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Abstract— Processing the gathered information efficiently is a
key functionality for wireless sensor networks. In this article,
we study the time complexity, message complexity (number of
messages used by all nodes), and energy cost complexity (total
energy used by all nodes for transmitting messages) of some tasks,
such as data collection (collecting raw data of all nodes to a sink),
data aggregation (computing the aggregated value of data of all
nodes), and queries for a multi-hop wireless sensor network of n
nodes. We first present a lower-bound on the complexity for the
optimal methods, and then, for most of the tasks studied in this
article, we provide an (asymptotically matching) upper-bound on
the complexity by presenting efficient distributed algorithms to
solve these problems.

Index Terms— Wireless sensor networks, data collection, data
selection, complexity analysis.

I. INTRODUCTION

Wireless sensor networks (WSNs) have drawn considerable
amount of research interests recently because they can monitor
the environment in a more efficient and convenient way. For
WSNs, often the ultimate goal is to collect the data (either the
raw data or in-network-processed data) from a set of targeted
wireless sensors to some sink nodes and then perform some
further analysis at sink nodes, or support various queries from the
sink node(s), such as those formed in an SQL-like language. It
is envisioned that the sink node issues queries regarding the data
collected by some target senors, and the senors collaboratively
generate an accurate or approximate response. Convergecast is
a common many-to-one communication pattern used for these
sensor network applications.

In this article, we study three different data processing op-
erations, namely, data collection, data aggregation, and data
selection. For each problem, we will study its complexity and
present efficient algorithms to solve it. The complexity of a
problem is defined as the worst case 1 cost (time, message or
energy) by an optimal algorithm. Here, message complexity is
defined as the number of messages used by all nodes while energy
cost complexity is defined as the total energy used by all nodes
for transmitting these messages. Studying the complexity of a
problem is often challenging. We will design efficient algorithms
whose complexity is asymptotically same as (or within a certain
factor of) the complexity of that problem. Data collection is to
collect the set of data items Ai stored in each individual node vi
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1The worst case is to consider all networks of n nodes (and possibly
diameter D, and maximum nodal degree ∆) and all possible distributions
of all data items A over all nodes V .

to the sink node v0. In data aggregation, the sink node wants to
know the value f(A) for a certain function f of all data items A,
such as minimum, maximum, average, variance and so on. Data
selection is to find the kth smallest (or largest) value of the set A

where k could be any arbitrary value, i.e., it solves aggregation
queries about order statistics and percentiles. One typical example
of data selection is to find the median.

Data collection and aggregation have been extensively studied
in the community of networking and database for wired networks.
Surprisingly, little is known about distributed (network) selection,
despite it is a significant part in understanding the data aggrega-
tion, especially for wireless networks. For data collection, it is
a folklore result that the total number of packet relays will be
the smallest if we collect data using the breadth-first-search tree
(BFS). It also has the smallest delay for wired networks. In [1],
five distributive aggregations max, min, count, sum and average
are carried out efficiently on a spanning tree. Subsequent work did
not quite settle the time complexity, the message complexity and
the energy complexity of data collection and aggregation, nor the
tradeoffs among these three possibly conflicting objectives. The
closest results to our article are [2]–[4]. All assumed a wireless
network that can be modeled by a complete graph, which is
usually not true in practice.

To the best of our knowledge, we are the first to study
tradeoffs among the message complexity, time complexity, and
energy complexity for data collection, data aggregation and data
selection; we are the first to present lower bounds (and matching
upper-bounds for some cases) on the message complexity, time
complexity, and energy complexity for these three operations in
WSNs. The main contributions of this article are as follows.

Data Collection: We design algorithms whose time complexity
and message complexity are within constant factors of the opti-
mum. We show that no data collection algorithm can achieve
approximation ratio %M for message complexity and %E for
energy complexity with %M ·%E = o(∆), where ∆ is the maximum
degree of the communication network. We then prove that our data
collection algorithm has energy cost within a factor O(∆) of the
optimum while its time and message complexity are within O(1)

of the corresponding optimum. Thus, our method achieves the
best tradeoffs among the time complexity, message complexity
and energy complexity.

Data Aggregation: We design algorithms for data aggrega-
tion whose time complexity and message complexity are within
constant factors of the optimum. The minimum energy data
aggregation can be done using minimum cost spanning tree
(MST). We show that no data aggregation algorithm can achieve
approximation ratio %T for time complexity and %E for energy
complexity with %T · %E = o(∆). We then show that our data
aggregation algorithm has energy cost within a factor O(∆)

of the optimum. In other words, our method achieves the best
tradeoffs among the time complexity, message complexity and



2

energy complexity with %T = O(1), %M = 1, %E = O(∆).
Data Selection: We first show that any deterministic distributed

algorithm needs at least Ω(∆+D logD N) time to find the median
of all data items when each node has at least one data item. We
then present a randomized algorithm to find the median in time
O(∆ + D logD N) when each node has O(1) data item. Here
D is the diameter of the communication network and N is the
total number of data items. In terms of the message complexity,
we show that, Ω(n log κ) messages are required to compute the
kth smallest element in expectation, and with probability at least
1/κδ for every constant δ < 1/2, where κ = min{k, 2N − k}.
We also present a randomized algorithm that can find the median
with O(N + nC log N) messages with high probability (w.h.p.),
where nC is the size of the minimum connected dominating set
(MCDS). In terms of energy complexity, we present a randomized
efficient method that finds the median with energy cost at most
O(ω(MST )·log N) w.h.p., which is at most O(log N) times of the
minimum. Value sensitive methods (whose complexity depending
on the found value fk) are also presented for finding the kth

smallest element.
The rest of the article is organized as follows. In Section II,

we first present our WSN network model, define the problems to
be studied, and then briefly review the connected dominating set
(CDS). We study the complexity of distributed data collection,
data aggregation, and data selection in WSNs in Section III,
Section IV, and Section V respectively. We review the related
work in Section VI and conclude the article in Section VII.

II. PRELIMINARIES AND SYSTEM MODELS

A. Network Model

In this article, we mainly focus on studying the complexities
of various data operations in wireless sensor networks. For
simplicity, we assume a simple and yet general enough model that
is widely used in the community. We assume that n + 1 wireless
sensor nodes V = {v0, v1, v2, · · · , vn} are deployed in a certain
geographic region, where v0 is the sink node. Each wireless sensor
node corresponds to a vertex in a graph G and two vertices
are connected in G iff their corresponding sensor nodes can
communicate directly. The graph G is called the communication
graph of this sensor network. We assume that links are “reliable”:
when a node vi sends some data to a neighboring node vj ,
the total message cost is only 1. In some of the results, we
further assume that all sensor nodes have a communication range
r and a fixed interference range R = Θ(r). Let hG(vi, vj) be
the hop number of the minimum hop path connecting vi and
vj in graph G, and D(G) be the diameter of the graph, i.e.,
D(G) = maxvi,vj hG(vi, vj). Here, we assume that D(G) ≥ 2.
If D(G) = 1, then the graph G is simply a complete graph and
all questions studied in this article can either be trivial or have
been solved [2]–[4]. For a graph G, we denote the maximum node
degree as ∆(G). When each node vi has ni data items, we define
the weighted degree, denoted as d̃vi(G), of a node vi in graph
G as ni +

P
vj :vivj∈G nj . The maximum weighted degree of a

graph G, denoted as ∆̃(G), is defined as maxi d̃vi(G). Hereafter,
when it is clear from the context, we will omit the subsript G or
(G) in these definitions.

Each wireless node has the ability to monitor the environment,
and collect some data (such as temperature). Assume that A =

{a1, a2, · · · , aN} is a totally ordered multi-set of N elements

collected by all n nodes. Here, N is the cardinality of set A.
Each node vi has a subset Ai of the raw data, ni is the cardinality
of Ai, and A =

Sn
i=1 Ai. Since A is a multi-set, it is possible

that Ai ∩Aj 6= ∅. Then 〈A1, A2, · · · , An〉 is called a distribution
of A at sites of V . We assume that one packet (i.e., message)
can contain one data item ai, the node ID, and a constant
number of additional bits, i.e., the packet size is at the order
of Θ(log n + log U), where U is the upper-bound on values of
ai. Such a restriction on the message size is realistic and needed,
otherwise a single convergecast would suffice to accumulate all
data items to the sink which will subsequently solve the problems
easily. We consider a TDMA MAC schedule and assume that one
time-slot duration allows transmission of exactly one packet.

