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Abstract—In this paper, we study the asymptotic networking-theoretic multicast capacity bounds for random extended networks (REN)
under Gaussian channel model, in which all wireless nodes are individually power-constrained. During the transmission, the power
decays along path with attenuation exponent α > 2. In REN, n nodes are randomly distributed in the square region of side length

√
n.

There are ns randomly and independently chosen multicast sessions. Each multicast session has nd + 1 randomly chosen terminals,
including one source and nd destinations. By effectively combining two types of routing and scheduling strategies, we analyze the
asymptotic achievable throughput for all ns = ω(1) and nd. As a special case of our results, we show that for ns = Θ(n), the
per-session multicast capacity for REN is of order Θ( 1√

ndn
) when nd = O( n

(log n)α+1 ) and is of order Θ( 1
nd

· (log n)−
α
2 ) when

nd = Ω( n
log n

).

Index Terms—Multicast Capacity, Percolation, Wireless ad hoc networks, Random networks, Achievable throughput
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1 INTRODUCTION

T HE capacity scaling laws of wireless networks have
received much attention from the researchers, especially

after the pioneer work by Gupta and Kumar [2]. There are
generally two kinds of capacity bounds. The first kind is called
information-theoretic bound, which is obtained by allowing
arbitrary (physical layer) cooperative relay strategies, [3].
The issue was first addressed by Xie and Kumar [4]. The
second kind is called networking-theoretic bound [2], which
is derived under the assumption that the signals received
from nodes other than one particular transmitter are regarded
as interference degrading the communication. It is intuitive
that the optimal strategy for networking-theoretic bounds is
to confine to nearest neighbor communication and maximize
spatial reuse, because the interference generated by long
communication would prevent most of the other nodes from
communicating simultaneously, [2], [5]. In this paper, we
focus on the networking-theoretic capacity that depends on
the adopted network models, including deployment models,
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scaling models, communication models, and the pattern of
traffic sessions (unicast, broadcast, or multicast).

Gupta and Kumar [2] defined two deployment models:
arbitrary networks, where the locations of nodes, destinations
of sources, and traffic demands are all arbitrarily set, and
random networks, where the nodes are randomly placed and
their destinations are also randomly chosen. The randomness
contributes to the fact that the throughput of random networks
is not greater than that of arbitrary networks in general.

Generally, two types of communication models are used. (1)
The first is the binary-rate communication model under which
if the value of a given conditional expression is beyond the
threshold, the transmitter can send successfully to the receiver
at a specific constant data rate; otherwise, it can not send
any. The protocol model (ProM) and physical model (PhyM)
defined in [2] both belong to the binary-rate communication
model. The conditional expression of ProM is the fraction of
the distances from the particular transmitter and other trans-
mitters to the intended receiver; the conditional expression
of PhyM is SINR (signal to interference plus noise ratio).
This model is simple, thus, analytically attractive. Many work
therein are based on this model, e.g., [6]–[15]. (2) The second
is the continuous-rate communication model that determines
the transmission rate at which the transmitter can communicate
with receiver reliably, based on a continuous function of the
receiver’s SINR. Generally, two nodes vi and vj can establish
a direct communication link, over a channel of bandwidth B,
of rate R(vi, vj) = B log2(1+(1/η) SINR(vj)). When η > 1,
the receiver can achieve the maximum rate that meets a given
BER requirement under a specific modulation and coding
scheme; When η = 1, the receiver achieves the Shannon’s
capacity with additive Gaussian white noise, see [16], [17].
Then, in the case of η = 1, the continuous-rate communication
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model can be called Gaussian channel model (GCM), also
called generalized physical model [18], [19].

About the relations among the ProM, PhyM and GCM, we
observe that: (i) For random dense networks (RDN) (where
the area of deployment region is fixed and the node density
increases to infinity), the ProM and PhyM can act as the
reasonable simplifications of GCM; and if multiple commu-
nication and interference radii (or the thresholds of SINR)
are permitted under the ProM (or the PhyM), the capacity
derived under GCM can be equally derived under the ProM
and PhyM, and vice versa. (ii) For random extended networks
(REN) (where the node density is fixed to a constant and the
area of the deployment region increases to infinity), the ProM
and PhyM are both over-optimistic and unrealistic, while the
GCM can capture the nature of wireless channels better.

In this paper, we study the networking-theoretic multicast
capacity for REN under GCM. We present both improved
lower bound and improved upper bound on multicast capacity,
compared with previous literature. See Section 3 for our main
results. Some existing results can be derived by our results as
the special cases, such as [3], [20], [21].

For studying the lower bound of multicast capacity, we
design two types of multicast strategies for REN. In one type
of scheme, we construct the routing based on percolation
theory and schedule short-hops and long-hops respectively.
In the other type, we construct the routing without using the
percolation theory, to avoid the bottleneck on the accessing
path into highways [20]. Combining the two types of schemes,
we obtain the achievable throughput as the lower bound of
multicast capacity, which improves the previously best known
results. We design our routing and schedule schemes based on
several innovative techniques: using both backbone highway
and second highway systems based on percolation theory, and
parallel scheduling of nearby links. Second highway systems
and parallel scheduling of nearby links, to the best of our
knowledge, are not used in previous studies. In this work, we
consider all cases in terms of the number of multicast sessions
ns = ω(1) and that of destinations nd per session, while most
known results put constraints on ns and nd.

On the other hand, for deriving upper bounds on multicast
capacity, we apply several novel concepts such as lattice view
and island. One approach is to study the bottleneck on some
links. We show that there exist some special links terminating
in certain islands that will be used by many multicast ses-
sions (thus high load) and its own data rate is small, thus,
implying an upper bound on per-session multicast capacity.
Furthermore, for the lattice view consisting of cells of constant
side length, by bounding the aggregated capacities and loads
of such cells under any routing and scheduling schemes, we
obtain another upper bound on per-session multicast capacity.

The rest of the paper is structured as follows. In Section 2,
we introduce the network model. Main results are presented
in Section 3. In Section 4, we present our general analysis
techniques. In Section 5, we study upper bounds on multi-
cast capacity. We design multicast strategies and analyze the
achievable throughput for random extended networks in Sec-
tion 6. We review existing results in Section 7, and conclude
the paper in Section 8.

2 NETWORK MODEL
We construct a random network N (a2, n) by placing nodes
according to a Poisson point process (p.p.p.) of intensity
λ(a2, n) = n

a2 on the two-dimension plane and focusing on
the square region A(a2) = [0, a] × [0, a]. Thus, let a =

√
n,

we obtain the random extended network (REN). According to
Chebyshev’s inequality, we get that the number of nodes in
A(a2) is within ((1 − ε)n, (1 + ε)n) with high probability,
where ε > 0 is an arbitrarily small constant. To simplify the
description, we assume that the number of nodes is exactly
n, without changing our results in order sense, [3], [20]. We
are mainly concerned with the events that occur inside these
squares with high probability (w.h.p.); that is, with probability
tending to one as n →∞.

