,
the approximation ratio increases significantly. On the other
hand, we found that the degree of competition does not
affect approximation ratio much. Three curves which represent
different degree of competition are very close to each other. It
means the approximation ratio mainly depends on parameter
k. We can observe that the approximation ratio is a litter bit
worse when the competition is intense. This is because when
there are more cylinders defined by users’ requests, they tend
to distribute in different area evenly.

Of course, the performances of our method in simulations
are always better than the theoretical bound in performance
analysis. We can see that even with a small parameter k,
i.e. k = 10, our method can achieve more than 80% of the
optimum. And the time complexity in simulations is not as
bad as our theoretical analysis in Section V-B. Most results
can be computed within a few minutes (< 10) when there are
totally 200, 000 requests.

Then we study the efficiency ratio of the strategyproof
mechanism that were described in Section VIII. Here the
efficiency ratio is defined as the total payment charged from
users who are granted the usage of channels over their
total valuations. Clearly, for a strategyproof mechanism, its

efficiency ratio is always at most 1. From Fig 5, we can
see that the efficiency ratio increases significantly when the
competition is harder. This is because it is easier for our
method to find a good replacement of users (without reducing
the payment from users) when a user may reduce its bid when
the competition is hard.

On the other hand, the parameter k also affect the efficiency
ratio. The efficiency ratio increases slightly when parameter k
increases. This is because less cylinders, defined by the bids
of users, have been thrown away before the step of dynamic
programming. This is a positive factor for finding a good
replacement.

X. CONCLUSIONS

In this paper, we combine the game theory with communi-
cation modeling to solve some channel allocation problems.
We study how to assign the spectrum and how to charge
the secondary users such that the overall social benefits are
maximized. More specifically, we formulate several versions
of spectrum assignment problems by separately assuming
whether the secondary users are single-minded or not, whether
their required regions overlap or not, whether they ask for fixed
time-intervals or time durations.

When secondary users require only one channel, we show a
simple 1

2 − ε approximation algorithm for problem YOM. For
problem YUI, we present a polynomial time approximation
scheme by deriving k2 polynomially solvable sub-instances
from the given instance, where the best value of those sub-
instances’ solutions is at least a 1 − 2

k + 1
k2 approximation

of optimum. For problem YUD, we design a polynomial-time
algorithm with a constant approximation ratio. For problem
YUM, we also give a polynomial-time algorithm with a
constant ratio by combining the results of problems YUD
and YUI. On the other hand, for those problems such that
some secondary users require a subset of channels and they are
single-minded, we show an Θ(

√
m)-approximation algorithm

for problem SUI. Furthermore, if at most t time intervals are
required by a user, there is an approximation algorithm with
ratio Θ(t

√
m). We also show how to design strategyproof

mechanisms based on those described algorithms that have
a monotone property.

There are still a number of interesting problems to be
studied. We leave it as a future work whether we can design
efficient approximation algorithms for problem SUD, where
single-minded secondary users request unit disk region and
a time duration. The second interesting problem is to study
the non-cooperative games among second users using some
other solution concepts such as Nash equilibrium, or study
the repeated games by these users. Another interesting game
model is when the primary users are also non-cooperative
and a secondary user requirement can be satisfied by several
primary users. Then how to design schemes to achieve market
clearance between the primary users and secondary users.
The last, but not the least, question is that we should design
spectrum allocation methods for the case when the channels
are available to secondary users for only some time intervals.
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