If energy consumption is to be optimized, we assume that
the minimum energy consumption by a node u to send data
correctly to a node v, denoted as E(u, v), is c1 · ‖u − v‖α + c2,
where c1 (normalized to 1 hereafter) and α ≥ 2 are constants
depending on the environment, and c2 is the constant overhead
cost by nodes u and v. In some of our results, we assume that
c2 = 0. We assume that each sensor node can dynamically adjust
its transmission power to the minimum needed. We also assume
that when the sensor node is in idle state (not transmitting, not
receiving), its energy consumption is negligible. Since a TDMA
MAC is used, the activity cycles for sensor nodes are assumed to
be synchronized, and for any time slot, no sensor nodes listens
for transmissions if it is not scheduled to receive data packets.

For data queries in WSNs, we often need build a spanning tree
T of the communication graph G first for pushing down queries
and propagating back the intermediate results. Given a tree T , let
H(T ) denote the height of the tree, i.e., the number of links of
the longest path from root to all leave nodes. The depth of a node
vi in T , denoted as hT (vi), is the hop number of the path from
the root to vi, i.e., hT (vi) = hT (vi, v0). The subtree of T rooted
at a node vi, the parent node of vi, and the set of children nodes
of vi are denoted as T (vi), pT (vi), and Child(vi), respectively.

B. Problem Definitions and Complexity Measures

We will study the time complexity, message complexity, and
energy complexity of three different data operations, namely, data
collection, data aggregation, and data selection.

The complexity measures we use to evaluate the performance of
a given protocol are worst-case measures. The message complexity
(and the energy complexity, respectively), of a protocol is defined
as the maximum number of total messages (the total energy used,
respectively) by all nodes, over all inputs, i.e., over all possible
wireless networks G of n nodes (and possibly with additional
requirement of having diameter D and/or maximum nodal degree
∆) and all possible data distributions of A over V . The time
complexity is defined as the elapsed time from the time when
the first message was sent to the time when the last message
was received. The lower bound on a complexity measure is the
minimum complexity required by all protocols that answer the
queries correctly. The approximation ratio %T (resp. %M and %E)
for an algorithm denotes the worse ratio of the time complexity
(resp. message complexity and energy consumption) used by
this algorithm compared to an optimal solution over all possible
problem instances. Here a TDMA MAC is assumed for channel
usage. Obviously, the complexity depends on the TDMA schedule
policy S. Let X(vi, t) denote whether node vi will transmit at time
slot t or not. Then a TDMA schedule policy S is to assign 0 or 1 to
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each variable X(vi, t). A TDMA schedule should be interference
free: no receiving node is within the interference range of the
other transmitting node. When a schedule S is defined for tree
T , it is interference free if and only if for any time slot t, if
X(vi, t) = 1, then X(vj , t) 6= 1 for any node vj such that pT (vi)

is within the interference range of vj .
We now formally define the three data operation problems.
Data collection is to collect the set of raw data items A from

all sensor nodes to the sink node. It can be done by building
a spanning tree T rooted at the sink v0, and sending the data
from every node vi to the root node along the unique path in
the tree. The message complexity of data collection along T isPn

i=1 ni · hT (vi). The energy complexity, defined as the total
energy needed by all nodes for completing an operation, of data
collection using T is

Pn
i=1[E(vi, pT (vi)) ·

P
vj∈T (vi)

nj ].
The TDMA schedule should also be valid in the sense that

every datum in the network will be relayed to the root. In other
words, in tree T , when node vi sends a datum to its parent pT (vi)

at a time slot t, node pT (vi) should relay this datum at some time-
slot t′ > t. The largest time D such that there exists a node vi

with X(vi,D) = 1 is called the time complexity of this valid
schedule. Time D is also called the makespan of the schedule S.
Then the data collection problem with optimal time-complexity is
to find a spanning tree T and a valid, interference-free schedule
S such that the makespan is minimized.

Data Aggregation: The database community classifies aggre-
gation functions into three categories, see [5]: be distributive
(e.g., max, min, sum, and count), algebraic (e.g., plus, minus,
average, variance) and holistic (e.g., median, kth smallest or
largest). Here we call the distributive or algebraic aggregation as
data aggregation and the holistic aggregation as data selection. A
function f is said to distributive if for every disjoint pair of data
sets X1, X2, f(X1 ∪X2) = ~(f(X1), f(X2)) for some function
~. Typically we have ~ = f . For example, when f is sum, then
~ can be set as sum. For wired networks, it has been well-
known that the distributive and algebraic functions can easily be
computed using convergecast operations, which is straightforward
applications of flooding-echo on a spanning tree.

Given an algebraic function f and a wireless network G, it is
easy to show that each node only needs to send out information
once. Hence, the connectivity of the communication graph of the
data aggregation implies that it should be a tree to be optimal.
Our task is to construct a data aggregation tree T and nodes’
transmission schedule to optimize the time-complexity, or the
message complexity, or the energy-cost complexity. Generally,
we assume that the algebraic aggregation function f can be
expressed as a combination of a constant number of (say k)
distributive functions as f(X) = ~(g1(X), g2(X), · · · , gk(X)).
For example, when f is average, then k = 2 and g1 can be set
as sum and g2 can be set as count (obviously both g1 and g2 are
distributive) and ~ can be set as ~(y1, y2) = y1/y2. Hereafter,
we assume that an algebraic function f is given in formula
~(g1(X), g2(X), · · · , gk(X)). Thus, instead of computing f , we
will just compute yi = gi(X) distributively for i ∈ [1, k] and
~(y1, y2, · · · , yk) at the sink node.

Given a distributive function gi and a data aggregation tree
T for it, the message complexity is the number of edges in T ,
which is fixed as n (recall that the root is node v0). The energy-
cost complexity is the total energy-cost used by all n links, i.e.,Pn

i=1 E(vi, pT (vi)). This can be found using minimum spanning

tree algorithm where the link cost of uv is the energy-cost for
supporting the communication of a link uv. The time complexity
of data aggregation depends on the schedule S. A schedule S is
valid for data aggregation of A using tree T , if for every node vi it
is scheduled to transmit at a time slot t only if it has received data
from all of its children nodes. Consequently, the time-complexity
of any data aggregation scheme for a wireless network G is at
least the height of the BFS tree, H(BFS(G)), rooted at sink v0.

Data Selection is to find the kth ranked number from a given
N numbers (possibly stored in a network). It is well-known that
data selection can be done in linear time in a centralized manner
[6]. Data selection is a holistic operation. Aggregate function f

is holistic if there is no constant bound on the size of the storage
needed to describe a sub-aggregate. All proposed algorithms for
data selection are iterative, in the sense that they continuously
reduce the set of possible solutions. The search space is iteratively
reduced until the correct answer is located.

In this article, we will mainly study the complexity and efficient
algorithm for these operations in WSNs. To address each of
these problems, we usually first build a spanning tree T and then
decide an interference-free and valid schedule of nodes activities
such that certain complexity measure is optimized. However, our
lower bound and approximation argument do not depend on the
communication graph used, which may not be a tree.

C. Connected Dominating Set

A number of our methods will be based on a “good” connected
dominating set (CDS) that has a bounded degree d and a bounded
hop spanning ratio. Here a subgraph G′ of G is a CDS if (1) graph
G′ is connected, and (2) the set of vertices of G′ is a dominating
set, i.e., for every node v ∈ G \ G′, there is a neighboring node
u ∈ G′, i.e., uv ∈ G. A node not in G′ is called a dominatee node.
A subgraph G′ of G has a bounded spanning ratio (also known as
stretch factor) if for every pair of nodes u and v in G′, the distance
(hop or weighted distance) of the shortest path connecting u and
v in G′ is at most a constant times of the distance of the shortest
path connecting them in G.

A number of methods have been proposed in the literature to
construct such a good CDS. See [7], [8] for more details. A simple
method is to partition the deployment region into grid of size
r/
√

2, select a node (called dominator) from each cell if there is
any, and then find nodes (called connectors) to connect every pair
of dominators that are at most 3-hops apart. Then the diameter of
the constructed CDS is at most a constant times of the diameter
of graph G. Hereafter, we assume the availability of a good CDS
C = (VC, EC), with the maximum node degree ∆(C) ≤ d for a
constant d. Notice that a good CDS also guarantees a constant
approximation of the diameter of the graph.

Given a graph G = (V, E), let C = (VC, EC) be a connected
dominating set of G. See Figure 1 for illustration. For an arbitrary
node u ∈ VC (e.g. the center node in Figure 1), let TC be a BFS
tree of C rooted at u. For a node v ∈ V \VC, we define a unique
dominator φ(v) which is the one having the shortest hop distance
to the sink v0. If there are ties, node IDs can be used to break
them. The edge connecting v to its dominator φ(v) is denoted by
vφ(v). Our data communication tree is basically the union of TC
and all edges connecting dominatee to its unique dominator.