2.1 Multicast Capacity Definition
We first give the formal definition of capacity in our model.
Let V = {v1, v2, · · · , vn} denote the set of all ad hoc nodes.
Assume that a subset S ⊆ V of ns = |S| random nodes
will serve as the source nodes of ns multicast sessions. We
randomly and independently choose ns multicast sessions as
follows. To generate the k-th (1 ≤ k ≤ ns) multicast session,
denoted by MS,k, nd + 1 points pS,ki (0 ≤ i ≤ nd, and
1 ≤ nd ≤ n−1) are randomly and independently chosen from
the deployment region A(a2). Denote the set of these nd + 1
points by PS,k = {pS,k0 , pS,k1 , · · · , pS,knd

}. Let vS,ki be the
nearest ad hoc node from pS,ki (ties are broken randomly). In
MS,k, the node vS,k0 , serving as a source, intends delivering
data to nd destinations DS,k = {vS,k1 , vS,k2 , · · · , vS,knd

} at
an arbitrary data rate λS,k. Let US,k = {vS,k0} ∪DS,k be the
spanning set of nodes for the multicast session MS,k.

Let ΛS,nd
= (λS,1, λS,2, · · · , λS,ns) denote a rate vector

of the multicast data rate of all multicast sessions. We follow
the standard definition of a feasible rate vector ΛS,nd

=
(λS,1, λS,2, · · · , λS,ns) in [12], [21]. A multicast rate vector
ΛS,nd

is feasible if there is a T < ∞ such that in every time
interval (with unit seconds) [(t − 1) · T, t · T ], every node
vS,k0 ∈ S can send T ·λS,k bits to all its nd destinations. For
a multicast rate vector, we define the minimum per-session
multicast throughput (or per-session multicast throughput for
simplicity) as Λp

S,nd
(n) = minvS,k0∈S λS,k.

Definition 1 (Achievable Per-Session Multicast Throughput):
A per-session multicast throughput Λp

S,nd
(n) is achievable for

ns multicast sessions (each session with nd destinations) if
there is a feasible rate vector ΛS,nd

= (λS,1, λS,2, · · · , λS,ns)
such that Λp

S,nd
(n) = minvS,k0∈S λS,k.

Definition 2 (Multicast Capacity for Random Networks):
The per-session multicast capacity for a class of random
networks is of order Θ(g(n)) if there are constants c > 0 and
c < c′ < +∞ such that

lim
n→+∞

Pr(Λp
S,nd

(n) = c · g(n) is achievable) = 1,

lim inf
n→+∞

Pr(Λp
S,nd

(n) = c′ · g(n) is achievable) < 1.

2.2 Communication Model
We assume all nodes are individually power-constrained, i.e.,
for any node vi, it transmits at a constant power Pi ∈
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[Pmin, Pmax], where Pmin and Pmax are some positive con-
stants. Node vj receives the transmitted signal from node vi

with power Pi ·`(vi, vj), where `(vi, vj) indicates the path loss
between vi and vj . We restrict ourselves to a model where
the interference at the receiver is simply regarded as noise,
i.e., we focus on the networking-theoretic bounds instead of
the information-theoretic bounds, [4], [22]–[27]. Hence, any
two nodes can establish a direct communication link, over a
channel of bandwidth B, of rate

R(vi, vj) = B log2(1 +
Pi · `(vi, vj)

N0 +
∑

vk∈S(i)/vi
Pk · `(vk, vj)

),

where N0 is the ambient noise power at the receiver, and S(i)
is the set of nodes transmitting when vi is scheduled.

NOTATIONS: Throughout this paper, we use following nota-
tions:
• For a two-dimension line segment L = uv, |L| represents

the Euclidean distance between u and v. For a discrete
set U , |U| represents its cardinality.

• For a continuous region A, we use ‖A‖ to denote its area.
For an Euclidean tree T , we use ‖T ‖ to denote its total
Euclidean edge lengths.

• For a multicast session MS,k with spanning set US,k,
let EMST(MS,k) or EMST(US,k) denote the Eu-
clidean minimum spanning tree (EMST) over US,k, and
EST(MS,k) or EST(US,k) represent an Euclidean span-
ning tree (EST) over US,k.

To make the expression more concise,
• define two functions as

max
order

{ϕ(n), φ(n)} =

{
Θ(ϕ(n)), if ϕ(n) = Ω(φ(n))
Θ(φ(n)), if φ(n) = Ω(ϕ(n))

min
order

{ϕ(n), φ(n)} =

{
Θ(ϕ(n)), if ϕ(n) = O(φ(n))
Θ(φ(n)), if φ(n) = O(ϕ(n))

• let θ(n):[ϕ(n), φ(n)] represent that θ(n) = Ω(ϕ(n)) and
θ(n) = O(φ(n)), and let θ(n):(ϕ(n), φ(n)] represent that
θ(n) = ω(ϕ(n)) and θ(n) = O(φ(n)).

3 MAIN RESULTS

Let the power attenuation function be

`(vi, vj) = min
{
1, |vivj |−α

}

with α > 2 and N0 > 0. We study the multicast throughput by
taking all cases of ns = ω(1) and nd : [1, n] into account. The
general results are shown in Theorem 7. In this section, we
summarize our results under the assumption that ns = Θ(n),
as a special case of our general results.

For the upper bounds, we have that
Theorem 1: The per-session multicast capacity for random

extended networks is at most of order
{

O( 1√
ndn ) when nd : [1, n

(log n)α ]
O( 1

nd(log n)
α
2

) when nd : [ n
(log n)α , n] (1)

For the lower bounds, we have that

Theorem 2: The per-session multicast capacity for random
extended networks is at least of order




Ω( 1√
ndn ) when nd : [1, n

(log n)α+1 ]
Ω( 1

nd(log n)
α+1

2
) when nd : [ n

(log n)α+1 , n
(log n)2 ]

Ω( 1
√

nnd·(log n)
α−1

2
) when nd : [ n

(log n)2 , n
log n ]

Ω( 1

nd(log n)
α
2

) when nd : [ n
log n , n]

(2)
Combining Theorem 1 and Theorem 2, we obtain that
Theorem 3: The per-session multicast capacity for random

extended networks is of order
{

Θ( 1√
ndn ) when nd : [1, n

(log n)α+1 ]
Θ( 1

nd(log n)
α
2

) when nd : [ n
log n , n] (3)

Observe that there is a gap between our upper bound and
lower bound when nd : [ n

(log n)α+1 , n
log n ]. The gap would be

closed by presenting possibly new tighter upper bound and
lower bound, and designing algorithms to achieve it.

4 TECHNICAL LEMMAS

We first establish some technical lemmas to serve as the basic
arguments for proving our main results.

4.1 Techniques for Upper Bounds

We first give a new notion called lattice view by which some
upper bounds can be derived.

Definition 3 (Lattice View): Partition a square deployment
regionA(a2) = [0, a]2 into da

g e2 cells of side length g:[ a√
n
, a),

we call the produced lattice graph lattice view, and denote it
by V(a, g).

Definition 4 (Island): In a lattice view V(a, g), a cell is
called island if it contains Θ( n

a2 · g2) nodes and all its eight
neighbor cells are empty.

Lemma 1: There exists w.h.p. an island in the lattice view

V(a, g), if g ≤ a
2 ·

√
(1−ε)·log n

2n , where ε ∈ (0, 1) is constant.
Based on a given lattice view V(a, g), we next propose a

useful result about arbitrary multicast trees.
Lemma 2: Given a multicast session MS,k, let TS,k be

a multicast tree for MS,k, and let N(TS,k, a, g) denote the
number of cells used by TS,k in V(a, g), then it holds that
N(TS,k, a, g) = Ω( 1

g · ‖EMST(MS,k)‖) when nd = O(a2

g2 ).
Under any multicast strategy F , the load of each cell in

a lattice view V(a, g) can be classified into two types, i.e.,
initial transmission load and relay burden.

Definition 5: For any cell Cj ∈ V(a, g), j = 1, 2, · · · , da2

g2 e,
define the load of Cj as the number of the links whose
transmitters or receivers are located in Cj ; among those links,
call the number of the links whose transmitters or receivers
belong to any spanning sets US,k (for vS,k0 ∈ S) the initial
transmission load of Cj , and call the number of the other links
the relay burden of Cj .
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4.2 Techniques for Lower Bounds
In general, the lower bounds of network capacity are obtained
by designing some specific strategies. Denote a multicast
strategy by F , and denote the corresponding routing and
transmission scheduling scheme by F r and F t, respectively.

A routing scheme F r may have a hierarchical structure
consisting of τ phases corresponding to sub-routing schemes
F r1 ,F r2 , · · · ,F rτ , where τ ≥ 1 is a constant. Let V(F rj )
denote the set of nodes passed through by some multicast
sessions under the routing scheme F rj , for j ∈ [1, τ ].

Definition 6 (Sufficient Region): For a node vj
i ∈ V(F rj ),

1 ≤ j ≤ τ , and a multicast session MS,k, 1 ≤ k ≤ ns, we
call a region Q(F rj ,MS,k, vj

i ) sufficient region if

Pr(E(F rj ,MS,k, vj
i )) ≤ Pr(Ẽ(F rj ,MS,k, vj

i )), (4)

where the event E(F rj ,MS,k, vj
i ) is defined as: MS,k is

routed through vj
i under the sub-routing scheme F rj ; and

the event Ẽ(F rj ,MS,k, vj
i ) is defined as: A Poisson node is

located in the region Q(F rj ,MS,k, vj
i ).

Lemma 3 (Achievable Throughput in Phase j): For a ran-
dom network N (a2, n), if all nodes in V(F rj ) can sustain
the rate of Rj under the transmission scheduling F t, and for
k ∈ [1, ns], the areas of sufficient regions satisfy w.h.p. that

‖Q(F rj ,MS,k, vj
i )‖ ≤ Qj (5)

where Qj is independent of k and i, then the achievable per-
session throughput during Phase j is of

Λj =

{
Ω(Rj

ns
· a2

Qj
) when ns = [ a2

Qj
· log n, n]

Ω(Rj · 1
log n ) when ns = (1, a2

Qj
· log n]

(6)

According to the principle of network bottleneck, we have,
Lemma 4: The throughput under a multicast strategy F ,

consisting of τ phases, is achieved of Λ = min{Λj , for 1 ≤
j ≤ τ}, where Λj is the throughput during Phase j.

5 UPPER BOUNDS OF MULTICAST CAPACITY
We study the upper bounds for random extended networks
(REN) under Gaussian channel model.

5.1 Lattice View V(
√

n, 1
3

√
log n)

From Lemma 1, for ε = 1
9 , there is an island in the lattice

view V(
√

n, 1
3

√
log n). Thus, we get the following lemma.

Lemma 5: Under Gaussian channel model, the per-session
multicast capacity for REN is of order O( n

nsnd

(
log n)−

α
2
)
.

Proof: Denote an island in V(
√

n, 1
3

√
log n) by I. For

a link, say u → v, where the receiver v is located in I, its
length is |uv| = Ω(

√
log n), then the capacity of this link is

Cu,v ≤ B log2(1 +
Pmax|uv|−α

N0
) = O((log n)−

α
2 )

Consider the initial transmission load of I. According to
Chernoff bound and union bounds, we have that the initial
transmission loads of all cells in V(

√
n, 1

3

√
log n) are w.h.p.

of order Ω(ns·nd log n
n ). In addition, there are at most Θ(log n)

simultaneous links terminating (or initiating) in I since it
contains Θ(log n) nodes inside. By the pigeonhole principle,
there exists a link whose load is Ω(nsnd

n ). Then, the lemma
follows from Cu,v = O((log n)−

α
2 ).

vS,ki

vS,k0

pS,k0

pS,ki

Fig. 1. Multicast session MS,k. The tree consisting of
solid lines represents the Euclidean minimum spanning
tree (EMST) over US,k = {vS,ki | 0 ≤ i ≤ nd}, de-
noted by EMST(US,k). The tree consisting of dashed
lines represents an Euclidean spanning tree (EST) over
PS,k = {pS,ki

| 0 ≤ i ≤ nd}, denoted by EST0(PS,k),
where for any 0 ≤ i, j ≤ nd, pS,ki → pS,kj ∈ EST0(PS,k) if
and only if vS,ki → vS,kj ∈ EMST(US,k).

5.2 Lattice View V(
√

n, c)
We adopt the lattice view V(

√
n, c) to derive a new upper

bound of the multicast capacity, where c is a constant such
that m = n

c2 is an integer. First, we consider the throughput
capacity of the cells in this lattice view.

Lemma 6: The throughput capacity of any cell in V(
√

n, c)
is at most of order O(1).

Proof: For any cell Ci in V(
√

n, c), denote the set of
all links initiating (or terminating) in Ci that are scheduled
simultaneously in time t by Πi(t). Since the number of nodes
in any cell of V(

√
n, c) is at most of order O(log n) (by Cher-

noff bound), we get that maxCi∈V(
√

n,c){|Πi(t)|} = O(log n).
Denote the transmitting power, length and rate of the jth
link in |Πi(t)| as Pi,j ∈ [Pmin, Pmax], li,j and λi,j for
1 ≤ j ≤ |Πi(t)|. Then, it holds that

λi,j ≤ B log2


1 +

Pi,j ·min{1, l−α
i,j }

N0 + min{1, (li,j +
√

2c)−α} ∑
k 6=j

Pi,k




Thus, we have λi,j = O(
Pi,j ·min{1,l−α

i,j
}

N0+min{1,(li,j+
√

2c)−α}
∑

k 6=j
Pi,k

).

Since c > 0 is a constant, it holds that

λi,j = O(
Pi,j ·min{1, l−α

i,j }
N0 + min{1, l−α

i,j }
∑

k 6=j Pi,k

).

Then, we obtain that λi,j = O( 2Pi,j∑|Πi(t)|
k=1

Pi,k

). Furthermore, we

get that
∑|Πi(t)|

j=1 λi,j = O(1), which completes the proof.
Lemma 7: For any K(n) node sets that are independently

built, denoted by X1(n),X2(n), · · · ,XK(n)(n), it holds that

Pr

(
lim

n→∞

∑K(n)
k=1 ‖EMST(Xk(n))‖

K(n) · a · n1− 1
d

= ν(d)

)
= 1. (7)
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Lemma 8: For all multicast sessions MS,k (1 ≤ k ≤ ns),
it holds that when nd = o( n

log n ),
∑ns

k=1
‖EMST(MS,k)‖ = Ω(ns ·

√
nd · n).