Definition 1 (Data Communication Tree (DCT)): Given a
graph G and a CDS C of G, the data communication tree T is
defined as T = (V, TC ∪ {vφ(v) | v ∈ V \ VC}.
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(a) Graph G (b) CDS C (c) BFS TC (d) DCT T

Fig. 1. Illustrations of a graph G, a CDS C of G, the BFS tree TC, and the
data communication tree (DCT) T .

When the network (denoted by a graph G) is sparse, i.e.,
the maximum node degree is bounded from above by a small
constant, then the CDS will be more or less the same as the
original network. In such a case, we do not need go through the
process of building a CDS. We can build a spanning tree (such
as DFS tree) on the original network directly.

Given data communication tree, an aggregate operation consists
of (possibly repeated) two phases: a propagation phase where the
query demands are pushed down into the sensor network along
the tree; and an aggregation phase where the aggregated values
are propagated up from the children to their parents. We now
discuss some properties of the data communication tree T .

Theorem 1: Let G and C be a graph and a good CDS of G

respectively. The data communication tree T built on top of C
has following properties:

1) ∆(TC) ≤ d, i.e., the core part of T (not counting the leaves)
has bounded degree.

2) For any edge e ∈ ET , let I(e) be the set of edges in TC that
have interferences with e, then |I(e)| ≤ c ·d ·∆(G) for some
constant c depending on R/r.
Proof: The first property directly comes from the property of

the CDS C. For the second property, for any edge e = uv ∈ ET ,
either u or v will be in C based on our construction. Assume u ∈
V (C). For all edges having interferences with e, both end nodes
should be within distance 2r + R from u by triangle inequality.
Since R = Θ(r) and the CDS has a constant-bounded degree,
there are at most a constant number (≤ (R+2r

r )2 · d) of nodes
of C that are within distance 2r + R from u. On the other hand,
all edges of T have at least one node in C. Since each node is
adjacent to at most ∆(G) edges, |I(e)| ≤ (R+2r

r )2 · d · ∆(G).
This finishes the proof.

All our methods will be based on a good CDS and using data
clustering: given a good CDS, for a node v ∈ V \ VC, it sends
the data items to its dominator φ(v) in a TDMA manner.

Lemma 2: Given a good CDS of the graph G, data clustering
can be done in time O(∆̃(G)).

Proof: We use the DCT tree T to do data clustering. For
a node v ∈ V \ VC, assume that the edge vφ(v) interferes with
an edge uφ(u). Then dominator nodes φ(u) and φ(v) are within
distance at most R + 2r. Thus, there are at most (R+2r)2

r2 d such
dominator nodes. Consequently, the total number of data items
of all nodes u such that uφ(u) interferes with vφ(v) is at most
(R+2r)2

r2 d·∆̃(G) = Θ(∆̃(G)). Hence, every such edge viφ(vi) can
be scheduled to transmit ni times in Θ(∆̃(G)) time-slots using a
simple greedy coloring method that colors the nodes sequentially
using the smallest available color.

After data clustering, all data elements are clustered in TC. In
other words, each node vi in the CDS will have data from all
nodes dominated by vi. Notice that the total number of messages
for data clustering is

P
vi 6∈VC

ni. Observe that Ω(∆̃) is a lower
bound on the time complexity for data collection.

III. DATA COLLECTION

A. Message, Energy, and Time Complexity

Obviously, the data collection can be done with minimum
number of messages

Pn
i=1 ni·h(vi, v0) using a BFS tree with root

v0. We now study the data collection with the minimum energy
cost. Apparently, for any element, it should follow the minimum
energy cost path from its origin to the sink node v0 in order to
minimize the energy consumption, where the weight of each link
is the energy needed to support a successful transmission using
this link. So minimizing the energy is equivalent to the problem
of finding the shortest paths from the sink to all nodes, which can
be done distributively in time O(m+n log n) for a communication
graph of n nodes and m links [9]. We call the tree formed by
minimum energy paths from the root to all nodes as the minimum
energy path tree (MEPT). Then we study the time complexity of
data collection.

Algorithm 1 Efficient Data Collection Using CDS
Input: A CDS C with a bounded degree d, tree TC.

1: Every node vi sends its data to its dominator node φ(vi).
2: for t = 1 to N do
3: for each node vi ∈ VC do
4: If node vi has data not forwarded to its parent, vi sends

a new data to its parent in TC in round t.

Algorithm 1 presents our efficient data collection method based
on a good CDS C. The constructed CDS has the maximum nodal
degree at most a constant d, and similar to Theorem 1, all nodes
in CDS can be scheduled to transmit once in constant β = Θ(d)

time-slots without causing interferences to other nodes in CDS.
We take β time-slots as one round.

First, the data elements from each dominatee node (a node not
in C) are collected to the corresponding dominator node in the
CDS C. Here the dominatee nodes that are one-hop away from
the sink node v0 will directly send the data to v0. Notice that this
can be done in time-slots O(∆̃(G)).

Now we only consider the dominator nodes and the BFS
spanning tree TC of nodes in CDS rooted at the sink v0. Every
edge in the tree TC will be scheduled exactly once in each round.
For simplicity, we do not schedule sending an element more than
once in the same round. At every round, nodes in CDS push one
data item to its parent node until all data are received by v0.

Theorem 3: Given a network G, data collection can be done
in time Θ(N), with Θ(

Pn
i=1 nih(vi, v0)) messages.

Proof: From Lemma 2, in O(∆̃(G)) time-slots, the data
elements from each dominatee node are collected to the cor-
responding dominator node in the CDS. We show that after
N +H(TC) rounds, all elements can be scheduled to arrive in the
root, where H(TC) is the height of the BFS tree TC. Algorithm
1 illustrates our method to achieve this.

A CDS node v is in level i if the path from v to v0 in BFS
tree TC has i hops. A level i is said to be occupied at a time
instance if there exists one CDS node from level i that has at
least one data. Assume that originally all levels i ∈ [1, H(TC)]

are occupied, after collecting data from all dominatee nodes. We
will show that each round the root will get at least one data item
if there are data items in the network. We essentially will show
that the occupied levels are continuous, i.e., before each round
t, there exists Lt such that all levels in [1, Lt] are occupied and
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levels in [Lt + 1, H(TC)] are not. We prove this by induction.
This is clearly true for round 1. Assume that it is true for round
t. Then in round t, for each level i ∈ [1, Lt − 1], every node in
level i + 1 will send its data to its parent in level i. Then every
level i ∈ [1, Lt − 1] will have data for sure before round t + 1.
Then Lt+1 = Lt if some nodes in level Lt still have some data;
otherwise we set Lt+1 = Lt − 1. Consequently, root will get at
least one data item for each round whenever there are data items
in the network. Since there are at most N data items, Algorithm
1 will take at most N rounds, i.e., O(N) time-slots because each
round is composed of constant β time-slots.

When not all levels are occupied initially (i.e., not all nodes
have data items), at each round, each node in CDS will forward
one data item (if there is any) to its parent node in T . Then we can
show that after at most Θ(H(TC)) rounds, the occupied levels will
be continuous. Hence, the collection can be done in at most N +

H(TC) rounds. Notice that H(TC) = Θ(D(G)). Consequently, the
total time-slots are at most O(∆̃(G))+ O(N + D) = O(N) since
∆̃(G) ≤ N .

On the other hand, for any data collection algorithm, it needs
at least N time slots since the sink can only receive one data item
in one time slot and there are N data items.

The total number of messages used by the algorithm is of
course at most 4

Pn
i=1 nih(vi, v0) as the element at node vi are

relayed by at most 4×h(vi, v0) nodes in CDS (since h(vi, v0) ≥
2). Obviously any algorithm needs at least

Pn
i=1 nih(vi, v0)

messages. This finishes the proof.