Proof: Recall that for any multicast session, say MS,k,
a set of nd + 1 points are chosen randomly and inde-
pendently from the deployment region A(n), denoted by
PS,k = {pS,k0 , pS,k1 , · · · , pS,knd

}. Let EMST(PS,k) denote
the Euclidean minimum spanning tree (EMST) based on the
set PS,k. Then, by Lemma 7, it holds almost surely that

∑ns

k=1
‖EMST(PS,k)‖ = Θ(ns

√
ndn). (8)

Next, we build an Euclidean spanning tree (EST) T0 =
EST0(PS,k) on the basis of EMST(US,k), as illustrated in
Fig.1. Then, ‖EST0(PS,k‖ ≥ ‖EMST(PS,k‖. Denote any
edge pS,ki

→ pS,kj
by < i, j > without confusion, then

‖EMST(US,k)‖
≥ ∑

<i,j>∈T0

(|pS,kipS,kj | − |pS,kivS,ki | − |pS,kj vS,kj |)
= ‖EST0(PS,k‖ −

∑
<i,j>∈T0

(|pS,kivS,ki |+ |pS,kj vS,kj |)
≥ ‖EMST(PS,k‖ − 2nd ·max{|pS,kivS,ki |, for 0 ≤ i ≤ nd}.

Let D(pS,ki , r(n)) denote the disk centered at the point
pS,ki with a radius r(n). Then, the number of nodes in
D(pS,ki , r(n)), denoted by N(pS,ki , r(n)), follows a Poisson
distribution of mean π · (r(n))2. Let r(n) = 3

√
log n, accord-

ing to Chernoff bound, we have

Pr
(

N(pS,ki , 3
√

log n) ≤ 9π

2
· log n

)
≤ 1

n3
.

Define Nmin := min{N(pS,ki , r(n)), for all 0 ≤ i ≤ nd, 1 ≤
k ≤ ns}. By union bounds, we get

Pr
(

Nmin ≤ 9π

2
· log n

)
≤ ns · (nd + 1) · 1

n3
≤ 1

n
→ 0,

which implies that for any 1 ≤ k ≤ ns and 0 ≤ i ≤ nd,
|pS,kivS,ki | ≤ r(n) = 3

√
log n, w.h.p.. Hence,

ns∑

k=1

‖EMST(US,k)‖ ≥
ns∑

k=1

‖EMST(PS,k‖−6ns ·nd ·
√

log n.

Following nd = o( n
log n ) and Equation (8), it holds that∑ns

k=1 ‖EMST(PS,k‖ = ω(6ns · nd ·
√

log n). Thus,
∑ns

k=1
‖EMST(US,k)‖ = Ω(

∑ns

k=1
‖EMST(PS,k‖).

Combining with Equation (8), we complete the proof.
Lemma 9: The per-session multicast capacity for REN is

of order O(
√

n
ns
√

nd
) when nd = o( n

log n ).
Proof: For each multicast tree TS,k, denote the number

of cells in V(
√

n, c) used by it as N(TS,k,
√

n, c). According
to Lemma 2, it holds that

∑ns

k=1
N(TS,k,

√
n, c) = Ω

(∑ns

k=1
‖EMST(MS,k)‖

)

(9)
Case 1: When nd : (1, n/log n).
Combining Lemma 8 with Equation (9), we obtain that∑ns

k=1 N(TS,k,
√

n, c) = Ω(ns
√

ndn) when nd = o( n
log n ).

By pigeonhole principle, there is at least one cell that will
be used by at least Ω(ns

√
nd√
n

) sessions. By Lemma 6, the total
throughput capacity of any cell in V(

√
n, c) is of order O(1).

Thus, under any strategy, due to the congestion in some cells,
the multicast throughput is at most of order O(

√
n

ns
√

nd
).

Case 2: When nd = Θ(1).
The problem degenerates into the case of unicast sessions.

From the result in [21], the per-session unicast capacity for
REN is of order O(

√
n

ns
), i.e., O(

√
n

ns
√

nd
) for nd = Θ(1).

Combining two cases, we complete the proof.
Based on Lemma 5 and Lemma 9, we obtain Theorem 4

by performing some simple algebraic manipulations.
Theorem 4: The per-session multicast capacity for random

extended networks is of order{
O(

√
n

ns
√

nd
) when nd : [1, n

(log n)α ]
O( n

nsnd
· (log n)−

α
2 ) when nd : [ n

(log n)α , n]

By letting ns = Θ(n), we get Theorem 1.

6 LOWER BOUNDS OF MULTICAST CAPACITY

We derive the lower bounds on multicast capacity for REN
by proposing two multicast strategies, denoted by F and
S , respectively. Our multicast strategies are cell-based, then
we first recall a new notion called scheme lattice [28] for
succinctness of the description.

Definition 7 (Scheme Lattice): Divide a square deployment
region A(a2) = [0, a]2 into a lattice consisting of square cells
of side length g, we call the lattice scheme lattice and denote it
by L(a, g, θ), where θ ∈ [0, π

4 ] is the minimum angle between
the sides of the deployment region and produced cells.

6.1 Highways System
The highway system consists of highways of two levels. The
first are the first-class highways (FHs), indeed the highways
in [20]. The second are the second-class highways (SHs) that
are built without using percolation theory.

6.1.1 First-Class Highways (FHs)
We recall the construction of FHs based on percolation theory
[20], and introduce the transmission scheduling by which each
FH can sustain a rate of constant order.

Construction of FHs: The FHs are built based on the
scheme lattice L(

√
n, c, π

4 ), as depicted in Fig.2(a). Then,
there are m2 cells in L(

√
n, c, π

4 ), where m =
⌈√

n/
√

2c
⌉

(we can adjust the value of c such that
√

n/
√

2c is an integer).
Let N(Ci) denote the number of Poisson points inside cell Ci,
which is a Poisson random variable with mean c2. For all i,
the probability that a square Ci contains at least one Poisson
point (N(Ci) ≥ 1) is p ≡ 1− e−c2

. We say a square is open
if it contains at least one point, and closed otherwise. Then
any square is open with probability p, independently from each
other. Based on L(

√
n, c, π

4 ), we draw a horizontal edge across
half of the squares, and a vertical edge across the others, to
obtain a scheme lattice L(

√
n,
√

2c, 0), as shown in Fig.2(a).
We say a given edge ~ in L(

√
n,
√

2c, 0) is open if the cell in
L(
√

n, c, π
4 ), crossed by ~, is open, and call a path comprised
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{
θ1 log n

(a) First-class highways (b) Second-class highways

Fig. 2. (a) The bold polygonal line represents an open
path consisting of open edges. A vertical first-class high-
way (FH) is illustrated by a polygonal line whose inflexions
are called first-class stations. (b) The bold lines connect-
ing the nodes, called second-class stations, represent the
second-class highways (SHs).

of edges in L(
√

n,
√

2c, 0) open if it contains only open edges.
Based on an open path connecting the left side of A(n) with
its right side (or connecting the upper side of A(n) with its
bottom side), as illustrated in Fig.2(a), choose a node from
each cell in L(

√
n, c, π

4 ) corresponding to the open edges of
the open path, and connect a pair of nodes from two adjacent
cells, we finally obtain a crossing path. We call those crossing
paths first-class highways (FHs).

Density of FHs: For a given κ > 0, partition the scheme
lattice L(

√
n, c, π

4 ) into horizontal (or vertical) rectangle slabs
of size m× (κ log m− εm) (or (κ log m− εm)×m), denoted
by Rh

i (or Rv
i ). Denote the number of disjoint horizontal (or

vertical) FHs within Rh
i (or Rv

i ) by Nh
i (or Nv

i ). It holds that
Lemma 10: ( [20]) For every κ and p ∈ (5/6, 1) satisfying

2 + κ log(6(1− p)) < 0, there exists a δ = δ(κ, p) such that

lim
m→∞

Pr(Nh ≥ δ log m) = 1, lim
m→∞

Pr(Nv ≥ δ log m) = 1,

where Nh = mini Nh
i and Nv = mini Nv

i .
Notations for FHs: To simplify the description, we assume

that there are exactly δ log m horizontal (or vertical) FHs in
each horizontal (or vertical) slab, which does not change the
results in order sense. According to lemma 10, we can further
divide every slab into δ log m slices of size l × √

n, where
l = (κ log m−εm)

δ log m . Hence, we can define the mapping among
the slabs, slices, and FHs. Please see the details in Table 1.
The following are some remarks.

1) Any slice can and only can project to an FH contained
by the slab that posses the slice, which ensures that the
distance from any points in the slice to the corresponding
highway is at most of κ log m− εm.

2) For a node v and horizontal slice Sh
i ∈ Sh (or vertical

slice Sv
i ∈ Sv), if v is located in Sh

i (or Sv
i ), then fh(v) =

gh(Sh
i ) (or fv(v) = gv(Sv

i )).
3) ψh(hh

k) (or ψv(hv
k)) denotes the horizontal (or vertical)

slab completely containing the horizontal (or vertical) FH
hk (or hv

k).
Transmission Scheduling for FHs: To schedule the FHs,

we use a 9-TDMA scheduling scheme based on the scheme

TABLE 1
Notations for FHs

Notation Meaning

Rh
i i-th horizontal slab of size m× (κ log m− εm)

Rv
i i-th vertical slab of size (κ log m− εm)×m

Rh (or Rv) the set of all horizontal (or vertical) slabs

Sh
j j-th horizontal slice of size m× κ log m−εm

δ log m

Sv
j j-th vertical slice of size κ log m−εm

δ log m
×m

Sh (or Sv) the set of all horizontal (or vertical) slices

hh
k (or hv

k) k-th horizontal (or vertical) FH

Hh (or Hv) the set of all horizontal (or vertical) FHs

gh:Sh → Hh a bijection from horizontal slices to horizontal FHs

gv :Sv → Hv a bijection from vertical slices to vertical FHs

fh : V → Hh a function from nodes to horizontal FHs

fv : V → Hv a function from nodes to vertical FHs

ψh : Hh → Rh a function from horizontal FHs to horizontal slabs.

ψv : Hv → Rv a function from vertical FHs to vertical slabs.

lattice L(
√

n, c, π
4 ) by letting K = 3 and d = 1 in Fig. 4

of [20]. According to Theorem 3 in [20], all FHs can sustain
w.h.p. the rate of order Ω(1).

6.1.2 Second-Class Highways (SHs)
We build the SHs and design the transmission scheduling to
achieve the rate of order Ω((log n)−

α
2 ) along each SH.

Construction of SHs: The SHs are constructed based on the
scheme lattice L(

√
n, σ

√
log n−εn, 0), as depicted in Fig.2(b),

where σ > 0 is a constant and we choose εn > 0 as the
smallest value such that

√
n/(σ

√
log n− εn) is an integer. It

is obvious that εn = o(1). Then there are n/(σ
√

log n− εn)2

cells. Let N(C̄j) be the number of Poisson nodes inside
a cell C̄j , which is a Poisson random variable with mean
(σ
√

log n − εn)2. Furthermore, we define the uniform lower
bound of N(C̄j) as NC̄ .

To ensure the feasibility of the method to construct SHs,
we give the following lemma.

Lemma 11: For any %, % > 1 + log %, and σ, σ2 ≥
4%

(2%−log %−1) , each cell in L(
√

n, σ
√

log n − εn, 0) contains
w.h.p. no less than θ1 log n nodes, where θ1 is a constant with
θ1 = σ2

2% .
Proof: Since (σ

√
log n − εn)2 > 1

2σ2 log n, as n → ∞,
according to Chernoff bound and union bounds, we have

Pr
(
NC̄ ≤ σ2·log n

2%

)
≤ 2n

σ2·log nPr
(
N(C̄j) ≤ σ2·log n

2%

)

≤ 2n
σ2·log n

n
σ2
2%

n
σ2
2
· nσ2·log %

2% = 2

σ2·log n·n
σ2
2 −1− (1+log %)σ2

2%

Thus, when we choose % with % > 1 + log % and σ with
σ2 ≥ 2%

ρ−(1+log ρ) , it holds that Pr(NC̄ ≤ σ2·log n
2% ) → 0.

We call each row (or column) of L(
√

n, σ
√

log n − εn, 0)
row-slab (or column-slab), denoted by R̄h

i (or R̄v
i ). In each
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concurrent θ1 log n links

Fig. 3. Second-class transmission scheduling. Gray
squares can be scheduled simultaneously. In any time
slot, there are Θ(log n) concurrent links initiating from
every activated cell.

row-slab (or column-slab), we give each cell an order number,
e.g., increasing from top to bottom (or from left to right),
and call the cells with odd (or even) order number odd-order
(or even-order) cells. We construct the horizontal SHs in R̄h

i

by the following operations: First, for
√

n/(σ
√

log n − εn)
cells in R̄h

i , choose one node from each cell. Second, connect
the selected nodes from consecutive odd-order cells to derive
a path called horizontal odd SH; connect the nodes from
consecutive even-order cells to derive a horizontal even SH.
Similarly, we can construct the vertical odd SH and even SH.

Density of SHs: We say two SHs are disjoint if they do not
share a common node. Next, we consider the density of SHs,
that is, the number of the disjoint SHs in unit area. Denote
the number of disjoint SHs within a row-slab R̄h

i (or column-
slab R̄v

i ) by N̄h
i (or N̄v

i ). Let N̄h = inf N̄h
i , N̄v = inf N̄v

i .
According to Lemma 11, each cell in L(

√
n, σ

√
log n− εn, 0)

contains w.h.p. at least θ1 log n nodes. Since the SHs include
odd SHs and even SHs, the following lemma clearly holds.

Lemma 12: For any %, % > 1 + log % and σ, σ2 ≥
4%

(2%−log %−1) , there exists a constant θ1 = σ2

2% such that

lim
n→∞

Pr(N̄h ≥ 2θ1 log n) = 1; lim
n→∞

Pr(N̄v ≥ 2θ1 log n) = 1.

Notations for SHs: For simplicity, we assume that there
are exactly 2θ1 log n horizontal SHs in each R̄h

j (or R̄v
j ),

including θ1 log n odd horizontal SHs and θ1 log n even hor-
izontal SHs, without changing the results in order sense.
According to Lemma 12, we can further divide every row-
slab R̄h

j into 2θ1 log n slices of width l̄ and length
√

n,
where l̄ = σ/(2θ1

√
log n). We call these produced slices row-

slices. Then, we can define the mappings among the row-slab,
column-slab, row-slice, column-slice, and SHs. Please see the
details in Table.2. The following remarks are made:

• Any slice can and only can project to the SH in the slab
containing it, which ensures the distance from any nodes
to the corresponding SH is at most of σ

√
log n.