B. Complexity Tradeoffs

One may want to design a universal data collection algo-
rithm whose time-complexity, message-complexity and energy-
complexity are all within constant factors of the optimum. Ob-
serve that Algorithm 1 is a constant approximation for both time-
complexity and message-complexity. However, it is not a constant
approximation for energy-complexity. Consider the following line
network example: n + 1 nodes are uniformly distributed in a line
segment [0, 1]; sink v0 is the leftmost node and node vi is at
position i/n and has one data item. Here we assume r = 1. See
Figure 2 for illustration. Assume the energy cost for a link uv is
‖uv‖2. Then the minimum energy cost data collection is to let
node vi send all its data to node vi−1. The total energy cost isPn

i=1 i · 1
n2 ' 1/2. While the energy cost of collecting data via

CDS is
Pn

i=1(
i
n )2 ' n/3. On the other hand, the total number

of messages of the minimum-energy data collection scheme is
n(n − 1)/2 and the number of time slots used by this scheme
is Θ(n2); both of which are Θ(n) times of the corresponding
minimum.

Consider any data collecting algorithm A. Let %M and %E be
the approximation ratio for the message-complexity and energy-
complexity of algorithm A. We show that there are graphs of n

nodes such that %M · %E = Ω(n).
Theorem 4: Assume the energy cost for supporting a link uv

is ‖uv‖2. For any data collection algorithm A, there are graphs
of n nodes, such that %M · %E = Ω(n).

Proof: Consider the line graph example defined previously.
For a node vi, assume that the data collection path is composed
of ki hops and the length of the ki links are xi,1, xi,2, · · · , xi,ki

.
Then

Pki
j=1 xi,j = i

n . The total energy cost, denoted as ei, of

such data collection path is ei =
Pki

j=1 x2
i,j ≥

(
Pki

j=1 xi,j)
2

ki
. Thus,

r = 1

1/n

v0 v2 v3v1 vn

v0 v2 v3v1 vn

v0 v2 v3v1 vn

(c)

(a)

(b)

Fig. 2. Example: (a) a line network with n + 1 nodes; (b) the minimum
energy data collection tree; (c) the data collection tree via CDS, where v0 is
the only dominator.

ei · ki ≥ ( i
n )2.

Obviously, the total number of messages are
Pn

i=1 ki and the
total energy cost is

Pn
i=1 ei. We will use the Holder’s inequality:

for positive ai and bi, p > 0, q > 0 with 1
p + 1

q = 1, we have

(

nX

i=1

ap
i )

1
p (

nX

i=1

bq
i )

1
q ≥

nX

i=1

ai · bi.

Equivalently, (
Pn

i=1 ai)
1
p (
Pn

i=1 bi)
1
q ≥Pn

i=1 a
1
p

i · b
1
q

i . Then

(

nX

i=1

ki)(

nX

i=1

ei) ≥ (

nX

i=1

√
ei ·
p

ki)
2 ≥ (

nX

i=1

i

n
)2 =

(n− 1)2

4
.

Clearly, for data collection in this network example, the minimum
number of messages is n for any scheme and the minimum energy
cost is 1/2 for any scheme. Thus, %M · %E ≥ (n − 1)2/(2n) =

Θ(n). This finishes the proof.
Notice that we generally assumed that the energy cost for

supporting a link uv is ‖uv‖α. Then we can show that

(%M )α−1%E ≥ nα−1

2α−1
.

Notice that since %E ≥ 1 and α ≥ 2, we have
(%M )α−1(%E)α−1 ≥ (%M )α−1%E ≥ nα−1

2α−1 . Consequently, %M ·
%E ≥ n/2 still holds.

When we also take the maximum degree ∆ into account, the
preceding theorem implies the following corollary (the proof is
essentially same by considering a network in which ∆ nodes are
evenly placed on a segment of length 1 and other n −∆ nodes
are placed evenly with distance 1).

Corollary 5: For any data collection algorithm A, there are
graphs with maximum degree ∆, such that %M · %E = Ω(∆).

The preceding theorem also implies that for any data collection
algorithm A, %M ·%E ·%T = Ω(∆), where %T is the approximation
on the time-complexity by algorithm A. We then show that for
Algorithm 1, %E = O(∆(G)).

Theorem 6: Algorithm 1 is %E = Θ(∆(G))-approximation for
energy cost when the energy to support a link uv is ‖uv‖2 + c2,
where c2 = Θ(r2) is the energy cost of a node to receive a packet
correctly.

Proof: Consider any node vi and its minimum energy path
Pviv0(G) = u1u2 · · ·uk to the sink node v0 in the original
communication graph G, where u1 = vi and uk = v0. Assume
that the total Euclidean length of this path is `. Obviously,
k ≤ ` · ∆/r since any node can have at most ∆ neighbors
within distance r and any path with length r contains at most
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∆ nodes. Let xi = ‖uiui+1‖. Then the total energy cost isPk−1
i=1 (x2

i + c2) = (k− 1)c2 +
Pk−1

i=1 x2
i . Obviously,

Pk−1
i=1 x2

i ≥
(
Pk−1

i=1 xi)
2

k−1 ≥ `2·r
`∆ = r`/∆. On the other hand, since the

Euclidean distance of the shortest path in G between vi and v0

is at most `, the shortest hop path connecting them is at most
2d`/re hops. Thus, we can find a path using CDS to connect vi

and v0 using at most 2 + 3 · d2`/re ≤ 4d 2`
r e hops. The inequality

is due to d`/re ≥ 2. Consequently, the total energy of the path
connecting vi and v0 based on CDS is at most 4d 2`

r e · (r2 + c2).
Observe that our data collection algorithm based on CDS will
use the shortest hop path to route the data from vi to the sink
v0. Thus, the energy cost of data collection using CDS is at most
4d2`/re·(r2+c2)
r`/∆+(k−1)c2

≤ Θ(∆) times of the minimum. This finishes the
proof.

Thus Algorithm 1 is asymptotically optimum if we want to
optimize the time-complexity, message-complexity and energy-
cost-complexity simultaneously. On the other hand, the mini-
mum energy data-collection based on minimum energy path tree
(MEPT) has delay that is at most O(∆3) times of the optimum.

Theorem 7: Data collection using MEPT is %T = O(∆(G)3)-
approximation for time complexity when the energy cost for
supporting a link uv is ‖uv‖2.

Proof: Consider the node v such that its minimum energy
path P to the root has maximum number of hops, which contains
data. Assume P has h hops with Euclidean length y1, y2, · · · , yh.
Then

Ph
i=1 yi ≥ h·r

∆ since every node can have at most ∆ nodes
within r distance. The total energy of this path is

Ph
i=1 y2

i ≥
(
Ph

i=1 yi)
2

h ≥ hr2

∆2 . On the other hand, consider the path from v

to root with minimum number of hops h2. For this path, its energy
cost is at most h2r2, which should be at least

Ph
i=1 y2

i due to
optimality of P . Thus, h2r2 ≥ hr2

∆2 implies that h ≤ h2∆
2.

Now consider an edge in the MEPT, scheduling this edge will
interfere O(∆) nodes when the interfere range R = O(r). In other
words, if we take one round to be O(∆) time slots, each edge
in the MEPT can be scheduled once. The height of the MEPT is
h. Scheduling the MEPT in a fashion similar to Algorithm 1 can
finish the data collection operation in O(N + h) rounds, hence
O(∆(N + h)) time slots. On the other hand, any data collection
algorithm will take Ω(N + h2) time slot. As h ≤ h2∆

2, data
collection using MEPT has time complexity that is at most %T =

O(∆(G)3) times of the minimum.

Theorem 8: There is a network example that the delay of data
collection by using MEPT is at least ∆(G)2/8 times of the
optimum.

Proof: We construct a network example of a network with
n = p(∆2/8 + 1) nodes, in which the MEPT has delay that is
Ω(∆2) times of the optimum. Consider a rectangle uvwz with
four segments uv, vw, wz, zu and side-length ‖uv‖ = p · r and
‖uz‖ = p∆−2

8 r(1 − ε). See Figure 3 for illustrations. There are
p + 1 nodes u = u1, u2, · · · , up+1 = v uniformly distributed
over the segment uv and q = p∆2/8 − 1 nodes v1, v2, · · · , vq

uniformly distributed over the rest of the 3 segments. Then the
MEPT path connecting u and the sink v is uv1v2 · · · vqv, with
q = p∆2/8− 1 hops. Obviously, the path u1u2 · · ·up connecting
u and v has the least delay p. Thus, under this network example,
the delay of data collection by using MEPT is at least ∆(G)2/8

times of the optimum.

p r

pu3

p(
   

−
2)

r(
1−

  )
/8

∆ 
   

   
   

  ε

u2

vq−1
v2

v1 vq

v=u

wz

u=u1 p+1
u

Fig. 3. Example in which MEPT has delay Ω(∆2) times of the optimum.