TABLE 2
Notations for SHs

Notation Meaning

R̄h
i i-th row-slab of area

√
n× (σ

√
log n− εn)

R̄v
i i-th column-slab of area (σ

√
log n− εn)×√n

R̄h (or R̄v) the set of all row-slabs (or column-slabs)

S̄h
j j-th row-slice of area

√
n× (σ/(2θ1

√
log n))

S̄v
j j-th column-slice of area (σ/(2θ1

√
log n))×√n

S̄h (or S̄v) the set of all all row-slices (or column-slices)

h̄h
k (or h̄v

k) k-th horizontal (or vertical) SH

H̄h (or H̄v) the set of all horizontal (or vertical) SHs

ḡh:S̄h → H̄h a bijection from row-slices to horizontal SHs

ḡv :S̄v → H̄v a bijection from column-slices to vertical SHs

f̄h : V → H̄h a function from nodes to horizontal SHs

f̄v : V → H̄v a function from nodes to vertical SHs

• For a node v and row-slice S̄h
i ∈ S̄h, if v is located in

S̄h
i , then f̄h(v) = ḡh(S̄h

i ).
Second-Class Transmission Scheduling: We adopt a 16-

TDMA scheme to schedule the transmissions along the SHs.
The main technique called parallel scheduling here is de-
scribed as following: Instead of scheduling only one link in
each activated cell in each time slot, we consider schedul-
ing a set of links initiating from the same cell together.
Specially, we divide time into a sequence of 16 successive
slots. In each time slot, we consider disjoint sets of cells
in L(

√
n, σ

√
log n − εn, 0) that are allowed to be activated

simultaneously, as depicted in Fig. 3. Notice that if a cell
is activated, 2θ1 log n links that initiate from this cell can
transmit simultaneously. Obviously, compared with scheduling
only one link in each cell, this modification increases the
total rate by order of Θ(log n) if the total interference is still
bounded. So can we prove that the total interference is still
bounded? Fortunately, the proof of the following lemma gives
us a positive answer. We further prove that, the rate of any
SH is of order Ω((log n)−

α
2 ). It is easy to see that the length

of every hop in the SHs is at most of
√

10 · (σ√log n − εn)
and at least of σ

√
log n− εn.

Lemma 13: Along each SH, the rate can be sustained of
order Ω((log n)−

α
2 ).

Proof: For any link along the SHs in any time slot, since
its length is at least of σ

√
log n− εn, the sum of interferences

to the receivers is bounded by

I(n) ≤ P · (θ1 log n− 1) · `(σ√log n− εn)

+
n∑

i=1

8iP (θ1 log n) · `((4i− 3) · (σ√log n− εn))

≤ 2α · Pθ1σ
−α(log n)1−

α
2 ·

(
1 + lim

n→∞

n∑
i=1

8i
(4i−3)α

)

The latest limitation obviously converges to a constant when
α > 2. On the other hand, since the length of the link is at
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column−slab

column−slice

6

5

4

3
2

1

7

uij

w̄h
j

w̄v
i

wh
i

uv
ij

uh
ij

wv
j

vj

vi

κ log m− εm

σ

√
log n− εn

fh(vi)

fv(vj)

f̄h(vj)

f̄v(vi)

Fig. 4. Routing of communication-pairs vi → vj . Two bold
solid curves represent the FH fh(vi) and FH fv(vj). Two
thin solid curves represent the SH f̄v(vi) and SH f̄h(vj).

most of
√

10·(σ√log n−εn), the signal strength at the receiver
can be bounded by

S(n) ≥ P ·`·(
√

10(σ
√

log n−εn)) ≥ P ·10−
α
2 σ−α(log n)−

α
2

Then, the achievable rate along the SH is at least of

R(n) =
1
16
·B · log2

(
1 +

S(n)
N0 + I(n)

)

Since α > 2 and N0 > 0, we have S(n)
N0+I(n) → 0, as n →∞.

Hence, R(n) = Ω((log n)−
α
2 ).

6.2 Multicast Strategy Based on FHs and SHs: F

Let F denote the multicast strategy based on FHs and SHs,
F r and F t denote its routing and transmission scheduling
schemes, respectively.

6.2.1 Routing scheme F r

For a multicast session MS,k (k ∈ [1, ns]) with the spanning
set US,k, we first construct an Euclidean spanning tree (EST)
for MS,k, denoted by EST(US,k) or EST(MS,k), by using a
similar method to that in [12]. We call the nodes on FHs first-
class stations, and call the nodes on SHs second-class stations.
Please see the illustrations in Fig.2. Based on EST(US,k), we
propose Algorithm 1 to construct the multicast routing tree
T (US,k).

6.2.2 Transmission scheduling scheme F t

During the realization of routing between each communication
pairs in the EST, say vi → vj , there are seven phases for a
packet from vi to vj , corresponding to 7 substeps of Step 1
in Algorithm 1. Please see the illustration in Fig. 4.

Throughout all seven phases, there are two types of links in
terms of hop length. The first are the short links, along the FHs,
of the length O(1), we call them first-class links. The links
in Phases 3, 4 and 5 are first-class links. The second are the
longer links of length Θ(

√
log n), we call them second-class

Algorithm 1 Multicast Routing Scheme F r

Input: The multicast session MS,k and EST(US,k).
Output: A multicast routing tree T (US,k).

1: For each link vi → vj of EST(US,k), implement the
following sub-steps to realize the routing from vi to vj .
(Please See the illustration in Fig. 4.)
(1) By a single long hop, vi drains the packets into the
vertical SH f̄v(vi) via a node w̄v

i that is the closest second-
class station in f̄v(vi) to vi with the distance of |viw̄

v
i | =

Θ(
√

log n).
(2) Along the vertical SH f̄v(vi), the packets are drained
into the horizontal FH fh(vi) via wh

i that is the closest
first-class station to the intersection of f̄v(vi) and fh(vi).
(3) The packets are transported along fh(vi) to uh

ij that
is the closest station on fh(vi) to uij , where uij denotes
the intersection of fh(vi) and fv(vj).
(4) By a single short hop, the packets are transmitted from
uh

ij to uv
ij that is the closest station on fv(vj) to uij .

(5) The packets are transported along fh(vi) to wv
j that

is the closest first-class station to the intersection of the
horizontal SH f̄h(vj) and the vertical FH fv(vj).
(6) Along the horizontal SH f̄h(vj), the packets are
delivered to w̄h

j that is the closest second-class station
in f̄h(vj) to vj with the distance of |vjw̄

h
j | = Θ(

√
log n).

(7) By a single long hop, w̄h
j delivers the packets to vj .

2: Consider the next link of EST(US,k) (go to step 1), until
all the links in EST(US,k) are checked.