IV. DATA AGGREGATION

We consider the case when, given any node v and its set of
children nodes in a data aggregation tree, the aggregation data
produced by node v has size same as the maximum size of data
from all children nodes. Typical examples of such aggregation are
min, max, average, or variance. In data aggregation, if one node
sends information twice, it can always save the first transmission.
Hence, the data aggregation should be done using a tree.

A. Message, Energy, and Time Complexity

The total message complexity for data aggregation using any
tree T is n, where n is the number of nodes of the network. This
is because every node v needs send at least once. We obviously
can do data aggregation using any spanning tree and every node
only needs to send once.

In addition, since every node need and only need send an
aggregated data to its parent node in the data aggregation tree
once, the minimum cost spanning tree is the energy efficient data
aggregation tree, where the cost of any link uv is the energy cost
of sending a unit amount of data over this link.

Time Complexity: We will show that the time complexity for
any data aggregation is of the order Θ(D + ∆(G)). Algorithm 2
illustrates our method.

Theorem 9: Data aggregation can be done in Θ(D + ∆) time
with n messages.

Proof: For the node v that has the largest hop distance
from the root, it needs at least D time slots to reach the
root. Additionally, we need at least ∆(G) time-slots to schedule
all nodes’ transmissions due to interference constraints. Thus,
max(D, ∆) is a lower bound on time complexity.

We then show that Algorithm 2 takes time Θ(D + ∆(G)).
The first step that let each dominatee node send its data to its
dominator node will take time-slots at most Θ(∆(G)). Then
we perform aggregation round by round, where each round is
composed of β time slots. (Constant β is the number of colors
needed to color the interference graph induced by all CDS nodes.)
Let H be the height of the BFS spanning tree TC constructed
in Algorithm 2. In round 1, all nodes in level H (all leaves)
send a message to their parents. In round t, all nodes in level
H−t+1 should have received all the messages from their children,
compute the aggregation of all data received so far, and then send
the aggregated values to their parents. In all, the total number of
rounds to finish data aggregation is H . Recall that each round is
composed of β time-slots and H = O(D).



7

Algorithm 2 Efficient Data Aggregation Using CDS
Input: A CDS C with bounded degree d, a distributive function
f and corresponding function ~.

1: for each dominator node vi do
2: For the set of dominatee nodes of the node vi, we build

a minimum spanning tree (MST) rooted at vi, where
the link weight is the energy cost for supporting the
link communication. The data elements from all these
dominatee nodes are then aggregated to the corresponding
dominator node vi along the minimum spanning tree of
these dominatee nodes. In other words, any node vk will
compute ~(f(Ai), xk,1, xk,2, · · · , xk,dk

) where xk,j , for
j ∈ [1, dk], is the aggregated value node vk received from
its jth child in the minimum spanning tree and dk is the
number of children of node vk in the MST of all dominatee
nodes of vi. Notice that this aggregation can be done in
time-slots Θ(∆(G)).

3: Now we only consider the dominator nodes and the breadth-
first-search spanning tree TC of nodes in CDS rooted at the
sink v0. Let H be the height of TC.

4: for t = 1 to H do
5: for each node vi ∈ VC do
6: If node vi has received aggregated data from all its

children nodes in TC, it sends the aggregated data (using
its own data and all aggregated data from its children)
to its parent node in round t.

If there are more than one aggregation functions, we can deliver
the messages one by one. We call this as sequential aggregation
(or pipelined aggregation).

Corollary 10: k sequential data aggregations can be done in
O(D + ∆ + k) time with kn messages.

B. Complexity Tradeoffs

Again, we may want to design a data aggregation method
that has constant approximation ratios for message complexity,
time complexity, and energy complexity. However, we first show
that aggregation based on MST (that is energy optimum for
aggregation) is not efficient for time complexity.

Theorem 11: The minimum energy data aggregation based
on MST is %T = Ω(min( n

∆ ,
√

n∆))-approximation for time
complexity. On the other hand, %T = O( n

∆ ).

Proof: Consider a set of wireless nodes in a grid, with size
length r′. Then ∆ = Θ((1/r′)2) and D = Θ(

√
nr′) =

p
n/∆,

assuming the communication range to be 1. There exists a MST
T which consists of n sequential line segments. See Figure 4 for
an example. In fact, we can perturb the grid slightly, so that this
bad MST is the only MST on the grid.

v0

Fig. 4. Example of a bad MST.

Clearly, the data aggregation on T takes Θ(n) time slots. On
the other hand, Algorithm 2 takes O(∆ + D) time slots. Notices

that the diameter of the CDS is a constant factor of the original
graph. Hence, %T ≥ Ω( n

∆+D ) = Ω( n

∆+
√

n/∆
). The lower bound

follows by considering the cases that n ≥ ∆3 and n ≤ ∆3.

Now consider the upper bound, the data aggregation on a MST
takes at most n − 1 time slots. However, any optimal solution
should take Ω(∆ + D). Hence %T = O(n/∆).

Observe that our method (Algorithm 2) has constant ratio for
both message complexity and time complexity. However, it is not
always energy efficient due to the following theorem.

Theorem 12: Algorithm 2 is %E = (d + 6)(∆(G) + 1)-
approximation for energy cost, where d is the maximum nodal
degree of CDS.

Proof: We assume the CDS is constructed by extending a
maximal independent set. First, consider any dominator u and
let v1, v2, · · · , vk be the k dominatee nodes associated with u,
where k ≤ ∆, and ‖viu‖ ≤ r. Let x1, x2, · · · , xk be the k edges
of the minimum spanning tree connecting u and its associated
dominatees. It was proved in [10] that

Pd
i=1 x2

i ≤ 6r2. Assume
that there are m dominator nodes in CDS (size of the maximal
independent set). By the definition of CDS, m ·(∆+1) ≥ n. Then
the total energy cost of aggregating data from all dominatee nodes
to dominators is at most 6mr2. Recall that in our CDS, all nodes
in VC will have at most d neighbors. It is easy to show that the
total energy cost of aggregating data over CDS is at most d·m·r2.
Thus, the total energy cost of aggregating data using Algorithm
2 is at most (d + 6) ·m · r2 = Θ(m · r2).

We now study the minimum cost of data aggregation, which
is to use the minimum spanning tree of original communication
graph G. Let y1, y2, · · · , yn be the length of the n edges of
the MST connecting n + 1 nodes v0, v1, · · · , vn. Since there
are m independent nodes, the minimum spanning tree of these
nodes has total length at least m · r. As the MST is also a Steiner
tree of the m independent nodes, the total length of the MST
is at least half the length of the minimum spanning tree of the
independent nodes, i.e.,

Pn
i=1 yi ≥ m · r/2. The total energy

cost of data aggregation based on the MST is
Pn

i=1 y2
i . Notice,Pn

i=1 y2
i ≥ (

Pn
i=1 yi)

2/n ≥ m2r2/(4n).
Then our algorithm has approximation ratio on energy cost

at most (d+6)·m·r2

m2r2/(4n)
≤ 4(d + 6)(∆ + 1) = O(∆), because of

m · (∆ + 1) ≥ n.
We then show that there are examples of networks (with

maximum degree ∆) such that Algorithm 2 is %E = Θ(∆)-
approximation for energy cost. Consider a line graph composed
of n+1 nodes evenly distributed in a segment [0, 2r

∆ n], i.e., node
vi is at position 2r

∆ · i, for i ∈ [0, n]. See Figure 5 for illustration.
It is easy to show that the minimum energy data aggregation tree
is simply the path v0v1 · · · vn−1vn, whose total energy cost is
n( 2r

∆ )2. On the other hand, the energy cost of using tree TC is
Θ( 2n

∆ r2) since the CDS will have 2n
∆ nodes. The energy cost

using tree TC is Θ(∆) times of the minimum. This finishes the
proof.

Although our method is not energy efficient in the worst case
(with approximation ratio up to Θ(∆) in the worst case), we show
that it is the best we can do if we want to achieve Θ(1) ratio in
delay. Again, given a data aggregation algorithm A, let %E , %T

and %M be the approximation ratios of A over all networks with n

nodes and maximum degree ∆. We prove the following theorem.
Theorem 13: For any data aggregation algorithm A, there are

graphs of n nodes with maximum degree ∆, such that %T · %E =

Ω(∆).



8

2rn
∆

2r
∆

r r

v0 vnv∆v2v1 v∆/2
(c)

(a)

(b)

v0 vnv2v1 v∆/2 v∆

v0 vnv∆v2v1 v∆/2

Fig. 5. Example: (a) the line network with n + 1 nodes; (b) the minimum
energy data aggregation tree; (c) the tree TC.

Proof: Again consider the line network example used in the
proof of Theorem 12. Assume that we choose a tree T for data
aggregation. Consider the unique path P from v0 to vn in T .
Assume P has k edges. Then the data aggregation using T takes
at least k time slots. Let {xi} be the Euclidean lengths of the k

edges in P . Clearly,
Pk

1 xi ≥ 2rn/∆. Then, the energy cost of
this path is

Pk
1 x2

i ≥ (
Pk

1 xi)
2/k ≥ 4r2n2/(k∆2). Notice that

for any algorithm, the minimum delay is 2n/∆ and the minimum
energy cost is nr2/∆2 (using MST). Thus, the approximation
ratio %T and %E satisfy that: %T ·%E ≥ k

2n/∆
· 4n2r2/(k∆2)

nr2/∆2 = 2∆.

Consequently, our method for data aggregation is asymptoti-
cally optimum in terms of the tradeoffs between time-complexity,
and energy-complexity when the energy needed to support a link
uv is proportional to ‖uv‖α. It remains a challenging question to
design algorithms with best tradeoffs, when the energy needed to
support a link uv is ‖uv‖α + c2 or, more generally, an arbitrary
function.

V. DATA SELECTION

In this section, we consider the scenario when we want to find
the kth smallest data (or median when k = N/2) among all N

data items stored in n wireless sensor nodes. Here we assume
that each wireless sensor node will store at least one data item,
and may store multiple data items. All data items are assumed to
have a complete order. In most results here, we use the selection
of median as an example to study the complexity.

A. Time Complexity

First we give a lower bound on the time complexity of any
deterministic distributed algorithm.

Theorem 14: Any deterministic distributed method needs
Ω(∆ + D logD N) time to find the median of all data items.

Proof: For any deterministic algorithm, each node in the
wireless network need send at least one message. In fact, if
a node does not announce at least once, the adversary could
place the median (or the kth largest item) in it. Hence, the time
complexity is Ω(∆) due to wireless interferences. On the other
hand, the time complexity of finding the median for a wireless
network is at least as expensive as that of finding the median at a
corresponding wired network (by assuming that no interferences
exist among all transmission links). It has been proved in [11] that
any deterministic algorithm for finding median in a wired network
G of n nodes with diameter D, and total N data items has time
complexity at least Ω(D logD N). Finding kth smallest element

need time at least Ω(D logD k) when k ≤ N/2. Consequently, for
wireless network G of n nodes with diameter D, any deterministic
distributed algorithm needs at least Ω(∆+D logD N) time to find
the median of all data items.

We then present our method (Algorithm 3) for distributed data
selection in WSNs. In our method, we first collect data from
dominatee nodes to corresponding dominator nodes, then we will
run the distributed selection method for wired networks (from
[11] and is summarized in Algorithm 4 for completeness of
presentation) over the CDS. Algorithm 4 will be run by the sink
node and the basic idea is as follows:

1) Initially, let L = −∞ and U = ∞. The sink node
will first broadcast control message getRndElementsIn-
Range(t, (L, U)) to all nodes, asking for t independent
random elements from all elements in the interval (L, U).

2) All nodes with data in this range together will return t

random elements using t sequential findings of one random
element. This can be done in time O(D+t). Let x1, x2, · · · ,
xt be the t random elements in the increasing order.

3) The sink node then broadcasts control message countEle-
mentsInRange to count the total number of items in the
range of (xi−1, xi] for i ∈ [2, t]. This can be done using
simple counting aggregation in time O(D) with the number
of messages nC.

4) The sink node can then find the interval (xj−1, xj ] where
the globally kth smallest element locates. We find the kth

smallest element if xj is. Otherwise, repeat the preceding
steps using the new interval (L, U) ⇐ (xj−1, xj).

Algorithm 3 Data Selection With Low Delay
Input: A CDS with bounded degree d.

1: Each dominatee node sends its data to its dominator node.
This can take place in time Θ(∆̃).

2: Then the median is found using only the connected dom-
inating set, i.e., only nodes in CDS will participate. We
run the randomized Algorithm 4 with t = 8λD with a
constant λ > 1 (see [11] for details). This method has time
complexity O(D logD N) in wired communication model.
Notice that for wired networks, a node vi can send a message
to each of its neighboring nodes in one time-slot. This cannot
be done in wireless networks. We will mimic the wired
communication of CDS nodes using wireless links: one round
of wireless communications corresponds to one time-slot in
the corresponding wired network.

Theorem 15: There is a randomized distributed algorithm that
can find the median of all data items in expected time O(∆̃ +

D logD n) and also in time O(∆̃ + D logD n), w.h.p..
Proof: The time-costs of our algorithm are as follows (1) the

first step has time-complexity Θ(∆̃); (2) the second step will cost
O(D logD N) rounds of communications with high probability
[11], i.e., O(D logD N) time-slots w.h.p., since each round is
composed of β time-slots.

Notice that, if each node has single data item, then the
time complexity of Algorithm 3 is O(∆ + D logD n) with high
probability. Similarly, if we run the best deterministic algorithm
for data selection for wired networks [11], we have the following
theorem.

Theorem 16: There is a deterministic distributed algorithm that
can find the median of all data items in time O(∆̃ + D log2

D N)
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for wireless networks of n nodes with diameter D and maximum
weighted degree ∆̃.

Observe that the lower bound D logD N on the time complexity
for wired networks is not tight for wireless networks. Consider a
network formed by a sink node with coordinate (0, 0), and other
n nodes evenly distributed in the circle centered at (0, 0) with
radius r. Then D = 2 and D logD N is only 2 log n. On the other
hand, ∆ = n, thus, data selection needs time at least n due to
wireless interferences.

Algorithm 4 Random Data Selection RDS(t, k)

1: L ← −∞; U ←∞; phase← 0;
2: repeat
3: x0 ← L; xt+1 ← U ; phase←phase+1;
4: {x1, . . . , xt} ← getRndElementsInRange(t, (L, U))

5: for i = 1, . . . , t in parallel do
6: ri =countElementsInRange((xi−1, xi])

7: if x0 6= −∞ then
8: r1 ← r1 + 1

9: j ← minl∈{1,...,t+1}
Pl

i=1 ri > k

10: k ← k −Pj−1
i=1 ri

11: if k 6= 0 and j 6= 1 then
12: k ← k + 1

13: until rj ≤ t or k = 0

14: if k = 0 then
15: return xj

16: else
17: {x1, . . . , xs} =getElementsInRange([xj−1, xj ]);
18: return xk

B. Message Complexity

We now study the message complexity of finding median of
all numbers stored in the network.

1) Lower Bounds: Our lower bound on message complexity
is based on the result on a two-party model. For two nodes
connected by a link, each with N/2 data items, finding the median
need Θ(log N) messages [12], [13]; or generally, the kth smallest
element (k < N

2 ) can be found using Θ(log k) messages. In [11],
Kuhn et al. studied the lower bound of the time complexity for the
selection problem. Especially, they proved the following result on
the two-party problem where both nodes have n elements. This
result concludes the number of rounds (thus, an obvious lower
bound on the number of messages) needed to compute the kth

smallest element. Hereafter, let κ = min{k, 2N − k}.
Theorem 17 ( [11]): Every, possibly randomized, generic two-

party protocol needs at least Ω(log κ) rounds(messages) to find
the element with rank k in expectation and with probability at
least 1/κδ for any constant δ ≤ 1/2.

(n − 1)r

u w2 wn−2
w1 v

r

N/2 elements N/2 elements

Fig. 6. A network example in which Ω(n log h) messages are required to
compute the kth smallest element in G.

wiwi−1 wi+1

ai

bi

ai+1

bi+1

wiwi−1 wi+1

ai

bi

ai

bi

(a) (b)

Fig. 7. Assume ai + bi ≤ ai+1 + bi+1. The intermediate vertex wi can
just forward messages between wi−1 and wi+1 without increase the total
message complexity.

Based on the result, we show that there exist graphs that require
Ω(n log κ) messages to compute the median. Our construction is
similar to the lower bound of time complexity obtained in [11].

We first construct a line graph G with n nodes u =

w0, w1, . . . , wn−2, wn−1 = v as follows. See Figure 6 for
illustration. The left and right vertices are u and v, each having
N/2 elements. The other n−2 intermediate vertices w1, w2, · · · ,
wn−2 do not contain any element. Each node wi is connected to
wi+1 for i ∈ [0, n − 2]. The distance between two consecutive
nodes is r. We can construct a wireless communication graph
which can be contracted to this example.