3: For the resulted graph, we merge the same edges (hops),
and remove those circles which have no impact on the
connectivity of the communications for EST(US,k); we
finally obtain the multicast routing tree T (US,k).

links. The links in Phases 1, 2 and Phases 6,7 are second-class
links. Divide the time into two disjoint parts, and call them
first-class phase and second-class phase, in which we schedule
respectively the first-class links and second-class links.

6.3 Multicast Throughput Under Strategy F

For the first-class phase consisting of Phases 3, 4 and 5, the
links in Phase 4 have no difference from those in Phase 3 and
Phase 5. Thus, we do not analyze them individually, while we
regard Phase 3, 4 and 5 as a single phase called Phase-(3; 4;
5). Then, we propose Lemma 14 for this phase.

Lemma 14: During Phase-(3; 4; 5), the per-session through-
put can be achieved of order

Λ3;4;5 =

{
Ω( 1

ns
· n

Q3;4;5
) when ns = [n·log n

Q3;4;5
, n]

Ω(1/log n) when ns = (1, n·log n
Q3;4;5

]

where

Q3;4;5 =





Θ(
√

ndn) when nd : [1, n
(log n)2 ]

Θ(nd log n) when nd : [ n
(log n)2 , n

log n ]
Θ(n) when nd : [n/ log n, n]

(10)
Subsequently, we consider Phase 2 and Phase 6.
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Lemma 15: In Phase 2, the per-session throughput can be
achieved of order

Λ2 =

{
Ω(R2

ns
· n

Q2
) when ns = [ n

Q2
· log n, n]

Ω(R2/log n) when ns = (1, n
Q2
· log n]

(11)

where R2 = Ω((log n)−
α
2 ), Q2 = minorder{nd

√
log n, n}.

By a similar procedure to the proof of Lemma 15, we can
get the following result for Phase 6.

Lemma 16: In Phase 6, the per-session multicast throughput
can be achieved of the same order as in Phase 2.

During Phases 1 and 7, like Phases 2 and 6, we also use a
16-TDMA scheme to schedule the links of length Θ(

√
log n)

in parallel, by which we can ensure that every link achieves
the rate of order Ω((log n)−

α
2 ). On the other hand, there is no

relay burden on the nodes in Phases 1 and 7 due to the single-
hop pattern, thus, it is easy to obtain the following result.

Lemma 17: minorder{Λ1,Λ7} = Ω(maxorder{Λ2, Λ6}).
Combining Lemmas 14, 15, 16 and 17, we obtain the

following result according to Lemma 4.
Theorem 5: By using the multicast strategy F , the per-

session multicast throughput is achieved of order:
When nd = O(n/

√
log n),





Ω( 1

(log n)1+
α
2

) when ns : (1, n log n
Γ ]

Ω(min
order

{ n
nsΓ , 1

(log n)1+
α
2
}) when ns : [n log n

Γ ,
n
√

log n

nd
]

Ω(min
order

{ n
nsΓ , n

nsnd(log n)
α+1

2
}) when ns : [n

√
log n

nd
, n]

When nd = Ω(n/
√

log n),




Ω( n

nsnd(log n)
α+1

2
) when ns : (1, n

√
log n/nd]

Ω( 1

(log n)1+
α
2

) when ns : [n
√

log n/nd, n]

where Γ := Q3;4;5 is defined in Equation (10).

6.4 Multicast Strategy Based on Only SHs: S

Now, we devise another multicast strategy, denoted by S ,
which is only based on the SHs. The routing scheme is denoted
by S r, and is described in Algorithm 2. For the transmission
scheduling, denoted by S t, we only need to implement the
second-class transmission scheduling since no other types of
links exist. It can be shown that if the bottleneck of F r lies
in its second-class phase, the multicast throughput under S
is not less than that under F . Specifically, we have

Theorem 6: By using the multicast strategy S , the per-
session multicast throughput is achieved of order

{
Ω( n

(log n)
α
2 ns·Q̄

) when ns = Ω(n·log n
Q̄

)

Ω(1/(log n)1+
α
2 ) when ns = O(n·log n

Q̄
)

where Q̄ =

{
Θ(

√
ndn
log n ) when nd = O( n

log n )

Θ(nd) when nd = Ω( n
log n ).

Proof: The throughputs during Phase 1 and Phase 5 are
not less than those during other phases, implying that the
bottleneck of the entire routing lies on SHs. According to
Lemma 13, the rate of each SH can be achieved of order
Ω((log n)−

α
2 ). On the other hand, by using a similar procedure

Algorithm 2 Multicast Routing Scheme S r

Input: The multicast session MS,k and EST(US,k).
Output: A multicast routing tree T̄ (US,k).

1: For each link vi → vj of EST(US,k), implement the
following sub-steps to realize the routing vi → vj .
(1) By a single hop, vi drains the packets into the vertical
SH f̄v(vi) via w̄v

i that is the closest second-class station
to vi on f̄v(vi) with the distance of |viw̄

v
i | = Θ(

√
log n)).

(2) The packets are transported along f̄v(vi) to ūv
ij that

is the closest second-class station on f̄v(vi) to ūij , where
ūij denotes the intersection of f̄v(vi) and f̄h(vj);
(3) By a single hop, the packets are transmitted from ūv

ij

to ūh
ij that is the closest station on f̄h(vj) to ūij .

(4) The packets are transported along horizontal SH f̄h(vj)
to w̄h

j that is the closest second-class station to vj on
f̄h(vj) with the distance of |vjw̄

h
j | = Θ(

√
log n).

(5) By a single hop, w̄h
j delivers the packets to vj .

2: Consider the next link of EST(US,k) (go to step 1), until
all the links in EST(US,k) are checked.

3: Use the same method as step 3 of F r to obtain the final
multicast routing tree T̄ (US,k).

to the proof of Lemma 14, we can obtain that the burden of
the second-class stations is w.h.p. at most of order

{
O(nsQ̄/n) when nsQ̄/n = Ω(log n)
O(log n) when nsQ̄/n = O(log n) (12)

with Q̄ = minorder{√nnd/
√

log n + nd, n}. Hence, we
complete the proof.

6.5 General Result for Random Extended Networks
Combining Theorem 5 and Theorem 6, we obtain the general
result in Theorem 7.

Theorem 7: The per-session multicast throughput for ran-
dom extended networks can be achieved of order Ω(λ(n)) as
described in Table 3.

Theorem 2 can be obtained based on Theorem 7 by letting
ns = Θ(n).

As in [12], we design multicast routing schemes based
on the construction of Euclidean spanning trees. Note that
this way of constructing the spanning tree is not symmetric,
which leads that most paths will go through the center area of
the network. Under such routing, some parts of the network
will be under a relatively large load, therefore, those parts
would become a bottleneck for the multicast sessions, called
local bottleneck. In fact, in the derivation of Theorem 2, it is
just this local bottleneck that limits the network throughput
under our schemes, since we take the maximum load of any
part of the network into account. Then, the existence of the
local bottleneck makes our schemes look non-optimal. While,
combining with the upper bounds in Theorem 1, we obtain
that our scheme is optimal (in order sense) in the regimes
of nd : [1, n

(log n)α+1 ] and nd : [ n
log n , n]. That implies that

in these regimes of nd, the load at the local bottleneck is
at most a constant times of that at other parts of the network.
Furthermore, the local bottleneck issue should be fully studied
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in the future work. Designing a multicast scheme without the
local bottleneck is a possible solution to close the remaining
gap between the upper and lower bounds.