For simplicity, we first assume all intermediate vertices can
only duplicate messages without any computation. This is exactly
the case for the general two-party protocol. The following theorem
is directly implied by Theorem 17.

Theorem 18: Assume that all intermediate vertices are only
allowed to relay messages in G. Ω(n log κ) messages are required
to compute the kth smallest element in G in expectation and with
probability at least 1/κδ for every constant δ < 1/2.

Of course, in practice, we may allow intermediate vertices to
perform certain computation on the messages it received before
it sends out messages. However, we show that this additional
freedom does not reduce the message complexity required. In
particular, we argue that it is not necessary for any intermediate
vertex to preform computation. Consider an intermediate vertex
wi, and its left vertex wi−1 and right vertex wi+1. For each
i ∈ [1, n − 2], assume that during the computation the vertex
wi receives ai messages from wi−1 and sends bi messages to
wi−1. Now consider the vertex wi, without loss of generality, we
assume ai+bi ≤ ai+1+bi+1. Instead of performing computation,
we let wi forward all ai messages from wi−1 to wi+1. Because
all bi messages from wi to wi−1 are computed from the ai and
bi+1 messages which wi+1 already poses after the forwarding.
Hence, we can just send the bi messages from wi+1 to wi−1

by passing wi. See Figure 7 for illustration. In all, the number of
messages does not increase. On the other hand, all the information
wi original obtained now available on wi+1. Hence, this change
does not affect the computation process.

We can pick i so that ai + bi is (one of) the smallest. The
preceding procedure can propagate from wi to both leaves u and
v, so that each intermediate vertex will forward ai + bi messages.
As we argued, the total number of messages does not increase.

Theorem 19: There is a wireless network with n nodes, such
that Ω(n log κ) messages are needed to compute the kth smallest
element in expectation and with probability at least 1/κδ for every
constant δ < 1/2.

In Figure 7, its diameter D = n. Therefore, the lower bound
stated in previous theorem can directly imply next result. The
Ω(n) lower bound comes from the fact that each node need send
at least one message.
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In the preceding study of the lower bound on the message
complexity of distributed selection, we only use the graph size n

and number of data items N as parameters. We then extend this
idea to get a more precise lower bound for finding median for all
graphs with size n and diameter D. We construct a graph G as
follows. Let p = n−D+1

2 . On the left side, there are p vertices u1,
u2, · · · , up. On the right side, there are p vertices v1, v2, · · · , vp.
Each of the vertices ui and vi has N

2p elements, where N is total
number of elements. The other D − 1 intermediate vertices w1,
w2, · · · , wD−2, wD−1 do not contain any element. Graph G only
has following edges uiw1, wD−1vi, for 1 ≤ i ≤ p, and wjwj+1

for j ∈ [1, D− 2]. See Figure 8 for illustration. Similarly, we can
show that for a graph G of n nodes with diameter D, finding the
kth smallest element requires Ω(D log κ) messages using a line
graph of diameter D.

w2w1

N
2p

elements

wD−1

v3

vp

v2

v1

u3

up

u2

u1

N
2p

elements

N
2p

elements

N
2p

elements

N
2p

elements

N
2p

elements

N
2p

elements

N
2p

elements

Fig. 8. A network example in which any algorithm finding median needs at
least Ω(n + D log N) messages.

Theorem 20: There is a graph (wired or wireless communi-
cation model) with n nodes and diameter D, any algorithm
finding kth smallest (or median) needs at least Ω(n + D log κ)

(or Ω(n + D log N)) messages.
2) Upper Bound: We then present a randomized algorithm that

will find the median of all N data items using expected number
O(n log N) of messages, and also O(n log N) messages with high
probability. The algorithm essentially is to find a random element
x and then count the number of elements that are less than x.
It is likely that a considerable fraction of all nodes no longer
need be considered. By iterating this procedure on the remaining
candidate nodes, the kth smallest element can be found quickly
for all k. Algorithm 5 illustrates our basic method.

Algorithm 5 Data Selection With Less Messages
Input: A CDS with bounded degree d.

1: The dominatee node will send its data to its dominator node.
This can take place using O(N) total messages. Then only
nodes in CDS will participate the second step.

2: We run the randomized data selection Algorithm 4 with t = λ

for some constant integer λ ≥ 1.

Theorem 21: Given a wireless network with n nodes (each
with one data item and having the same transmission range)
and diameter D, Algorithm 5 can find the median with O(N +

nC log N) messages with high probability, where nC is the number
of nodes in the CDS.

Proof: The first step costs at most N messages. Then we
will prove that variable phase (defined in Algorithm 4) is at most
2 log1/c N (for a constant c < 1) with high probability when
the median is found. Obviously, in each “phase” of Algorithm 4,
the total number of messages is 2λnC: for each randomly selected
data, each node in CDS will forward at most one control message
from the sink and at most one data message back to the sink.

Thus, the total number of messages used, with high probability,
is at most N + 4λnC log1/c N .

We then prove that variable phase is at most 2 log1/c N (say
for a constant c = 1/2) with high probability when the median
is found. First, we compute an upper bound on the probability
that after any phase i the wanted element is in a fraction of
size at least c times the size of the fraction after phase i − 1

for a suitable constant c, i.e., n(i) ≥ c · n(i−1). Here n(i) is
the size of the all data items we have to check to find the kth

smallest data before the phase i starts. Notice n(0) = N . Let
{a1, a2, · · · , an(i)} be the sorted list of the n(i) data items that
we will check for the kth smallest element in phase i + 1. The
probability that none of the λ randomly selected elements is in
{ak, ak+1, · · · , ak+cn(i)/2} is at most (1−c/2)λ. Same argument
holds for data items {ak−cn(i)/2, · · · , ak−1, ak}. Thus,

Pr(n(i) ≥ c · n(i−1)) ≤ 2(1− c/2)λ ≤ 2e−cλ/2.

If n(i) ≤ c ·n(i−1) the phase i is called successful; otherwise it is
called failed. Clearly, we need at most S = log1/c N successful
phases to find the kth smallest element. A phase i will fail with
probability at most p = 2e−cλ/2. Then among 2S phases, the
probability that we have less than S successful phases (i.e., at
least S + 1 failed phases) is at most

2SX

i=S+1

 
2S

i

!
pi(1− p)2S−i ≤

 
2S

S

!
pS ≤ (

2eS

S
)S · pS

= (4e1− cλ
2 )log1/c n = 1/n( cλ

2 −1−ln 4)/ ln 1
c

When ( cλ
2 − 1 − ln 4)/ ln 1

c > 1 (equivalently, λ ≥ 2 ln 4e
c

c ), this
probability is at most 1/n. For example, we can set c = 1/2,
then λ = d4 ln(8e)e = 7. Then, with probability at least 1 − 1

n ,
Algorithm 5 will terminate in 2 log2 N phases. Each phase will
cost at most 2λnC messages. This finishes the proof.

Instead of collecting data from dominatee nodes to the dom-
inator nodes, we can directly run Algorithm 4 on the wireless
network G. By an argument similar to the proof of Theorem 21,
the algorithm will find the median with Θ(n log N) messages with
high probability. Notice that this could be better than Algorithm
5 when N is very large, e.g., N = Ω(n log N).

We then discuss the message complexity when n sensor nodes
are randomly and uniformly deployed in a square of [0, a]× [0, a]

and each sensor node has one data item. It has been proved in
[14] that, to guarantee the random wireless sensor network is
connected with high probability, the transmission range r should
satisfy that nπr2 = Θ(a2 ·log n). Thus, the number of dominators,
using a maximal independent set, is of order a2

r2 = Θ( n
log n ).

Thus, size of CDS nC == Θ( n
log n ). Consequently, the message

complexity of Algorithm 5 for random networks, with high
probability, is Θ(n + nC · log n) = Θ(n) when total data items is
N = O(n). This is asymptotically minimum.

C. Other Models

In previous discussions, we only consider the comparison
model, i.e., we assume the only operation between data items
is to compare their values. A number of additional information
can be used to improve the message and/or time complexities.
For example, we may know that the values of all data items are
positive integers or integers in range [L, U ].
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Value Sensitive Query: We first consider the case that all
data items are positive integers. We show that the message
complexity of finding the median is no more than min{N +

4nC log fk, 4n log fk} based on methods in [15], [16] for wired
networks. Here nC is the size of the connected dominating set and
fk is the value of the kth smallest data. We assume synchronized
communications are used by all wireless nodes. The method is
essentially to solve the unbounded search: we first iterate to find
i (starting from i = 0) such that the kth smallest element is in
the range (2i, 2i+1]; we then use binary search to locate the kth

smallest element in this range. It is easy to show that we need
at most 2 log fk such rounds and each round will cost us at most
2nC messages.