7 LITERATURE REVIEWS

In this section, we mainly review the networking-theoretic ca-
pacity scaling laws for random ad hoc network. We summarize
the classifications of this issue in Table 4, and indicate the
scope of a related work by a 3-dimensional coordinate (x, y, z)
based on Table 4, where x ∈{U, B, M}, y ∈{D, E} and z ∈{O,
Y, G}. For instance, (U,E,G) denotes the per-session unicast
capacity for random extended networks (REN) under Gaussian
channel model (GCM).

In REN, there must be some links of length ω(1) under
any routing scheme in order to ensure the connectivity of
network. For those links, when the ProM or PhyM is adopted,
the rate will be set as a constant order if they can be scheduled,
which is over-optimistic and unrealistic for power-constrained
wireless networks. This can explain why we hardly introduce
the works on (x,E,z), x ∈{U, B, M} and z ∈{O, Y}.
Moreover, for RDN, the throughput under the GCM can be
equivalently achieved under the ProM and PhyM, if multiple
communication and interference radii (or the thresholds of
SINR) are permitted under the ProM (or the PhyM). In the
following review, we use session patterns as the main index.

Unicast Sessions: In the pioneering work of capacity
scaling laws, Gupta and Kumar [2] showed that the order
of (U,D,O) is Θ(1/

√
n log n); and they derived the lower

bound and upper bound of (U,D,Y) as Ω(1/
√

n log n) and
O(1/

√
n), respectively, leaving a gap between the upper and

lower bounds of unicast capacity for RDN under PhyM.
Franceschetti et al. [20] proposed the hierarchical schemes

based on bond percolation model, under which the lower
bounds of (U,D,G) and (U,E,G) can be both achieved of order
Ω(1/

√
n); later, Keshavarz-Haddad et al. [29] derived the

upper bound of (U,D,G) as O(1/
√

n), Li et al. [21] proved that
the upper bound of (U,E,G) is also of O(1/

√
n). Combining

the works in [20], [21], [29], one can get that the unicast
capacities for both RDN and REN under Gaussian channel
model (GCM) are of order Θ(1/

√
n).

Broadcast Sessions: According to [13], [30] done by
Keshavarz-Haddad et al., and Tavli, respectively, the order
of (B,D,O) is of Θ( 1

n ). Keshavarz-Haddad and Riedi [31]
analyzed the essential impact of topology and interference on
the broadcast capacity under the PhyM and GCM. As a part of
the contributions of [31], the (B,D,Y) and (B,D,G) are proved
to be both of order Θ( 1

n ) when the the bandwidth is of a
constant order. For (B,E,G), Zheng [3] proved that the order
is of Θ( (log n)−

α
2

n ).
Multicast Sessions: Earlier, Jacquet and Rodolakis

[32] showed that the upper bound of (M,D,O) is of
O(1/

√
ndn log n). Shakkottai et al. [14] designed a novel

multicast scheme called comb, by which the lower bound of
(M,D,O) can be achieved of order Ω(1/

√
ndn log n) when

the number of multicast sources, denoted by ns, is nε for
some ε > 0, and the number of destinations per multicast
session, denoted by nd, is n1−ε. Li [12] proved that the order

TABLE 3
Achievable Per-Session Multicast Throughput for REN

Range of nd Better Strategy and Order of λ(n)

[1, n
(log n)1+α ] F :





(log n)−1−α
2 if ns : (1,

√
n√

nd
· (log n)1+

α
2 ]

√
n

ns
√

nd
if ns : [

√
n√

nd
· (log n)1+

α
2 , n]

[ n
(log n)1+α , n

(log n)2
] F :





(log n)−1−α
2 if ns : (1,

n·
√

log n

nd
]

n

nsnd(log n)
α+1

2
if ns : [

n·
√

log n

nd
, n]

[ n
(log n)2

, n
log n

] S :





(log n)−1−α
2 if ns : (1,

√
n·(log n)

3
2√

nd
]

√
n

ns
√

nd·(log n)
α−1

2
if ns : [

√
n·(log n)

3
2√

nd
, n]

[ n
log n

, n] S :





(log n)−1−α
2 if ns : (1, n log n

nd
]

n

ns·nd·(log n)
α
2

if ns : [n log n
nd

, n]

of (M,D,O) is of Θ(1/
√

ndn log n) when nd = O(n/log n),
and is of Θ(1/n) when nd = Ω(n/log n). By using a
novel technique called arena, Keshavarz-Haddad and Riedi
[19] proved all the upper bounds of (M,D,O), (M,D,Y) and
(M,D,G) are of order O( 1√

nnd
) when nd : [1, n

(log n)2 ], are of
O( 1

nd log n ) when nd : [ n
(log n)2 , n

log n ], and are of O(1) when
nd : [ n

log n , n]. Furthermore, they derived the lower bounds
of (M,D,Y) and (M,D,G) are of order Ω( 1√

nnd
) when nd :

[1, n
(log n)3 ], are of Ω( (log n)−3/2

nd
) when nd : [ n

(log n)3 , n
(log n)2 ],

are of Ω( 1√
nnd log n

) when nd : [ n
(log n)2 , n

log n ], and are of

Ω(1) when nd : [ n
log n , n].

For (M,E,G), Li et al. [21] proposed a lower bound as
Ω(

√
n

ns
√

nd
) when nd = O( n

(log n)2α+6 ) and ns = Ω(n
1
2+θ),

where θ > 0 is any positive constant. Note that we focus on
(M,E,G) in this paper. We derive the more tight lower bounds
of (M,E,G) for all cases of ns : (1, n] by introducing the two-
level highway system and parallel transmission scheduling,
and propose the upper bounds based on some new arguments.

There are some other types of sessions, such as gathercast
(many-to-one sessions) [33], [34], anycast [35] and manycast
[36], etc. We omit the review of works for those sessions,
since they are not directly relevant to the scope of this paper.

8 CONCLUSION

We study the networking-theoretic multicast capacity bounds
for random extended networks (REN) under Gaussian Channel
model. Based on percolation theory, we propose two mul-
ticast strategies for REN and derive the achievable multi-
cast throughput by considering all cases of ns : (1, n] and
nd : [1, n]. We show that under the assumption of ns = Θ(n),
the per-session multicast throughput derived by our scheme is
order-optimal when nd = O( n

(log n)α+1 ) or nd = Ω( n
log n ).

There are still gaps between the lower bounds and upper
bounds on multicast capacity of REN for some regimes of
nd, i.e., nd : [ n

(log n)α+1 , n
log n ]. An interesting and challenging
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TABLE 4
Networking-Theoretic Capacity Scaling Laws for Random Ad Hoc Networks

Capacity of Session Patterns Scaling Models (Density) Communication Models

1 U: Unicast Capacity D: Random Dense Networks (RDN) O: Protocol Model (ProM)

2 B: Broadcast Capacity E: Random Extended Networks (REN) Y: Physical Model (PhyM)

3 M: Multicast Capacity G: Gaussian Channel Model (GCM)

issue is to close the gaps on multicast capacity by presenting
possibly new tighter upper bounds, and lower bounds, and
designing corresponding algorithms to achieve the asymptotic
multicast capacity.
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