Known Intervals: When we know the interval [L, U ],
then the message complexity is no more than min{N +

2nC log U
L , 2n log U

L }, where U is the largest possible value and
L is the lowest possible value among all data, by using a simple
distributed binary search method. Observe that both U and L can
be found using a simple distributive function max and min with
n messages.

Notice that we can combine the preceding two techniques as
follows. We first call min function to find L. Then we iterate
to find i (starting from i = blog Lc) such that the kth smallest
element is in the range (2i, 2i+1]; we then use binary search to
locate the kth smallest element in this range. It is easy to show
that we need at most 2 log fk

L such rounds and each round will
cost us at most 2nC messages when CDS is used or 2n messages
if original network G is used. Thus, the total messages complexity
is at most

min{N + n + 4nC log
fk

L
, 2n log

fk

L
}.

D. Energy Complexity

Finally, we study the energy cost of finding the median in any
networks by presenting some lower bound and upper bound.

Theorem 22: Any algorithm that can correctly find the median
needs energy cost at least ω(MST ) =

P
uv∈MST E(u, v), where

MST is the minimum spanning tree of G with weight of a link
uv defined as the energy cost E(u, v) for supporting link uv.

Proof: First of all, using adversary argument, we can show
that every node needs to send at least one message to reveal some
information about the data item it has. If it did not, adversary
can put the median at this node to prevent the algorithm from
finding the correct median. Let G∗ be the graph over V and
its set of edges are edges used by an optimum algorithm for
communications. Graph G∗ must be a connected graph; otherwise,
the adversary can put the median at a connected component that
does not contain the sink node. Consequently, the total link weight
of minimum spanning tree is the lower bound for the energy
consumption of any data selection algorithm.

Assume that we are given the minimum spanning tree a
prior. To minimize the energy consumption, we will directly
run Algorithm 4, or value sensitive query methods discussed in
previous subsection, on top of MST. Then we have the following
theorem.

Theorem 23: There are algorithms that can correctly find
the median with energy cost at most O(ω(MST ) · log N) or
O(ω(MST ) · log fk

L ) where L is the smallest value and fk is
the kth smallest value of all data items.

Proof: We showed that Algorithm 4 will terminate after at
most 2 log N phases with high probability. At each phase, the sink
node need broadcast a control message and then all related nodes
will reply with a certain answer. Obviously, both the broadcast
from the sink along the MST and convergecast of the answer back
to the sink cost energy ω(MST ). Thus, Algorithm 4, run on top
of MST has energy cost O(ω(MST ) · log N).

For value sensitive query method, we first find L (which has
energy cost at most ω(MST )) and then then query will terminate
after at most 2 log fk

L phases, where each phase cost energy at
most 2ω(MST ). This finishes the proof.

If we interleave the preceding two methods (a phase is an
atomic step), then we have algorithm whose energy cost is at most
O(min{log N, log fk

L }) times of the minimum for data selection.
Observe that from the network example illustrated by Figure 8
we can show that

Theorem 24: There are networks G of n nodes and diameter
D, and placement of data items such that, the minimum energy re-
quired by any data selection algorithm is Ω(ω(MST (G)) log N).

However, this does not mean that, for any graph, it is always
the case. In particular, it does not give the bound on %E for our
algorithm on the MST. We make the following conjecture:

Conjecture 1: For any algorithm that can correctly find the
median and any network, there exists a placement of data items
such that the algorithm will cost energy at least

O(ω(MST ) ·min{log N, log
fk

L
})

where L is the smallest value of all data items, fk is the value
of the kth smallest element.

VI. RELATED WORK

As the fundamental many-to-one communication pattern in
sensor network applications, convergecast has been studied in
both networking and database communities in recent years.

Most existing convergecast methods [17]–[19] are based on a
tree structure and with minimum either energy or data latency
as the objective. For example, [19] first constructs a tree using
greedy approach and then allocates DSSS or FHSS codes for its
nodes to achieve collision-free, while [17], [18] uses TDMA to
avoid collisions. In [17], the authors did not give any theoretical
tradeoffs between energy cost and latency. Gandham [18] mainly
studied the minimum time convergecast for linear networks and
tree networks. They presented a lower bound 3n − 2 for time-
complexity for convergecast in linear networks and proposed
a distributed convergecast scheduling algorithm that requires at
most 3n time slots for tree networks. They perform convergecast
based on BFS, whose internal nodes implicitly forms a CDS
structure, which is used here. However, BFS structure cannot
guarantee the best theoretical performance in terms energy con-
sumption. Furthermore, they did not provide theoretical results
for general network topologies. Zhang and Huang [20] proposed
a hop-distance based temporal coordination heuristic for adding
transmission delays to avoid collisions. They studied the effective-
ness of packet aggregation and duplication mechanisms with such
convergecast framework. Kesselman and Kowalski [4] proposed
a randomized distributed algorithm for convergecast that has the
expected running time O(log n) and uses O(n log n) times of
minimum energy in the worst case, where n is the number of
nodes. They also showed the lower bound of running time of
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any algorithm in an arbitrary network is Ω(log n). However, they
assume that all nodes can dynamically adjust its transmission
power from 0 to any arbitrary value and a data message by a
node can contain all data it has collected from other nodes.

To significantly reduce communication cost in sensor networks,
in-network aggregation has been studied and implemented. In
TAG (Tiny AGgregation service) [1], besides the basic aggrega-
tion types (such as count, min, max, sum, average) provided by
SQL, five groups of possible sensor aggregates are summarized:
distributive aggregates (e.g., count, min, max, sum), algebraic ag-
gregates (e.g., average), holistic aggregates (e.g., median), unique
aggregates (e.g., count distinct), and content-sensitive aggregates
(e.g., fixed-width histograms and wavelets). Notice that the first
two groups aggregates are very easy to achieve by a tree-based
method. To overcome the severe robustness problems of the
tree approaches [1], [21], [22], multi-path routing for in-network
aggregation has been proposed [23], [24]. Then recently Manjhi
et al. [25] combined the advantages of the tree and multi-path
approaches by running them simultaneously in different regions of
the network. In [2], Kashyap et al. studied a randomized (gossip-
based) scheme using which all the nodes in a complete overlay
network can compute the common aggregates of min, max, sum,
average, and rank of their values using O(n log log n) messages
within O(log n log log n) rounds of communication. Kempe et al.
[3] earlier presented a gossip-based method which can get the
average in O(log n) rounds with O(n log n) messages.

Data selection (e.g., median or k-th smallest element) is much
harder than general distributive and algebraic aggregates. Dis-
tributed selection has been studied in general networks [15].
Recently, Kuhn et al. [11] studied the distributed selection for
general networks with n nodes and diameter D. They proved
that distributed selection is strictly harder than convergecast by
giving a lower bound of Ω(D logD n) on the time complexity.
They then present a novel randomized algorithm which matches
this lower bound with high probability and de-randomized it
to a deterministic distributed selection algorithm with a time
complexity of O(D log2

D n) which constitutes a substantial im-
provement over prior art. However, there are no many results on
distributed selection in wireless networks. In [26], Patt-Shamir
presented a deterministic algorithm that computes the median
value such that each node transmits only O((log n)2) bits and
a randomized algorithm that computes an approximate median in
which each node transmits O((log log n)3) bits. He also proved
that computing the exact number of distinct elements in the data
set indeed requires linear communication in the worst case. His
method implies total O(n log n) messages for finding median
when each node has one data item, while our method can find
the median in O(nC log n) messages. However, no lower bound
on message complexity or time complexity is given in [26].

VII. CONCLUSION

In this article, we study the time complexity, message com-
plexity, and energy complexity of data collection, algebraic data
aggregation, and data selection in WSNs. We first study lower
bounds of the complexities for these problems and then present
efficient algorithms that achieve asymptotically optimal time
complexity, and message complexity. A number of interesting
questions remain unsolved. One is to design efficient algorithms
when each node will produce a data stream. The second challenge
is what is the best algorithm when we do not require that the found

data item to be precise, i.e., we allow certain relative errors, or
additive errors on the found answer. We also need to derive better
lower bounds on energy cost and design efficient algorithms for
holistic data operations. Another question is to study the time
complexity and message complexity for other holistic queries
such as most frequent items, number of distinctive items. The
last, but not the least important is to study lower bounds on
complexities, and to design efficient algorithms to address these
questions when the communication links are not reliable.
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